Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 333
Filter
1.
J Fungi (Basel) ; 10(7)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39057343

ABSTRACT

The symbiotic relationship between arbuscular mycorrhizal fungi (AMF) and plants is well known for its benefits in enhancing plant growth and stress resistance. Research on whether key components of the AMF colonization process, such as MyC factors, can be directly utilized to activate plant symbiotic pathways and key functional gene expression is still lacking. In this paper, we found that, using a hydroponics system with Lotus japonicus, MyC factor analogue chitin oligomer 5 (CO5) had a more pronounced growth-promoting effect compared to symbiosis with AMF at the optimal concentration. Additionally, CO5 significantly enhanced the resistance of Lotus japonicus to various environmental stresses. The addition of CO5 activated symbiosis, nutrient absorption, and stress-related signaling pathways, like AMF symbiosis, and CO5 also activated a higher and more extensive gene expression profile compared to AMF colonization. Overall, the study demonstrated that the addition of MyC factor analogue CO5, by activating relevant pathways, had a superior effect on promoting plant growth and enhancing stress resistance compared to colonization by AMF. These findings suggest that utilizing MyC factor analogues like CO5 could be a promising alternative to traditional AMF colonization methods in enhancing plant growth and stress tolerance in agriculture.

2.
Ecotoxicology ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031252

ABSTRACT

The majority of allelopathic studies on invasive plants have focused primarily on their leaf-mediated allelopathy, with relatively little attention paid to their root-mediated allelopathy, especially co-allelopathy mediated by both leaves and roots. It is conceivable that the diversified composition of acid rain may influence the allelopathy of invasive plants. This study aimed to evaluate the leaf and root-mediated co-allelopathy of the invasive plant Solidago canadensis L. under acid rain with different nitrogen-sulfur ratios (N/S) on Lactuca sativa L. via a hydroponic incubation. The root-mediated allelopathy of S. canadensis was found to be more pronounced than the leaf-mediated allelopathy of S. canadensis with nitric acid at pH 4.5, but the leaf-mediated allelopathy of S. canadensis was observed to be more pronounced than the root-mediated allelopathy of S. canadensis with sulfuric-rich acid at pH 4.5. The leaf and root-mediated co-allelopathy of S. canadensis was more pronounced than that of either part alone with sulfuric acid at pH 5.6 and nitric acid at pH 4.5, but not with nitric-rich acid at pH 4.5 and sulfuric-rich acid at pH 4.5. Sulfuric acid and sulfuric-rich acid with stronger acidity intensified the leaf-mediated allelopathy of S. canadensis. Nitric acid and nitric-rich acid attenuated the leaf-mediated allelopathy of S. canadensis, and most types of acid rain (especially nitric acid and nitric-rich acid) also attenuated the root-mediated allelopathy of S. canadensis and the leaf and root-mediated co-allelopathy of S. canadensis. Sulfuric acid and sulfuric-rich acid produced a more pronounced effect than nitric acid and nitric-rich acid. Hence, the N/S ratio of acid rain influenced the allelopathy of S. canadensis under acid rain with multiple N/S ratios.

3.
Heliyon ; 10(13): e33909, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39044976

ABSTRACT

This study was conducted to evaluate the effect of hydroponic barley fodder supplementation on growth performance, carcass yield and carcass quality of Cobb 500 broilers. An accustomed proper feeding and brooding have been given to the chicks for up to three weeks of age. After three weeks, 144 three-week-old birds were randomly assigned to four treatments and replicated three times with 12 chicks per replication in a completely randomized design. Treatments were arranged as follows; T1: Home formulated Broiler diet (control group), T2: Home formulated Broiler diet +3.5 % hydroponic barley fodder, T3: Home formulated Broiler diet +7 % hydroponic barley fodder, and T4: Home formulated Broiler diet +10.5 % hydroponic barley fodder. The proximate analysis revealed that, hydroponic barley fodder contained 15.63 % crude protein, 10.6 crude fiber, and 4.04 ether extract. Increasing the level of hydroponic barley fodder was associated with an improvement of both growth performance and weight of carcass components of Cobb 500 broilers. Higher average daily feed intake (112.72 g/bird), daily body weight gain (56.37 g/bird), total body weight gain (1579.39 g/4 weeks) were obtained from T4 (home formulated feed +10.5 % HBF). Similarly, higher feed conversion efficiency (1.99 g of feed/g of weight gain) was recorded in T4. Hydroponic barley fodder had no significant (P > 0.05) effect on the mortality rate and carcass quality of broiler chickens. Economically, the highest net return was obtained from birds fed on T4 (Home formulated Broiler diet +10.5 % hydroponic barley fodder). In conclusion, supplementing hydroponic barley fodder up to 10.5 % improves carcass characteristics and result higher net income compared to other treatments. The current study recommended that further investigation like inclusion and substitution trial should be conducted to determine whether hydroponic barley fodder can replace expensive poultry ration ingredients.

