Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 218
Filter
1.
PNAS Nexus ; 3(6): pgae216, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38894877

ABSTRACT

Plasmalogens are glycerophospholipids with a vinyl ether linkage at the sn-1 position of the glycerol backbone. Despite being suggested as antioxidants due to the high reactivity of their vinyl ether groups with reactive oxygen species, our study reveals the generation of subsequent reactive oxygen and electrophilic lipid species from oxidized plasmalogen intermediates. By conducting a comprehensive analysis of the oxidation products by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS), we demonstrate that singlet molecular oxygen [O2 (1Δg)] reacts with the vinyl ether bond, producing hydroperoxyacetal as a major primary product (97%) together with minor quantities of dioxetane (3%). Furthermore, we show that these primary oxidized intermediates are capable of further generating reactive species including excited triplet carbonyls and O2 (1Δg) as well as electrophilic phospholipid and fatty aldehyde species as secondary reaction products. The generation of excited triplet carbonyls from dioxetane thermal decomposition was confirmed by light emission measurements in the visible region using dibromoanthracene as a triplet enhancer. Moreover, O2 (1Δg) generation from dioxetane and hydroperoxyacetal was evidenced by detection of near-infrared light emission at 1,270 nm and chemical trapping experiments. Additionally, we have thoroughly characterized alpha-beta unsaturated phospholipid and fatty aldehydes by LC-HRMS analysis using two probes that specifically react with aldehydes and alpha-beta unsaturated carbonyls. Overall, our findings demonstrate the generation of excited molecules and electrophilic lipid species from oxidized plasmalogen species unveiling the potential prooxidant nature of plasmalogen-oxidized products.

2.
Antioxidants (Basel) ; 13(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38790618

ABSTRACT

During our search for natural resources that can inhibit lipid droplet accumulation (LDA) and potentially prevent metabolic dysfunction-associated fatty liver disease (MAFLD) and its progressive stages, such as metabolic dysfunction-associated steatohepatitis (MASH), eight bean extracts (BE1-BE8) were tested for their ability to inhibit lipid accumulation and oxidation in hepatocytes. Substantial inhibitory effects on LDA with bean extracts (BEs) BE2, BE4, BE5, and BE8 were demonstrated. An advanced lipidomic approach was used to quantify the accumulation and inhibition of intracellular triacylglycerol (TAG) and its oxidized species, TAG hydroperoxide (TGOOH), in hepatocytes under fatty acid-loading conditions. The results show that the antioxidants BE2 and BE8 are potential candidates for regulating TAG and TGOOH accumulation in fatty acid-induced lipid droplets (LDs). This study suggests that bean-based foods inhibit LDs formation by decreasing intracellular lipids and lipid hydroperoxides in the hepatocytes. The metabolic profiling of BEs revealed that BE2 and BE8 contained polyphenolic compounds. These may be potential resources for the development of functional foods and drug discovery targeting MAFLD/MASH.

3.
Molecules ; 29(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38675515

ABSTRACT

The lipoxygenase pathway has a significant influence on the composition of the volatile components of virgin olive oil (VOO). In this work, the influence of the maturity index (MI) on the activity of the lipoxygenase enzyme (LOX) in the fruits of the autochthonous Dalmatian olive cultivars Oblica, Levantinka and Lastovka was studied. The analysis of the primary oxidation products of linoleic acid in the studied cultivars showed that LOX synthesises a mixture of 9- and 13-hydroperoxides of octadecenoic acid in a ratio of about 1:2, which makes it a non-traditional plant LOX. By processing the fruits of MI~3, we obtained VOOs with the highest concentration of desirable C6 volatile compounds among the cultivars studied. We confirmed a positive correlation between MI, the enzyme activity LOX and the concentration of hexyl acetate and hexanol in cultivars Oblica and Lastovka, while no positive correlation with hexanol was observed in the cultivar Levantinka. A significant negative correlation was found between total phenolic compounds in VOO and LOX enzyme activity, followed by an increase in the MI of fruits. This article contributes to the selection of the optimal harvest time for the production of VOOs with the desired aromatic properties and to the knowledge of the varietal characteristics of VOOs.


