Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 532
Filter
1.
ACS Sens ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39364916

ABSTRACT

Cardiovascular disease (CVD) is a chronic disease characterized by the accumulation of lipids and fibrous tissue within the arterial walls, potentially leading to vascular obstruction and an increased risk of heart disease and stroke. Hydroxyl radicals play a significant role in the formation and progression of CVD as they can instigate lipid peroxidation, resulting in cellular damage and inflammatory responses. However, precisely detecting hydroxyl radicals in CVD lesions presents significant challenges due to their high reactivity and short lifespan. Herein, we present the development and application of a novel activatable optical probe, Cy-OH-LP, designed to detect hydroxyl radicals in lipid-rich environments specifically. Built on the Cy7 molecular skeleton, Cy-OH-LP exhibits near-infrared absorption and fluorescence characteristics, and its specific response to hydroxyl radicals enables a turn-on signal in both photoacoustic and fluorescence spectra. The probe demonstrated excellent selectivity and stability in various tests. Furthermore, Cy-OH-LP was successfully applied in an in vivo model to detect hydroxyl radicals in mouse models, providing a potential tool for diagnosing and monitoring AS. The biosafety of Cy-OH-LP was also verified, showing low cytotoxicity and no significant organ damage in mice. The findings suggest that Cy-OH-LP is a promising tool for the specific detection of hydroxyl radicals in lipid-rich environments, providing new possibilities for research and clinical applications in the field of oxidative stress-related diseases.

2.
Molecules ; 29(17)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39274863

ABSTRACT

A Fe2+-EGTA(ethylene glycol-bis (ß-aminoethyl ether)-N,N,N',N'-tetraacetic acid)-H2O2 system emits photons, and quenching this chemiluminescence can be used for determination of anti-hydroxyl radical (•OH) activity of various compounds. The generation of •OH and light emission due to oxidative damage to EGTA may depend on the buffer and pH of the reaction milieu. In this study, we evaluated the effect of pH from 6.0 to 7.4 (that may occur in human cells) stabilized with 10 mM phosphate buffer (main intracellular buffer) on a chemiluminescence signal and the ratio of this signal to noise (light emission from medium alone). The highest signal (4698 ± 583 RLU) and signal-to-noise ratio (9.7 ± 1.5) were noted for pH 6.6. Lower and higher pH caused suppression of these variables to 2696 ± 292 RLU, 4.0 ± 0.8 at pH 6.2 and to 3946 ± 558 RLU, 5.0 ± 1.5 at pH 7.4, respectively. The following processes may explain these observations: enhancement and inhibition of •OH production in lower and higher pH; formation of insoluble Fe(OH)3 at neutral and alkaline environments; augmentation of •OH production by phosphates at weakly acidic and neutral environments; and decreased regeneration of Fe2+-EGTA in an acidic environment. Fe2+-EGTA-H2O2 system in 10 mM phosphate buffer pH 6.6 seems optimal for the determination of anti-•OH activity.


Subject(s)
Egtazic Acid , Hydrogen Peroxide , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Humans , Egtazic Acid/chemistry , Egtazic Acid/analogs & derivatives , Hydroxyl Radical/chemistry , Iron/chemistry , Luminescence , Luminescent Measurements/methods , Light
3.
J Hazard Mater ; 479: 135720, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39236544