4.
Food Sci Nutr ; 12(7): 4800-4809, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39055177

ABSTRACT

An experiment was performed to evaluate the effect of Trichoderma harzianum MVT801 combined with different ratios of nutrient solution (NR) (25%, 50%, and 100%) on the growth and physiological traits of Lactuca sativa "Lollo Rosso" plants cultivated in floating systems. Inoculation of lettuce plants with T. harzianum MVT801 (T1) in a floating system improves biometric properties, photosynthetic parameters, and nutrient uptake compared with uninoculated treatment (T0). The results clearly showed that in T1, despite a 50% reduction in the ratio of nutrient solution, no significant difference was observed in the growth and photosynthesis characteristics and nutrient uptake in L. sativa "Lollo Rosso" leaves compared with a complete nutrient solution treatment (100%), which is one of the notable results of this study. In this regard, the highest yield was observed in T1NR50 (inoculated with fungi and 50% of the nutrient solution) and T1NR100 (inoculated with fungi and complete nutrient solution) treatments. Also, the highest concentrations of phosphorus and potassium in "Lollo Rosso" leaves were observed in T1NR50 and T1NR100 treatments. Accordingly, the use of T. harzianum in floating lettuce cultivation could be recommended to increase crop productivity and reduce the use of chemical fertilizers.

5.
J Dairy Sci ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876224

ABSTRACT

This study investigated the feasibility of integrating hydroponic barley forage (HBF) production into dairy ruminant production, focusing on its effect on milk yield and components, energy and water footprints, and economic implications. Maize silage (MS) was used as a benchmark for comparison. The research was conducted on a water buffalo dairy farm equipped with a fully automated hydroponic system producing approximately 6,000 kg/d of HBF as fed (up 1,000 kg/d on DM basis). Thirty-three lactating water buffaloes were assigned to 3 dietary treatments based on the level of MS or HBF in the diet: D0 (100% MS), D50 (50% MS and 50% HBF), and D100 (100% HBF). The feeding trial lasted 5 weeks plus a 2-week adaptation period during which each cow underwent a weighing, BCS scoring, recording of milk yield and components, including somatic cell count and coagulation characteristics. Based on the data obtained from the in vivo study, the water and energy footprints for the production of MS and HBF and buffalo milk, as well as income over feed cost, were evaluated. Complete replacement of MS with HBF resulted in a slight increase in milk yield without significant impact on milk component. The resource footprint analysis showed potential benefits associated with HBF in terms of water consumption. However, the energy footprint assessment showed that the energy ratio of HBF was less than 1 (0.88) compared with 11.89 for MS. This affected the energy efficiency of milk yield in the 3 diets, with the D50 diet showing poorer performance due to similar milk yield compared with D0, but higher energy costs due to the inclusion of HBF. The production cost of HBF was about 4 times higher than that of farm-produced MS, making feed costs for milk yield more expensive. Nevertheless, HBF can potentially improve income over feed costs if it increases milk yield enough to offset its higher production costs. Overall, the results suggest that the current practice of using HBF to replace high quality feedstuffs as concentrates is likely to result in energy and economic losses.