Subject(s)
Lipoxygenase , Olea , Olive Oil , Volatile Organic Compounds , Olive Oil/chemistry , Olive Oil/metabolism , Lipoxygenase/metabolism , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Olea/metabolism , Olea/chemistry , Fruit/chemistry , Fruit/metabolism , Phenols/metabolism , Phenols/analysis , Phenols/chemistry , Linoleic Acid/metabolism
4.
Antioxidants (Basel) ; 13(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38539887

ABSTRACT

The imbalance in oxidative stress in acute stroke has been extensively studied; on the contrary, its investigation in the subacute phase is limited. The aim of this study was to analyse the variation in the systemic oxidative status in subacute post-stroke patients before (T0) and after a six-week rehabilitation treatment (T1) and to investigate the relationship between systemic oxidative status and rehabilitation outcomes. We enrolled 109 subjects in two different centres, and we analysed their serum hydroperoxide levels (d-ROMs), biological antioxidant power (BAP), thiol antioxidant components (-SHp), and relative antioxidant capacity (OSI and SH-OSI indices). Activity of Daily Living (ADL), hand grip strength, and walking endurance were evaluated using the modified Barthel Index, the Hand Grip test, and the 6-min walk test, respectively. At T0, most of the patients showed very high levels of d-ROMs and suboptimal levels of the BAP, OSI, and SH-OSI indices. Comparing the T1 and T0 data, we observed an improvement in the rehabilitation outcomes and a significant decrease in d-ROMs (549 ± 126 vs. 523 ± 148, p = 0.023), as well as an improvement in the OSI and SH-OSI indices (4.3 ± 1.3 vs. 4.7 ± 1.5, p = 0.001; 11.0 ± 0.4 vs. 1.2 ± 0.4, p < 0.001). In addition, significant correlations were seen between the oxidative stress parameters and the rehabilitation outcomes. These results suggest monitoring the systemic oxidative stress status in post-stroke patients in order to plan a tailored intervention, considering its relationship with functional recovery.

5.
Appl Microbiol Biotechnol ; 108(1): 266, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498184

ABSTRACT

Lipoxygenases (LOXs) catalyze dioxygenation of polyunsaturated fatty acids (PUFAs) into fatty acid hydroperoxides (FAHPs), which can be further transformed into a number of value-added compounds. LOXs have garnered interest as biocatalysts for various industrial applications. Therefore, a high-throughput LOX activity assay is essential to evaluate their performance under different conditions. This study aimed to enhance the suitability of the ferrous-oxidized xylenol orange (FOX) assay for screening LOX activity across a wide pH range with different PUFAs. The narrow linear detection range of the standard FOX assay restricts its utility in screening LOX activity. To address this, the concentration of perchloric acid in the xylenol orange reagent was adjusted. The modified assay exhibited a fivefold expansion in the linear detection range for hydroperoxides and accommodated samples with pH values ranging from 3 to 10. The assay could quantify various hydroperoxide species, indicating its applicability in assessing LOX substrate preferences. Due to sensitivity to pH, buffer types, and hydroperoxide species, the assay required calibration using the respective standard compound diluted in the same buffer as the measured sample. The use of correction factors is suggested when financial constraints limit the use of FAHP standard compounds in routine LOX substrate preference analysis. FAHP quantification by the modified FOX assay aligned well with results obtained using the commonly used conjugated diene method, while offering a quicker and broader sample pH range assessment. Thus, the modified FOX assay can be used as a reliable high-throughput screening method for determining LOX activity. KEY POINTS: • Modifying perchloric acid level in FOX reagent expands its linear detection range • The modified FOX assay is applicable for screening LOX activity in a wide pH range • The modified FOX assay effectively assesses substrate specificity of LOX.