ABSTRACT

Reactive oxygen species (ROS) production upon the oxygenation of reduced iron minerals is of critical importance to redox cycles of Fe and the fate of refractory organic contaminants. The environmental impact factors during this process, however, have been underappreciated. In this study, prominently enhanced production of hydroxyl radicals (•OH) was observed by oxygenation of Fe(II) with 5-50 mM phosphate. The results of spin trap electron spin resonance (ESR) experiment showed that Fe(II)-phosphate complexes facilitated the generation of •OH. The degradation experiment of p-nitrophenol (PNP) confirmed that •OH formation was dominated by a consecutive one-electron O2 reduction (90.2-96.9 %), and the quantification of PNP degradation products revealed that Fe(II)/phosphate molar ratios regulated the O2 activation pathways for O2•- or •OH production. The further experimental and theoretical investigation demonstrated that the coordination of phosphate with Fe(II) plays a dual role in ROS generation that facilitated O2•- formation by lowering the energy barrier for Fe(II) oxidation and altered the reaction pathway of •OH formation due to its occupation of sites for electron transfer. The present work highlights an important role of natural oxyanions in O2 activation by Fe(II) and raises the possibility of in situ degradation of contaminants in subsurface environment.

4.
Bioresour Technol ; 413: 131538, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39332695

ABSTRACT

Cyanobacterial blooms caused by Microcystis aeruginosa threaten environmental safety and daily life. In this study, an activated carbon fiber-supported nano zero-valent iron composite (ACF-nZVI) was developed to remove Microcystis aeruginosa. The results showed that nZVI was evenly distributed on the activated carbon fibers, preventing aggregation and oxidation. ACF-nZVI achieved a removal efficiency of more than 90 % within a pH range of 3-7. During the reaction, H2O2, which was generated by Fe0, was activated to form ·OH and ·O-2, which dismantled antioxidant enzymes and induced lipid peroxidation. Additionally, ACF-nZVI destroyed the cell wall and membrane, resulting in protein and humus leakage and causing 92.34 % cell damage and death. In this study, an environmentally friendly and stable nanomaterial was developed, offering a novel approach for the safe, cost-effective, and efficient removal of cyanobacteria.

5.
J Environ Manage ; 370: 122542, 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39312876

ABSTRACT

Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants that widely exist in the environment. Effective reduction of ARB and ARGs from soil and water could be achieved by electrokinetic remediation (EKR) technology. In water, hydroxyl radicals (·OH) are proved to play a major role in the EKR process; while the reduction mechanism of ARB and ARGs is still unclear in soil. In this study, different concentrations of hydroxyl radical scavengers (salicylic acid) were added to the EKR system to explore the possible role of ·OH in the reduction of ARB and ARGs. The results showed that generally, ·OH played a more vital role in the reduction of ARB (65.24-72.46%) compared to the reduction of total cultivable bacteria (57.50%). And ·OH contributed to a higher reduction of sul genes (60.94%) compared to tet genes (47.71%) and integrons (36.02%). It was found that the abundance of Gram-negative bacteria (Chloroflexi, Acidobacteria and norank_c_Acidobacteria) was significantly reduced, and the correlation between norank_f_Gemmatimonadaceae and sul1 was weakened in the presence of ·OH. Correlation analysis indicated that the abundance of ARGs (especially sul1) was closely related to the Gram-negative bacteria (Proteobacteria, Acidobacteria, and Gemmatimonadetes) in the soil EKR treatment. Moreover, changes in bacterial community structure affected the abundance of ARB and ARGs indirectly. Overall, this study revealed the reduction mechanism of ARB and ARGs by ·OH in the soil EKR system for the first time. These findings provide valuable support for soil remediation efforts focusing on controlling antibiotic resistance.