6.
J Environ Manage ; 363: 121414, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852418

ABSTRACT

This study explores the effectiveness of a botanical bioscrubber system using Golden Pothos (Epipremnum aureum) in hydroponic setups to mitigate common indoor atmospheric pollutants. Over a 100-day operation, levels of SO2, NO2, O3, TVOC, CO, CO2, PM10, and PM2.5 were monitored, with a significant reduction in carbon-based compounds and particulate matter-. Notably, CO2 and PM2.5 removal efficiencies were significantly correlated with the foliar area, suggesting that the interaction between pollutants and plant leaves plays a crucial role in the phytoremediation process. In contrast, CO, PM10, and TVOC exhibited varied removal efficiencies, hinting the involvement of mechanisms beyond leaf interaction, such as adsorption in irrigation water or root system capture. The absence of significant correlations for PM10 emphasized the need for further investigation into alternative removal processes, potentially mediated by the root system. Overall, our findings suggest that botanical bioscrubbers, particularly those utilizing Golden Pothos, hold promise for indoor air purification through plant-based systems.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Particulate Matter , Air Pollutants/analysis , Biodegradation, Environmental , Plant Leaves
7.
Water Environ Res ; 96(6): e11056, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825347

ABSTRACT

Nitrate poses a potential threat to aquatic ecosystems. This study focuses on the sulfur autotrophic denitrification mechanism in the process of water culture wastewater treatment, which has been successfully applied to the degradation of nitrogen in water culture farm effluents. However, the coexistence of organic acids in the treatment process is a common environmental challenge, significantly affecting the activity of denitrifying bacteria. This paper aims to explore the effects of adding benzoic acid and lactic acid on denitrification performance, organic acid removal rate, and microbial population abundance in sulfur autotrophic denitrification systems under optimal operating conditions, sulfur deficiency, and high hydraulic load. In experiments with 50 mg·L-1 of benzoic acid or lactic acid alone, the results show that benzoic acid and lactic acid have a stimulating effect on denitrification activity, with the stimulating effect significantly greater than the inhibitory effect. Under optimal operating conditions, the average denitrification rate of the system remained above 99%; under S/N = 1.5 conditions, the average denitrification rate increased from 88.34% to 91.93% and 85.91%; under HRT = 6 h conditions, the average denitrification rate increased from 75.25% to 97.79% and 96.58%. In addition, the addition of organic acids led to a decrease in microbial population abundance. At the phylum level, Proteobacteria has always been the dominant bacterial genus, and its relative abundance significantly increased after the addition of benzoic acid, from 40.2% to 61.5% and 62.4%. At the genus level, Thiobacillus, Sulfurimonas, Chryseobacterium, and Thermomonas maintained high population abundances under different conditions. PRACTITIONER POINTS: Employing autotrophic denitrification process for treating high-nitrate wastewater. Utilizing organic acids as external carbon sources. Denitrifying bacteria demonstrate high utilization efficiency towards organic acids. Organic acids promote denitrification more than they inhibit it. The promotion is manifested in the enhancement of activity and microbial abundance.


Subject(s)
Autotrophic Processes , Benzoic Acid , Denitrification , Lactic Acid , Sulfur , Benzoic Acid/metabolism , Sulfur/metabolism , Lactic Acid/metabolism , Bacteria/metabolism , Bacteria/classification , Microbiota/drug effects , Waste Disposal, Fluid/methods , Water Purification/methods
8.
Environ Int ; 188: 108765, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38810495

ABSTRACT

Pyrrolizidine alkaloids (PAs) and their N-oxide (PANOs), as emerging environmental pollutants and chemical hazards in food, have become the focus of global attention. PAs/PANOs enter crops from soil and reach edible parts, but knowledge about their uptake and transport behavior in crops is currently limited. In this study, we chose tea (Camellia sinensis L.) as a representative crop and Sp/SpNO as typical PAs/PANOs to analyze their root uptake and transport mechanism. Tea roots efficiently absorbed Sp/SpNO, utilizing both passive and active transmembrane pathways. Sp predominantly concentrated in roots and SpNO efficiently translocated to above-ground parts. The prevalence of SpNO in cell-soluble fractions facilitated its translocation from roots to stems and leaves. In soil experiment, tea plants exhibited weaker capabilities for the uptake and transport of Sp/SpNO compared to hydroponic conditions, likely due to the swift degradation of these compounds in the soil. Moreover, a noteworthy interconversion between Sp and SpNO in tea plants indicated a preference for reducing SpNO to Sp. These findings represent a significant stride in understanding the accumulation and movement mechanisms of Sp/SpNO in tea plants. The insights garnered from this study are pivotal for evaluating the associated risks of PAs/PANOs and formulating effective control strategies.