Subject(s)
Hydrogen Peroxide , Perchlorates , Phenols , Sulfoxides , High-Throughput Screening Assays , Xylenes/chemistry , Lipoxygenases
6.
EBioMedicine ; 102: 105088, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38537604

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH) is characterised by cell death of parenchymal liver cells which interact with their microenvironment to drive disease activity and liver fibrosis. The identification of the major death type could pave the way towards pharmacotherapy for MASH. To date, increasing evidence suggest a type of regulated cell death, named ferroptosis, which occurs through iron-catalysed peroxidation of polyunsaturated fatty acids (PUFA) in membrane phospholipids. Lipid peroxidation enjoys renewed interest in the light of ferroptosis, as druggable target in MASH. This review recapitulates the molecular mechanisms of ferroptosis in liver physiology, evidence for ferroptosis in human MASH and critically appraises the results of ferroptosis targeting in preclinical MASH models. Rewiring of redox, iron and PUFA metabolism in MASH creates a proferroptotic environment involved in MASH-related hepatocellular carcinoma (HCC) development. Ferroptosis induction might be a promising novel approach to eradicate HCC, while its inhibition might ameliorate MASH disease progression.


Subject(s)
Carcinoma, Hepatocellular , Fatty Liver , Ferroptosis , Liver Neoplasms , Humans , Lipid Peroxidation , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Iron/metabolism , Fatty Liver/etiology , Tumor Microenvironment
7.
Environ Sci Technol ; 58(10): 4727-4736, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38411392

ABSTRACT

Heterogeneous oxidative aging of organic aerosols (OA) occurs ubiquitously in the atmosphere, initiated by oxidants, such as the hydroxyl radicals (•OH). Hydroperoxyl radicals (HO2•) are also an important oxidant in the troposphere, and its gas-phase chemistry has been well studied. However, the role of HO2• in heterogeneous OA oxidation remains elusive. Here, we carry out •OH-initiated heterogeneous oxidation of several OA model systems under different HO2• conditions in a flow tube reactor and characterize the molecular oxidation products using a suite of mass spectrometry instrumentation. By using hydrogen-deuterium exchange (HDX) with thermal desorption iodide-adduct chemical ionization mass spectrometry, we provide direct observation of organic hydroperoxide (ROOH) formation from heterogeneous HO2• and peroxy radicals (RO2•) reactions for the first time. The ROOH may contribute substantially to the oxidation products, varied with the parent OA chemical structure. Furthermore, by regulating RO2• reaction pathways, HO2• also greatly influence the overall composition of the oxidized OA. Last, we suggest that the RO2• + HO2• reactions readily occur at the OA particle interface rather than in the particle bulk. These findings provide new mechanistic insights into the heterogeneous OA oxidation chemistry and help fill the critical knowledge gap in understanding atmospheric OA oxidative aging.


Subject(s)
Organic Chemicals , Oxidants , Oxidation-Reduction , Hydroxyl Radical/chemistry , Aerosols/analysis
8.
PeerJ ; 12: e16615, 2024.
Article in English | MEDLINE | ID: mdl-38250719

ABSTRACT

Earlier, it was suggested that carotenoids in light-harvesting complexes 2 (LH2) can generate singlet oxygen, further oxidizing bacteriochlorophyll to 3-acetyl-chlorophyll. In the present work, it was found that illumination of isolated LH2 preparations of purple sulfur bacterium Ectothiorhodospira haloalkaliphila with light in the carotenoid absorption region leads to the photoconsumption of molecular oxygen, which is accompanied by the formation of hydroperoxides of organic molecules in the complexes. Photoformation of two types of organic hydroperoxides were revealed: highly lipophilic (12 molecules per one LH2) and relatively hydrophobic (68 per one LH2). It has been shown that illumination leads to damage to light-harvesting complexes. On the one hand, photobleaching of bacteriochlorophyll and a decrease in its fluorescence intensity are observed. On the other hand, the photoinduced increase in the hydrodynamic radius of the complexes, the reduction in their thermal stability, and the change in fluorescence intensity indicate conformational changes occurring in the protein molecules of the LH2 preparations. Inhibition of the processes described above upon the addition of singlet oxygen quenchers (L-histidine, Trolox, sodium L-ascorbate) may support the hypothesis that carotenoids in LH2 preparations are capable of generating singlet oxygen, which, in turn, damage to protein molecules.