6.
Chemosphere ; 364: 143107, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39151588

ABSTRACT

Although dissolved oxygen plays an important role in electro-Fenton-like processes, few investigations have revealed its underlying effects in such processes. Herein, the effect of dissolved oxygen on peroxide activation in an electro-Fenton-like system comprising electrochemical cells and peroxymonosulfate (PMS) was investigated. Cobalt phosphide-modified carbon aerogel (Co/P/CA) was used as the cathode material owing to the high conductivity and catalytic activity of Co/P/CA. Several free radicals and their effects on organic pollutant removal were observed using electron paramagnetic resonance spectrometry and quenching experiments, respectively. The observations revealed that in the presence of O2, hydroxyl radical (·OH), superoxide (O2-·), and singlet oxygen (1O2) served as the primary active species in the PMS activation process, while in the presence of N2, ·OH and sulfate radical (SO4-·) served as the dominant active species in this process. The factor responsible for the difference in the PMS activation pathways available under O2 and N2 conditions was investigated using rotating disk electrode tests and free energy calculations. The tests indicated that O2 facilitates PMS activation to form ·OH instead of SO4-·. The dissolved oxygen subsequently underwent a single-electron-reduction reaction and was converted into O2-·, which could serve as a source of 1O2. When N2 was introduced, Co species, particularly Co(II), played a key role in activating PMS. The free radicals ·OH and SO4-· were generated during the PMS activation process. This study clearly demonstrates the mediating catalysis role of dissolved oxygen in electro-Fenton-like system through experimental data and theoretical calculations, thereby positively contributing to future studies regarding the continuous activation of peroxides in composite systems and improvement of the efficiency of waterbody remediation.


Subject(s)
Cobalt , Electrodes , Oxygen , Peroxides , Peroxides/chemistry , Oxygen/chemistry , Cobalt/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen Peroxide/chemistry , Electrochemical Techniques , Hydroxyl Radical/chemistry , Oxidation-Reduction , Catalysis , Carbon/chemistry
7.
Chemosphere ; 364: 143138, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39168379

ABSTRACT

Electrochemically activated persulfate is a potential advanced oxidation process due to its advantages of environmental friendliness, high efficiency, and convenient operation. An Fe-Cu-S granular activated carbon (CuFeS2/GAC, abbreviated as FCSG) particles electrode was developed and applied to degrade carbamazepine (CBZ) combined with electrochemical activation of persulfate (E-PDS-FCSG) in this work. Compared to two-dimensional electrochemical process (E-PDS), the three-dimensional (3D) E-PDS-FCSG process exhibited higher removal efficiency of CBZ and lower energy consumption. The removal efficiency of CBZ and power consumption increased by 96% and reduced by 67%, respectively. Over 98% of CBZ removal rate was reached within 25 min. Apart from the same free radicals in two-dimensional electrochemical process, both Fe2+ and Cu+ on the surface of three-dimensional particle electrodes can directly activate PDS to produce SO4•-, and the existence of S2- strengthens the circulation of Fe3+/Fe2+ and Cu2+/Cu+. Furthermore, FCSG particle electrode can not only directly enhance the activation of PDS, but also accelerate the electron transfer, and then effectively promoting reactive species generation. LC-MS analysis showed that the main degradation pathways of CBZ involved decarbonylation, deamination, dealkylation, ring opening and mineralization. Moreover, after five cycle experiments, over 80% of CBZ removal rate could be achieved, demonstrating that the E-PDS-FCSG system had excellent electrocatalytic performance and good stability. These findings indicate that FCSG is a promising material and could be used as a particle electrode for removing organic pollutants from water.


Subject(s)
Carbamazepine , Copper , Electrochemical Techniques , Oxidation-Reduction , Water Pollutants, Chemical , Carbamazepine/chemistry , Water Pollutants, Chemical/chemistry , Copper/chemistry , Sulfates/chemistry , Charcoal/chemistry , Electrodes , Iron/chemistry , Water Purification/methods
8.
Water Res ; 263: 122148, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39098154