Subject(s)
Camellia sinensis , Pyrrolizidine Alkaloids , Soil Pollutants , Camellia sinensis/metabolism , Pyrrolizidine Alkaloids/metabolism , Soil Pollutants/metabolism , Soil Pollutants/analysis , Plant Roots/metabolism , Biological Transport , Plant Leaves/metabolism , Soil/chemistry
9.
Plants (Basel) ; 13(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38794485

ABSTRACT

Soil salinization poses a significant threat to agricultural productivity, necessitating innovative agronomic strategies to mitigate its impact. This study focuses on improving salt stress resistance in tomato plants through the application of silicon (Si) in roots. A greenhouse experiment was carried out under normal conditions (control, and 1 and 4 mM Si) and under salinity stress (salt control, and 1 and 4 mM Si). Various parameters were analyzed in leaves and roots. Under normal conditions, tomato plants grown in non-saline conditions exhibited some toxicity when exposed to Na2SiO3. As for the experiments under salt stress conditions, Si mitigated oxidative damage, preserving root cell membrane integrity. The concentration of malondialdehyde was reduced by 69.5%, that of proline was reduced by 56.4% and there was a 57.6% decrease in catalase activity for tomato plants treated with 1 mM Si under salt stress. Furthermore, Fe uptake and distribution, under salt conditions, increased from 91 to 123 mg kg-1, the same concentration as that obtained for the normal control. In all cases, the lower dose produced better results under normal conditions than the 4 mM dose. In summary, this research provides a potential application of Si in non-fertigated crop systems through a radicular pathway.

10.
Foods ; 13(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38672824

ABSTRACT

Hydroponic cultivation of fresh produce is gaining popularity worldwide, but few studies have provided a comparative assessment of hydroponic and conventional soil-based vegetables. In this study, we analyzed a series of hazardous chemicals, including 120 pesticides, 18 phthalates (PAEs), and 2 heavy metals (lead and cadmium) in four vegetable commodities (lettuces, celeries, tomatoes, and cucumbers) from hydroponic and conventional soil-based cultivation. Our study showed that at least one pesticide was present in 84% of the conventionally grown samples, whereas only 30% of the hydroponic samples contained detectable pesticide residues. Regarding the total PAE concentrations, there was no significant difference between conventional and hydroponic vegetables. The lead and cadmium residues in conventionally cultivated vegetables were significantly higher than in those produced from hydroponic cultivation. Lead is the primary heavy metal pollutant across all vegetable samples. The hazard index (HI) values of the hydroponic and conventional vegetables were 0.22 and 0.64, respectively. Since both values are below one, the exposure to these hazardous chemicals through consumption of the studied vegetables may not pose a significant health risk. The HI values also suggested that the health risks of eating hydroponic vegetables are lower than for conventional soil-based vegetables.

11.
Biosci Biotechnol Biochem ; 88(5): 509-516, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38425056

ABSTRACT

Nutrient availability in hydroponic solutions must be accurately monitored to maintain crop productivity; however, few cost-effective, accurate, real-time, and long-term monitoring technologies have been developed. In this study, we describe the development and application of cation-/anion-exchange chromatography with a neutral eluent (20-mmol/L sodium formate, pH 7.87) for the simultaneous separation (within 50 min) of ionic nutrients, including K+, NH4+, NO2-, NO3-, and phosphate ion, in a hydroponic fertilizer solution. Using the neutral eluent avoided degradation of the separation column during precipitation of metal ion species, such as hydroxides, with an alkaline eluent and oxidation of NO2- to NO3- with an acidic eluent. The suitability of the current method for monitoring ionic components in a hydroponic fertilizer solution was confirmed. Based on our data, we propose a controlled fertilizer strategy to optimize fertilizer consumption and reduce the chemical load of drained fertilizer solutions.