Subject(s)
Ectothiorhodospira , Singlet Oxygen , Bacteriochlorophylls , Carotenoids , Hydrogen Peroxide
9.
Contact Dermatitis ; 90(2): 134-142, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37852634

ABSTRACT

BACKGROUND: Contact allergy rates of linalool and limonene hydroperoxides (HPs) have increased. OBJECTIVES: To demonstrate the patterns of simultaneous positive patch test (PT) reactions and prevalences of multiple contact allergies (MCAs) in patients with contact allergy to linalool and/or limonene HPs. METHODS: A retrospective analysis of consecutive dermatitis patients in 2015-2020 was performed. RESULTS: Of all 4192 patients, 1851 had at least one positive PT reaction. Of these, 410 (22.2%) had MCAs, significantly related to a higher age (p-value = 0.003). Patients with an exclusively positive reaction to linalool HPs but not limonene HPs were shown to have MCAs (p-value <0.001, odds ratio (95% confidence interval) = 4.15 (3.01-5.73)). Patients with simultaneous contact allergies to both linalool and limonene HPs had contact allergies to many other screening and fragrance allergens. CONCLUSIONS: Simultaneous positive PT reactions to allergens in baseline series and fragrances are common in patients with the HPs contact allergy, especially linalool HPs. The pattern of simultaneous PT reactions principally suggested the co-sensitization of the cosmetic allergens.


Subject(s)
Acyclic Monoterpenes , Dermatitis, Allergic Contact , Perfume , Humans , Limonene/adverse effects , Monoterpenes/adverse effects , Terpenes/adverse effects , Dermatitis, Allergic Contact/diagnosis , Dermatitis, Allergic Contact/epidemiology , Dermatitis, Allergic Contact/etiology , Retrospective Studies , Cyclohexenes/adverse effects , Allergens/adverse effects , Hydrogen Peroxide/adverse effects , Perfume/adverse effects , Patch Tests
10.
J Cachexia Sarcopenia Muscle ; 15(1): 319-330, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38123161

ABSTRACT

BACKGROUND: Lipid hydroperoxides (LOOH) have been implicated in skeletal muscle atrophy with age and disuse. Lysophosphatidylcholine acyltransferase 3 (LPCAT3), an enzyme of the Lands cycle, conjugates a polyunsaturated fatty acyl chain to a lysophospholipid to form a polyunsaturated fatty acid containing phospholipid (PUFA-PL) molecule, providing substrates for LOOH propagation. Previous studies suggest that inhibition of the Lands cycle is an effective strategy to suppress LOOH. Mice with skeletal muscle-specific tamoxifen-inducible knockout of LPCAT3 (LPCAT3-MKO) were utilized to determine if muscle-specific attenuation of LOOH may alleviate muscle atrophy and weakness with disuse. METHODS: LPCAT3-MKO and control mice underwent 7 days of sham or hindlimb unloading (HU model) to study muscle mass and force-generating capacity. LOOH was assessed by quantifying 4-hydroxynonenal (4-HNE)-conjugated peptides. Quantitative PCR and lipid mass spectrometry were used to validate LPCAT3 deletion. RESULTS: Seven days of HU was sufficient to induce muscle atrophy and weakness concomitant to a ~2-fold increase in 4-HNE (P = 0.0069). Deletion of LPCAT3 reversed HU-induced increase in muscle 4-HNE (P = 0.0256). No difference was found in body mass, body composition, or caloric intake between genotypes. The soleus (SOL) and plantaris (PLANT) muscles of the LPCAT3-MKO mice experienced ~15% and ~40% less atrophy than controls, respectively. (P = 0.0011 and P = 0.0265). Type I and IIa SOL myofibers experienced a ~40% decrease in cross sectional area (CSA), which was attenuated to only 15% in the LPCAT3-MKO mice (P = 0.0170 and P = 0.0411, respectively). Strikingly, SOL muscles were fully protected and extensor digitorum longus (EDL) muscles experienced a ~35% protection from HU-induced reduction in force-generating capacity in the LPCAT3-MKO mice compared with controls (P < 0.0001 for both muscles). CONCLUSIONS: Our findings demonstrate that attenuation of skeletal muscle lipid hydroperoxides is sufficient to restore its function, in particular a protection from reduction in muscle specific force. Our findings suggest muscle lipid peroxidation contributes to atrophy and weakness induced by disuse in mice.