ABSTRACT

Conventional water treatment systems frequently exhibit diminished efficiency at high salinity - a significant issue especially for real industrial effluents - mostly due to the creation of intricate structures between pollutants and salts. One of the primary obstacles associated with high salinity conditions is the generation of by-products that pose additional hurdles for treatment. In this work, we have investigated the novel advanced oxidation process a so-called ozone nanobubble technology for degradation of the pollutants at high salinity conditions. The mass transfer is often the rate-limiting step in gas-liquid process and the poor rate of mass transfer diminishes the overall efficacy. One of the primary disadvantages associated with ozone is its restricted solubility and instability when dissolved in an aqueous solution. These characteristics impose limitations on its potential applications and need the use of specialized systems to facilitate gas-liquid interaction. In this work, we have also suggested enhancing the ozonation process through the utilization of ozone nanobubbles. The findings of our experiment and subsequent analysis indicate that the presence of nanobubbles enhances the process of ozonation through three key mechanisms: (i) an increased mass transfer coefficient, (ii) a higher rate of reactive oxygen species (ROS) generation attributed to the charged interface, and (iii) the nanobubble interface serving as an active surface for chemical reactions. The predicted mass transfer coefficients were found to range from 3 to 3.5 min-1, a value that is notably greater than that seen for microbubbles. The study showcased the degradation of methylene blue dye through the utilization of ozone nanobubbles, which exhibited a much higher rate of dye degradation compared to ozone microbubbles. The confirmation of the radical degradation mechanism was achieved by the utilization of electron spin resonance (ESR) measurements. The developed process has high potential for application in industrial scale textile wastewater treatment.


Subject(s)
Ozone , Salinity , Water Pollutants, Chemical , Ozone/chemistry , Water Pollutants, Chemical/chemistry , Water Purification , Oxidation-Reduction , Reactive Oxygen Species/chemistry
9.
J Hazard Mater ; 478: 135484, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39173382

ABSTRACT

A hydrophobic Cu2O cathode (CuxO-L) was designed to solve the challenge of low oxidation ability in electro-Fenton (EF) for treating emerging pollutants. This fabrication process involved forming Cu(OH)2 nanorods by oxidizing copper foam (Cu-F) with (NH4)2S2O8, followed by coating them with glucose via hydrothermal treatment. Finally, a self-assembled monolayer of 1-octadecanethiol was introduced to create a low-surface-energy, functionalized CuxO-L cathode. Results exhibited an approximately 7.9-fold increase in hydroxyl radical (·OH) generation compared to the initial Cu-F. This enhancement was attributed to two key factors: (Ⅰ) the superior O2-capturing ability of CuxO-L cathode, which led to high H2O2 production due to a 2 nm thick hydrophobic gas layer facilitated O2-capturing; (Ⅱ) a relative high concentration of Cu+ at the CuxO-L cathode promoted the activation of H2O2 into·OH. In addition, the performance of EF with the CuxO-L cathode using sulfathiazole (STZ) as a model pollutant was evaluated. This study offers valuable insights into the design of O2-capturing cathodes in EF processes, particularly for treating emerging organic pollutants.

10.
Environ Sci Technol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023504

ABSTRACT

Hydroxyl radicals (•OH) play a significant role in contaminant transformation and element cycling during redox fluctuations in paddy soil. However, these important processes might be affected by widely used agricultural amendments, such as urea, pig manure, and biochar, which have rarely been explored, especially regarding their impact on soil aggregates and associated biogeochemical processes. Herein, based on five years of fertilization experiments in the field, we found that agricultural amendments, especially coapplication of fertilizers and biochar, significantly increased soil organic carbon contents and the abundances of iron (Fe)-reducing bacteria. They also substantially altered the fraction of soil aggregates, which consequently enhanced the electron-donating capacity and the formation of active Fe(II) species (i.e., 0.5 M HCl-Fe(II)) in soil aggregates (0-2 mm), especially in small aggregates (0-3 µm). The highest contents of active Fe(II) species in small aggregates were mainly responsible for the highest •OH production (increased by 1.7-2.4-fold) and naphthalene attenuation in paddy soil with coapplication of fertilizers and biochar. Overall, this study offers new insights into the effects of agricultural amendments on regulating •OH formation in paddy soil and proposes feasible strategies for soil remediation in agricultural fields, especially in soils with frequent occurrences of redox fluctuations.