Subject(s)
Fertilizers , Hydroponics , Solutions , Hydroponics/methods , Chromatography, Ion Exchange/methods , Fertilizers/analysis , Nutrients/analysis , Cations/analysis , Phosphates/analysis , Hydrogen-Ion Concentration , Potassium/analysis
12.
Recent Pat Biotechnol ; 18(3): 257-266, 2024.
Article in English | MEDLINE | ID: mdl-38528667

ABSTRACT

BACKGROUND: The forthcoming problems will be of food, and soil due to environmental alteration, growing populations, pollution, and exhaustion of natural resources among other factors. Hydroponic farming has the capacity to alleviate the intimidation of these con-cerned issues in the agricultural system. Hydroponics is recommended as an alternative way to enhance product yield compared to conventional agriculture. OBJECTIVE: The present study aimed to determine the different growth parameters and constituents of soil-grown and hydroponically grown Trachyspermum ammi and Foeniculum vulgare for the first time, which could be a patentable in future. METHODS: In this study, extraction was carried out by maceration method using methanol as a solvent whereas, growth parameters were performed by the leaves number, plant height, and leaf area. Chlorophyll content was also performed in both sources. Further, a comparison of chemical constituents from different sources was analyzed by GC-MS. RESULTS: The bioactive components in hydroponically grown T. ammi were found more as compared to soil-grown T. ammi. The GC-MS analysis revealed the presence of various compounds in the methanolic extract of plant materials. CONCLUSION: Hence, hydroponics could be an alternative in agriculture and this system is now accepted globally. This method provides diverse perspectives for farmers to harvest high-yield, better quality, and enhanced bioactive compounds.


Subject(s)
Ammi , Foeniculum , Hydroponics , Soil/chemistry , Ammi/chemistry , Prospective Studies , Patents as Topic , Agriculture/methods
13.
J Dairy Sci ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38554823

ABSTRACT

The study investigated the effects of dietary protein level and the inclusion of hydroponic barley sprouts (HB) on lactation performance, blood biochemistry and N use efficiency in mid-lactation dairy cows. Treatments were arranged in a 2 × 2 factorial design with 2 crude protein (CP) levels [16.8% and 15.5% of dry matter (DM)], with HB (4.8% of DM, replacing 4.3% of alfalfa hay and 0.5% of distillers dried grains with solubles (DDGS)) or without HB. Forty-eight multiparous Holstein dairy cows (146 ± 15 d in milk, 40 ± 5 kg/d of milk) were randomly allocated to 1 of 4 diets: high protein diet (16.8% CP, HP), HP with HB (HP+HB), low protein diet (15.5% CP, LP), or LP with HB (LP+HB). An interaction between CP × HB on dry matter intake (DMI) was detected, with DMI being unaffected by HB inclusion in cows fed the high CP diets, but was lower in cows fed HB when the low CP diet was fed. A CP × HB interaction was also observed on milk and milk protein yield, which was higher in cows fed HB with HP, but not LP. Inclusion of HB also tended to reduce milk fat content, and feeding HP resulted in a higher milk protein and milk urea N content, but lower milk lactose content. Feed efficiency was increased by feeding HP or HB diets, whereas N efficiency was higher for cows fed LP or HB diets. There was an interaction on the apparent total-tract digestibility of DM and CP, which was higher when HB was fed along with HP, but reduced when fed with LP, whereas the digestibility of ADF was increased by feeding low protein diets. In conclusion, feeding a low protein diet had no adverse effect on cow performance, while feeding HB improved milk and milk component yield, and N efficiency when fed with a high CP diet, but compromised cow performance with a low CP diet.

14.
Environ Sci Pollut Res Int ; 31(19): 28279-28289, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38532219

ABSTRACT

Lead is a very toxic metal which affects human health. An alternative to remove it from contaminated water is the use of macrophytes, as Scirpus americanus Pers. This species is tolerant to salt and metals and has high biomass. The present research analyzed the capacity of hydroponic cultures of normal and transgenic plants (line T12) from S. americanus to remove high concentrations of lead. The antioxidant response of plants to metal exposure was also measured. The MINTEQ3.1 program was used to define the media composition in order to have the metal available to the plants. According to MINTEQ3.1 predictions, sulfate, phosphate, and molybdenum must be removed from the medium to avoid lead precipitation. Therefore, the plants were maintained in a modified Hoagland solution containing 100, 250, and 400 mg/L lead. The presence of metal did not affect the growth of roots and stems at all concentration tested. The normal and T12 plants accumulated 69,389 mg/kg and 45,297 mg/kg lead, respectively, and could be considered hyperaccumulators. Plant tolerance to lead mainly involved an increase in superoxide dismutase activity and glutathione accumulation. The bioconcentration factor indicated that S. americanus plants bioconcentrated between 192 and 300 times the metal; thus, S. americanus could be used for phytoremediation of water contaminated with a high concentration of lead.