Subject(s)
Muscle, Skeletal , Muscular Atrophy , Mice , Animals , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Lipids , 1-Acylglycerophosphocholine O-Acyltransferase/pharmacology
11.
Food Chem X ; 20: 100892, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144723

ABSTRACT

Advances in grinding strategies have been beneficial to eliminating the off-flavor of soymilk and improving the quality soy products. Herein, four grinding processing, dry-blanching grinding (D-BG), wet-blanching grinding (W-BG), wet-anaerobic grinding (W-AG) and traditional grinding (TG) were employed and found to impose a significant impact on off-flavor components, accompanied by changes of hydroperoxides and free radicals. The results showed that all three methods could significantly hinder the formation of C6 aldehydes. C8 Alcohols and (E)-2-heptenal could be removed by D-BG, but lipids in dehulled soybean were prefer to be oxidized during storage, resulting in the accumulation of hydroperoxides and radicals. W-BG and W-AG have higher levels of 1-octen-3-ol, and soaking at an alkaline pH and increasing the number of rinses is beneficial for its removal. Gas chromatography-olfaction-mass spectrometry (GC-O-MS) combined with sensory evaluation showed that off-flavor profile of d-BGS, W-BGS and W-AGS was different. D-BG and W-AG possessed better flavor quality.

12.
Food Res Int ; 173(Pt 1): 113289, 2023 11.
Article in English | MEDLINE | ID: mdl-37803602

ABSTRACT

The intricate mechanisms of oil thermooxidation and their accurate prediction have long been hampered by the combinatory nature of propagation and termination reactions involving randomly generated radicals. To unravel this complexity, we suggest a two-scale mechanistic description that connects the chemical functions (scale 1) with the molecular carriers of these functions (scale 2). Our method underscores the importance of accounting for cross-reactions between radicals in order to fully comprehend the reactivities in blends. We rigorously tested and validated the proposed two-scale scheme on binary and ternary mixtures of fatty acid methyl esters (FAMEs), yielding three key insights: (1) The abstraction of labile protons hinges on the carrier, defying the conventional focus on hydroperoxyl radical types. (2) Termination reactions between radicals adhere to the geometric mean law, exhibiting symmetric collision ratios. (3) The decomposition of hydroperoxides emerges as a monomolecular process above 80 °C, challenging the established combinatorial paradigm. Applicable across a wide temperature range (80 °C to 200 °C), our findings unlock the production of blends with controlled thermooxidation stability, optimizing the use of vegetable oils across applications: food science, biofuels, and lubricants.


Subject(s)
Esters , Plant Oils , Esters/chemistry , Plant Oils/chemistry , Fatty Acids/chemistry , Structure-Activity Relationship , Biofuels
13.
J Agric Food Chem ; 71(42): 15732-15744, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37820072

ABSTRACT

The oxidation reactions that take place in virgin olive oil under moderate conditions involved the combined effect of antioxidant and prooxidant compounds. Given the complexity of oxidation processes of multicomponent matrices, there is still a need to develop new methods with a dynamic approach to study the persistence of the compounds with healthy properties. This work studied the joint evolution of them, including phenols and pheophytin a, modeling their tendency during a real storage. The regression equations performed with the total phenol concentration showed that around 2% of the concentration was lost every month. Simultaneously, the progress of oxidation was evaluated by mesh cell incubation and Fourier transform infrared analysis. This method pointed out that, in the presence of light, the prooxidant effect of pigments was able to mask the protective effect of phenols, until the pheophytin a concentration was lower than 1 mg/kg. The antioxidant effect of phenols was less remarkable when the concentration loss was 35% or more.