11.
Nanomaterials (Basel) ; 14(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38998768

ABSTRACT

The removal of persistent organic micropollutants (OMPs) from secondary effluent in wastewater treatment plants is critical for meeting water reuse standards. Traditional treatment methods often fail to adequately degrade these contaminants. This study explored the efficacy of a hybrid ozonation membrane filtration (HOMF) process using CeO2 and CeTiOx-doped ceramic crossflow ultrafiltration ceramic membranes for the degradation of OMPs. Hollow ceramic membranes (CM) with a 300 kDa molecular weight cut-off (MWCO) were modified to serve as substrates for catalytic nanosized metal oxides in a crossflow and inside-out operational configuration. Three types of depositions were tested: a single layer of CeO2, a single layer of CeTiOx, and a combined layer of CeO2 + CeTiOx. These catalytic nanoparticles were distributed uniformly using a solution-based method supported by vacuum infiltration to ensure high-throughput deposition. The results demonstrated successful infiltration of the metal oxides, although the yield permeability and transmembrane flow varied, following this order: pristine > CeTiOx > CeO2 > CeO2 + CeTiOx. Four OMPs were examined: two easily degraded by ozone (carbamazepine and diclofenac) and two recalcitrant (ibuprofen and pCBA). The highest OMP degradation was observed in demineralized water, particularly with the CeO2 + CeTiOx modification, suggesting O3 decomposition to hydroxyl radicals. The increased resistance in the modified membranes contributed to the adsorption phenomena. The degradation efficiency decreased in secondary effluent due to competition with the organic and inorganic load, highlighting the challenges in complex water matrices.

12.
J Colloid Interface Sci ; 675: 947-957, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39002244

ABSTRACT

Enhancing the generation of reactive hydroxyl radicals (•OH) is crucial for overcoming the limitations of the low reactivity of heterogeneous Fenton Fe-based catalysts. Researchers have explored various methods to modify catalyst structures to enhance reactivity, yet often at the expense of stability. Herein, suitable carbon and nitrogen-codoped Fe2O3-CuO composites were synthesized via pyrolysis method, demonstrating high Fenton reaction activity and remarkable stability. Experimental findings and density functional theory calculations (DFT) revealed that the presence of oxygen vacancies on the catalyst surface facilitated an increase in exposed FeNC active sites, promoting electron transfer and the accelerating the rate of •OH generation. Moreover, carbon and nitrogen, particularly in the form of pyrrole nitrogen bonded to Fe imparted exceptional stability to the FeNC active sites, mitigating their dissolution. Additionally, the Fe-based catalysts exhibited strong magnetism, enabling easy separation from the reaction solution while maintaining a high degradation efficiency for various organic pollutants, even in the presence of multiple anions. Furthermore, a comprehensive mechanism for methylene blue (MB) degradation was identified, enhancing the potential practical applications of these catalysts.

13.
Water Res ; 261: 122052, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38991245

ABSTRACT

Recognizing the pervasive presence of alumina minerals and low-molecular-weight organic acids (LMWOAs) in the environment, this study addressed the gap in the interaction mechanisms within the ternary system involving these two components and Fe(II). Specifically, the impacts of LMWOAs on hydroxyl radicals (•OH) production and iron species transformation during Fe(II) oxidation on γ-Al2O3 mineral surface were examined. Results demonstrated that adding 0.5 mM oxalate (OA) or citrate (CA) to the γ-Al2O3/Fe(II) system (28.1 µM) significantly enhanced •OH production by 1.9-fold (51.9 µM) and 1.3-fold (36.2 µM), respectively, whereas succinate (SA) exhibited limited effect (30.7 µM). Raising OA concentration to 5 mM further promoted •OH yield to 125.0 µM after 24 h. Deeper analysis revealed that CA facilitated the dissolution of adsorbed Fe(II) and its subsequent oxygenation by O2 through both one- and two-electron transfer mechanisms, whereas OA enhanced the adsorption of dissolved Fe(II) and more efficient two-electron transfer for H2O2 production. Additionally, LMWOAs presence favored the formation of iron minerals with poor crystallinity like ferrihydrite and lepidocrocite rather than well-crystallized forms such as goethite. The distinct impacts of various LMWOAs on Fe(II) oxidation and •OH generation underscore their unique roles in the redox processes at mineral surface, consequently modulating the environmental fate of prototypical pollutants like phenol.