Subject(s)
Biodegradation, Environmental , Hydroponics , Lead , Lead/metabolism , Cyperaceae/metabolism , Water Pollutants, Chemical/metabolism
15.
PeerJ Comput Sci ; 10: e1871, 2024.
Article in English | MEDLINE | ID: mdl-38435601

ABSTRACT

Background: The primary objective is to address the specific needs of plants at different growth stages by delivering precise nutrient concentrations tailored to their developmental requirements. Challenges such as uneven nutrient distribution, fluctuations in pH and electrical conductivity, and inadequate nutrient delivery pose potential hindrances to achieving optimal plant health and yield in hydroponic systems. By overcoming these challenges, the hydroponic farming community aims to enhance the accuracy of nutrient dosing, streamline automation processes, and minimize resource wastage. Hydroponics, a cultivation technique without soil, facilitates the growth of organic vegetation while concurrently minimizing water use and eliminating the necessity for pesticides. In order to achieve effective cultivation of hydroponic plants, it is essential to maintain a controlled environment that encompasses essential factors such as temperature, carbon dioxide (CO2) levels, oxygen availability, and appropriate lighting conditions. Additionally, it is crucial to ensure the provision of vital nutrients to maximize output and productivity. Due to the demanding nature of a hydroponic farmer's schedule, it is necessary to minimize the amount of time dedicated to nutrient management, as well as pH and EC adjustments. Methods: In order to determine and deliver the proper amount of vital nutrients, such as nitrogen, phosphorus, and potassium, based on the plant growth stage, we presented an automatic hydroponic nutrient estimator in this system. We noticed that the plant's nutrient consumption varies depending on its stage of growth according to plant psychology. Four peristaltic pumps with the necessary sensors are controlled by an Arduino board in the suggested system. Both filling and draining the water are done using each pump. To identify the plant stage, we apply the Plant Growth Stage Identification algorithm to encompass the seedling, vegetative, flowers, and fruit stages. Results: The experimental results reveal that the Growth Stage Identification algorithm obtains 97.5% accuracy for the first 5 weeks with 1,715 ppm of nutrition ingestion, identifying the vegetative state. The flowering stage is identified with 97.5% accuracy in the 6-9th week with 2,380 ppm of nutrition consumption, and the fruiting location is determined with 99.4% accuracy in the last 10-15th week with 2,730 ppm of nutrition consumption.

16.
J Dairy Sci ; 107(8): 5529-5541, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38310968

ABSTRACT

Finite natural resources, rising human population, and climate change pose challenges to traditional crop production. Hydroponically grown fodder (i.e., sprouted grains) can be an alternative feed source for dairy cows; however, only sprouted barley has been investigated in low-producing cows. We aimed to evaluate the effect of replacing conventional concentrates with sprouted barley or wheat, grown using hydroponics, on milk production, nutrient digestibility, and milk fatty acid profile in high-producing cows. Twenty-four multiparous Holstein cows (3.25 ± 1.33 lactations; 102 ± 23 DIM; 49 ± 4 kg/d of milk) were used in a replicated 3 × 3 Latin square design with 21-d experimental periods. Following a 2-wk covariate period, cows were fed 1 of 3 experimental diets: a TMR (1) without sprouted grains (control), or with (2) 10% sprouted barley, or (3) 10% sprouted wheat on a DM basis. Experimental diets were formulated to be isoenergetic and isonitrogenous with sprouted grains that replaced ground corn, soybean meal, canola meal, and dextrose. Sprouted grains were grown using a semi-automatic hydroponic system and harvested after 6 d of growth. Data and sample collection occurred during the last 3 d of the covariate and experimental periods. Wide ranges were observed for the DM percent of sprouted grains (12.1%-22.9% and 13.3%-25.7% for barley and wheat, respectively) and the ratio of sprouted fodder to seed (0.67-1.07 for both barley and wheat). Feeding sprouted grains did not modify the yield of milk or ECM; however, DMI were lower for barley, relative to control. Feed efficiencies were greater for barley than for control (1.49 ± 0.03 vs. 1.43 ± 0.03 for milk yield/DMI; 1.85 ± 0.03 vs. 1.73 ± 0.04 for ECM/DMI). Yields and concentrations of milk components (i.e., fat, true protein, and lactose) were not affected by treatment. Milk urea N concentrations were greater for wheat, relative to control or barley. Body weight (752 ± 3 vs. 742 ± 3 kg) and BW gains (6.53 ± 2.99 vs. -9.33 ± 2.91 kg/21 d) were higher for wheat than for control. Apparent total-tract digestibility of organic matter was greater for wheat relative to barley. Digestibilities of NDF and starch were higher for wheat and control, relative to barley, and CP digestibility was greater for wheat, relative to barley and control. Rumination and physical activity were not affected by treatment. In summary, replacing traditional concentrates with sprouted grains grown using hydroponics improved milk production efficiency (barley sprouts) or enhanced body weight gain (wheat sprouts). A life-cycle assessment needs to be conducted to determine the net effect of this feeding strategy for the dairy industry.