Subject(s)
Phenols , Surgical Mesh , Olive Oil/analysis , Phenols/analysis , Antioxidants , Oxidation-Reduction , Plant Oils
14.
Environ Sci Technol ; 57(44): 17123-17131, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37875432

ABSTRACT

Selective production of singlet oxygen (1O2) as an electrophilic oxidant is crucial for the precise control of chemical targets in environmental fields. Herein, we proposed a strategy to construct a redox interface on electrodes, which can in situ produce inorganic metal hydroperoxides with appropriate oxidative ability during oxygen activation. Benefiting from atomic Cu sites (CuN4) in a copper-carbon aerogel electrode, almost complete production of 1O2 was achieved, thereby refraining the competitive formation of other reactive oxygen species. The fast electron transfer rate between CuN4 and electrogenerated H2O2 promoted the in situ formation of copper hydroperoxide (N4-Cu-OOH), thereby selectively and efficiently oxidizing intermediate O2•- to 1O2. The optimized production of 1O2 was up to 2583 µmol L-1 without additional chemical reagents. We further considered the high production of 1O2 for efficiently removing electron-rich organic pollutants from a complex water matrix. Fast kinetics was achieved and considered for removing various pollutants with electron-donating substituents in a nonradical oxidation pathway. The BPA degradation efficiency is less susceptible to the coexisting natural organic matter (NOM) and inorganic ions. Specifically, the kinetic constant for BPA removal is 34 times higher than that for a nanoparticle of a copper-carbon electrode while producing a hydroxyl radical. Our findings highlight the innovative interfacial surface engineering of an electrocatalytic O2 activation system to selectively generate 1O2 for future potential applications.


Subject(s)
Environmental Pollutants , Oxygen , Singlet Oxygen , Copper , Hydrogen Peroxide , Water , Decontamination , Oxidation-Reduction , Carbon
15.
Int J Mol Sci ; 24(16)2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37629162

ABSTRACT

The GC-MS profiling of the endogenous oxylipins (Me/TMS) from cucumber (Cucumis sativus L.) leaves, flowers, and fruit peels revealed a remarkable abundance of 16-hydroxy-9,12,14-octadecatrienoic acid (16-HOT). Incubations of homogenates from these organs with α-linolenic acid yielded 16(S)-hydroperoxide (16-HPOT) as a predominant product. Targeted proteomic analyses of these tissues revealed the presence of several highly homologous isoforms of the putative "9S-lipoxygenase type 6". One of these isoenzymes (CsLOX3, an 877 amino acid polypeptide) was prepared by heterologous expression in E. coli and exhibited 16(S)- and 13(S)-lipoxygenase activity toward α-linolenic and linoleic acids, respectively. Furthermore, α-linolenate was a preferred substrate. The molecular structures of 16(S)-HOT and 16(S)-HPOT (Me or Me/TMS) were unequivocally confirmed by the mass spectral data, 1H-NMR, 2D 1H-1H-COSY, TOCSY, HMBC, and HSQC spectra, as well as enantiomeric HPLC analyses. Thus, the vegetative CsLOX3, biosynthesizing 16(S)-HPOT, is the first 16(S)-LOX and ω3-LOX ever discovered. Eicosapentaenoic and hexadecatrienoic acids were also specifically transformed to the corresponding ω3(S)-hydroperoxides by CsLOX3.