Subject(s)
Animal Feed , Diet , Digestion , Fatty Acids , Hordeum , Lactation , Milk , Triticum , Animals , Cattle , Female , Milk/chemistry , Milk/metabolism , Fatty Acids/metabolism , Diet/veterinary , Nutrients/metabolism , Animal Nutritional Physiological Phenomena
17.
Food Environ Virol ; 16(2): 261-268, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38413543

ABSTRACT

Controlled environment agriculture (CEA), or indoor agriculture, encompasses non-traditional farming methods that occur inside climate-controlled structures (e.g., greenhouses, warehouses, high tunnels) allowing for year-round production of fresh produce such as leaf lettuce. However, recent outbreaks and recalls associated with hydroponically grown lettuce contaminated with human pathogens have raised concerns. Few studies exist on the food safety risks during hydroponic cultivation of leaf lettuce; thus, it is important to identify contributing risk factors and potential mitigation strategies to prevent foodborne transmission via hydroponically grown produce. In this study, the concentration of infectious Tulane virus (TV), a human norovirus surrogate, in hydroponic nutrient solution at 15 °C, 25 °C, 30 °C, and 37 °C was determined over a duration of 21 days to mimic the time from seedling to mature lettuce. The mean log PFU reduction for TV was 0.86, 1.80, 2.87, and ≥ 3.77 log10 at 15 °C, 25 °C, 30 °C, and 37 °C, respectively, at the end of the 21-day period. Similarly, average decimal reduction values (D-values) of TV at 15 °C, 25 °C, 30 °C, and 37 °C were 48.0, 11.3, 8.57, and 7.02 days, respectively. This study aids in the (i) identification of possible food safety risks associated with hydroponic systems specifically related to nutrient solution temperature and (ii) generation of data to perform risk assessments within CEA leaf lettuce operations to inform risk management strategies for the reduction of foodborne outbreaks, fresh produce recalls, and economic losses.


Subject(s)
Hydroponics , Lactuca , Temperature , Lactuca/virology , Lactuca/growth & development , Caliciviridae/growth & development , Caliciviridae/physiology , Food Contamination/analysis , Nutrients/metabolism , Humans , Food Safety
18.
BMC Plant Biol ; 24(1): 149, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418950