Subject(s)
Cucumis sativus , Fatty Acids, Omega-3 , Cucumis sativus/genetics , alpha-Linolenic Acid , Escherichia coli , Proteomics , Hydrogen Peroxide , Lipoxygenases
16.
bioRxiv ; 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37546754

ABSTRACT

Background: Lipid hydroperoxides (LOOH) have been implicated in skeletal muscle atrophy with age and disuse. Lysophosphatidylcholine acyltransferase 3 (LPCAT3), an enzyme of Lands cycle, conjugates a polyunsaturated fatty acyl chain to a lysophospholipid (PUFA-PL) molecule, providing substrates for LOOH propagation. Previous studies suggest that inhibition of Lands cycle is an effective strategy to suppress LOOH. Mice with skeletal muscle-specific tamoxifen-inducible knockout of LPCAT3 (LPCAT3-MKO) were utilized to determine if muscle-specific attenuation of LOOH may alleviate muscle atrophy and weakness with disuse. Methods: LPCAT3-MKO and control mice underwent 7 days of sham or hindlimb unloading (HU model) to study muscle mass and force-generating capacity. LOOH was assessed by quantifying 4-hydroxynonenal (4-HNE)-conjugated peptides. Quantitative PCR and lipid mass spectrometry were used to validate LPCAT3 deletion. Results: 7 days of HU was sufficient to induce muscle atrophy and weakness concomitant to an increase in 4-HNE. Deletion of LPCAT3 reversed HU-induced increase in muscle 4HNE. No difference was found in body mass, body composition, or caloric intake between genotypes. The soleus (SOL) and plantaris (PLANT) muscles of the LPCAT3-MKO mice were partially protected from atrophy compared to controls, concomitant to attenuated decrease in cross-sectional areas in type I and IIa fibers. Strikingly, SOL and extensor digitorum longus (EDL) were robustly protected from HU-induced reduction in force-generating capacity in the LPCAT3-MKO mice compared to controls. Conclusion: Our findings demonstrate that attenuation of muscle LOOH is sufficient to restore skeletal muscle function, in particular a protection from reduction in muscle specific force. Thus, muscle LOOH contributes to atrophy and weakness induced by HU in mice.

17.
Contact Dermatitis ; 89(2): 85-94, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37177844

ABSTRACT

BACKGROUND: Hydroperoxides of limonene (Lim-OOHs) and linalool (Lin-OOHs) are potent contact sensitizers. OBJECTIVES: To investigate the prevalence of positive patch test (PT) reactions to Lim-OOHs and Lin-OOHs in consecutive patients, their demographic factors and concomitant reactions. METHODS: Between 7/2018 and 12/2020, Lim-OOHs 0.3% pet. and Lin-OOHs 1% pet. were patch tested in 5511 consecutive patients. We assessed PT reactivity and analysed data from patients with either positive or negative PTs to Lim-OOHs and Lin-OOHs. RESULTS: Positive PT results to Lim-OOHs (n = 170, 3.1%) and Lin-OOHs (n = 483, 8.8%) were frequent. Most of the positive reactions were weak (LimOOHs n = 134/LinOOHs n = 429), and even more frequently, doubtful (n = 252/n = 578) or irritant reactions (n = 81/n = 178) were documented. PT reactivity to Lim-OOHs and Lin-OOHs was increased in patients with irritant reactions to sodium lauryl sulphate (SLS). The proportion of leg dermatitis and concomitant positive reactions to fragrances and essential oils was increased in patients with reactivity to these hydroperoxides. CONCLUSION: The observed reaction pattern suggests that both test preparations display an irritant potential with an increased risk of false positive reactions. Preparations should be chemically monitored in order to reduce irritancy. Mindful interpretation of PT results and aimed patch testing of lower concentrations is recommended.


Subject(s)
Dermatitis, Allergic Contact , Perfume , Humans , Limonene/adverse effects , Monoterpenes/adverse effects , Hydrogen Peroxide/adverse effects , Patch Tests/adverse effects , Irritants , Dermatitis, Allergic Contact/diagnosis , Dermatitis, Allergic Contact/epidemiology , Dermatitis, Allergic Contact/etiology , Perfume/adverse effects , Allergens/adverse effects
18.
Environ Sci Technol ; 57(17): 6965-6974, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37083304

ABSTRACT

Multiphase oxidative aging is a ubiquitous process for atmospheric organic aerosols (OA). But its kinetics was often found to be slow in previous laboratory studies where high hydroxyl radical concentrations ([•OH]) were used. In this study, we performed heterogeneous oxidation experiments of several model OA systems under varied aging timescales and gas-phase [•OH]. Our results suggest that OA heterogeneous oxidation may be 2-3 orders of magnitude faster when [•OH] is decreased from typical laboratory flow tube conditions to atmospheric levels. Direct laboratory mass spectrometry measurements coupled with kinetic simulations suggest that an intermolecular autoxidation mechanism mediated by particle-phase peroxy radicals greatly accelerates OA oxidation, with enhanced formation of organic hydroperoxides, alcohols, and fragmentation products. With autoxidation, we estimate that the OA oxidation timescale in the atmosphere may be from less than a day to several days. Thus, OA oxidative aging can have greater atmospheric impacts than previously expected. Furthermore, our findings reveal the nature of heterogeneous aerosol oxidation chemistry in the atmosphere and help improve the understanding and prediction of atmospheric OA aging and composition evolution.


Subject(s)
Atmosphere , Atmosphere/analysis , Atmosphere/chemistry , Aerosols/analysis , Oxidation-Reduction
19.
Methods Mol Biol ; 2642: 111-128, 2023.
Article in English | MEDLINE | ID: mdl-36944875

ABSTRACT

The degree of unsaturation of plant lipids is high, making them sensitive to oxidation. They thus constitute primary targets of reactive oxygen species and oxidative stress. Moreover, the hydroperoxides generated during lipid peroxidation decompose in a variety of secondary products which can propagate oxidative stress or trigger signaling mechanisms. Both primary and secondary products of lipid oxidation are helpful markers of oxidative stress in plants. This chapter describes a number of methods that have been developed to measure those biomarkers and signals, with special emphasis on the monitoring of photooxidative stress. Depending on their characteristics, those lipid markers provide information not only on the oxidation status of plant tissues but also on the origin of lipid peroxidation, the localization of the damage, or the type of reactive oxygen species involved.


Subject(s)
Oxidative Stress , Plants , Biomarkers , Lipid Peroxidation , Lipids , Oxidation-Reduction , Reactive Oxygen Species
20.
Foods ; 12(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36981180

ABSTRACT

INTRODUCTION: Toxic aldehydic lipid oxidation products (LOPs) arise from the thermo-oxidative deterioration of unsaturated fatty acids present in heated culinary oils when exposed to high-temperature frying episodes, and currently these effects represent a major public health concern. OBJECTIVES: In this study, we investigated the applications of low-field (LF), benchtop NMR analysis to detect and quantify toxic aldehyde species in culinary oils following their exposure to laboratory-simulated shallow frying episodes (LSSFEs) at 180 °C. Four culinary oils of variable fatty acid (FA) composition were investigated to determine the analytical capabilities of the LF NMR instrument. Oil samples were also analysed using a medium-field (400 MHz) NMR facility for comparative purposes. RESULTS: Aldehydes were quantified as total saturated and total α,ß-unsaturated classes. The time-dependent production of α,ß-unsaturated aldehydes decreased in the order chia > rapeseed ≈ soybean > olive oils, as might be expected from their polyunsaturated and monounsaturated FA (PUFA and MUFA, respectively) contents. A similar but inequivalent trend was found for saturated aldehyde concentrations. These data strongly correlated with medium-field 1H NMR data obtained, although LF-determined levels were significantly lower in view of its inability to detect or quantify the more minor oxygenated aldehydic LOPs present. Lower limit of detection (LLOD) values for this spectrometer were 0.19 and 0.18 mmol/mol FA for n-hexanal and trans-2-octenal, respectively. Aldehydic lipid hydroperoxide precursors of aldehydic LOPs were also detectable in LF spectra. CONCLUSIONS: We therefore conclude that there is scope for application of these smaller, near-portable NMR facilities for commercial or 'on-site' quality control determination of toxic aldehydic LOPs in thermally stressed frying oils.

SELECTION OF CITATIONS
SEARCH DETAIL
...