ABSTRACT

BACKGROUND: Consecutive droughts and quantitative and qualitative reduction of surface and underground water resources have caused an increase in greenhouse and hydroponic cultivation for most garden crops, including strawberries, in Iran. On the other hand, most of the inputs of greenhouse crops in Iran are imported. To possibility of replacing vermicompost with peat moss under hydroponic cultivation, an experiment was done in a split plot based on randomized complete blocks design in three replications in Isfahan (Iran) Agricultural and Natural Resources Research Center in 2019. The main treatment was substrate at four levels included different levels of vermicompost (30 and 50%) and peat moss (30 and 50%) in combination with perlite and sub-treatment were Selva and Camarosa cultivars. RESULTS: The results showed that Camarosa cultivar and Selva cultivar in (perlite/ peat moss 50:50) and Selva cultivar in (perlite / vermicompost 70:30) had maximum yield. Leaf number and chlorophyll index were maximum in Camarosa cultivar in peat moss substrates. Strawberry cultivars had the highest root fresh weight, the content of vitamin C and total soluble solids (TSS) in substrates containing vermicompost. Camarosa cultivar in (perlite / peat moss50:50) and Selva cultivar in (perlite /vermicompost 50:50) had maximum root dry weight. Also, the highest number of inflorescences was related to substrates containing peat moss and (perlite /vermicompost 70:30). Maximum amount of fresh and dry weight of shoots were observed in (perlite/ peat moss70:30). Selva cultivar had more inflorescences (16.5%) than Camarosa cultivar and Camarosa cultivar produced more fresh and dry weight of shoots (16.5%, 23.01%) than Selva cultivar. CONCLUSION: Expriment results highlighted the importance of considering both main and sub-treatments in agricultural research, as they interacted to influence various growth and yield parameters. 50% vermicompost treatment combined with perlite had a positive impact on plant growth and in quality index such as vitamin C content and TSS was highest. while the choice of cultivar affected different aspects of plant development. Selva cultivar was known to be more tolerant to salinity caused by vermicompost. Vermicompost is local and more economical, also salt resistant cultivars are recommended in a controlled (30%) amount of vermicompost.


Subject(s)
Aluminum Oxide , Fragaria , Silicon Dioxide , Sphagnopsida , Soil , Ascorbic Acid
19.
J Hazard Mater ; 467: 133748, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38350319

ABSTRACT

Microplastics (MPs) and pesticides commonly exist in the environment, yet the interactions between them and their subsequent impacts on plants remain poorly understood. Thus, this study aimed to investigate the impacts of differently charged polystyrene (PS) MPs, including PS-COO-, PS and PS-NH3+ MPs, on the fate of 14C-labelled new antiviral pesticide Dufulin (DFL) in a hydroponic tomato system. The results showed that MPs greatly reduced the growth of tomato plants, with suppression of 18.4-30.2%. Compared to the control group, PS-COO-, PS and PS-NH3+ MPs also reduced the bioaccumulation of DFL in whole tomato plants by 40.3%, 34.5%, and 26.1%, respectively. Furthermore, MPs influenced the translocation of DFL in plant tissues, and the values decreased at the rates of 38.7%, 26.5% and 15.7% for PS-COO-, PS and PS-NH3+, respectively. Interestingly, compared to the control group, PS-COO- exhibited a profound inhibitory effect on DFL concentrations in tomatoes, potentially resulting in a lower dietary risk in the hydroponic tomato system. This may be due to the strong adsorption between PS-COO- and DFL, and PS-COO- may also inhibit the growth of tomato plants. Overall, our study could provide valuable insights into the risk assessment of DFL in the presence of MPs in plant systems.


Subject(s)
Benzothiazoles , Pesticides , Solanum lycopersicum , Biological Availability , Microplastics/toxicity , Plastics , Polystyrenes
20.
Plants (Basel) ; 13(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38337905

ABSTRACT

Hydroponic lettuce was prone to pest and disease problems after transplantation. Manual identification of the current growth status of each hydroponic lettuce not only consumed time and was prone to errors but also failed to meet the requirements of high-quality and efficient lettuce cultivation. In response to this issue, this paper proposed a method called YOLO-EfficientNet for identifying the growth status of hydroponic lettuce. Firstly, the video data of hydroponic lettuce were processed to obtain individual frame images. And 2240 images were selected from these frames as the image dataset A. Secondly, the YOLO-v8n object detection model was trained using image dataset A to detect the position of each hydroponic lettuce in the video data. After selecting the targets based on the predicted bounding boxes, 12,000 individual lettuce images were obtained by cropping, which served as image dataset B. Finally, the EfficientNet-v2s object classification model was trained using image dataset B to identify three growth statuses (Healthy, Diseases, and Pests) of hydroponic lettuce. The results showed that, after training image dataset A using the YOLO-v8n model, the accuracy and recall were consistently around 99%. After training image dataset B using the EfficientNet-v2s model, it achieved excellent scores of 95.78 for Val-acc, 94.68 for Test-acc, 96.02 for Recall, 96.32 for Precision, and 96.18 for F1-score. Thus, the method proposed in this paper had potential in the agricultural application of identifying and classifying the growth status in hydroponic lettuce.

SELECTION OF CITATIONS
SEARCH DETAIL
...