Subject(s)
Aluminum Oxide , Hydroxyl Radical , Oxidation-Reduction , Hydroxyl Radical/chemistry , Aluminum Oxide/chemistry , Minerals/chemistry , Iron/chemistry , Adsorption , Citric Acid/chemistry
14.
Water Res ; 261: 122065, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39002421

ABSTRACT

Peracetic acid (PAA) has received increasing attention as an alternative oxidant for wastewater treatment. However, existing processes for PAA activation to generate reactive species typically require external energy input (e.g., electrically and UV-mediated activation) or catalysts (e.g., Co2+), inevitably increasing treatment costs or introducing potential new contaminants that necessitate additional removal. In this work, we developed a catalyst-free, self-sustaining bioelectrochemical approach within a two-chamber bioelectrochemical system (BES), where a cathode electrode in-situ activates PAA using renewable biogenic electrons generated by anodic exoelectrogens (e.g., Geobacter) degrading biodegradable organic matter (e.g., acetic acid) in wastewater at the anode. This innovative BES-PAA technique achieved 98 % and 81 % removal of 2 µM sulfamethoxazole (SMX) in two hours at pH 2 (cation exchange membrane) and pH 6 (bipolar membrane) using 100 µM PAA without external voltage. Mechanistic studies, including radical quenching, molecular probe validation, electron spin resonance (ESR) experiments, and density functional theory (DFT) calculations, revealed that SMX degradation was driven by reactive species generated via biogenic electron-mediated OO cleavage of PAA, with CH3C(O)OO• contributing 68.1 %, •OH of 18.4 %, and CH3C(O)O• of 9.4 %, where initial formation of •OH and CH3C(O)O• rapidly reacts with PAA to produce CH3C(O)OO•. The presence of common water constituents such as anions (e.g., Cl-, NO3-, and H2PO4-) and humic acid (HA) significantly hinders SMX removal via the BES-PAA technique, whereas CO32- and HCO3- ions have a comparatively minor impact. Additionally, the study investigated the removal of various pharmaceuticals present in secondary treated municipal wastewater, attributing differences in removal efficiency to the selective action of CH3C(O)OO•. This research demonstrates a novel PAA activation method that is ecologically benign, inexpensive, and capable of overcoming catalyst deactivation and secondary pollution issues.


Subject(s)
Electrodes , Electrons , Peracetic Acid , Peracetic Acid/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods , Water Purification/methods , Catalysis , Pharmaceutical Preparations/chemistry
15.
Chemosphere ; 363: 142789, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38972461

ABSTRACT

E-peroxone process is an emerging electrochemical oxidation process, based on ozone and the in-situ cathodic generation of H2O2, but the stability of cathode is one of the key restraining factors. In this study, we designed a multilayer gas diffusion electrode (GDE) decorated with a commercial hydrophobic membrane for the degradation of pyridine. It was found that a proper control of membrane pore sizes and hot-pressing temperature can significantly promote the GDE stability. Subsequently, key operational parameters of the constructed E-peroxone system were investigated, including the ozone concentration, current density, pH value, electrolyte type and initial concentration of pyridine. The degradation pathways were proposed according to six identified transformation products. The toxicity variation along the degradation progress was evaluated with microbial respiration tests and Toxicity Estimation Software Tool (T.E.S.T.) calculation and an efficient detoxification capacity of E-peroxone was observed. This research provides a theoretical basis and technical support for the development of highly efficient and stable E-peroxone system for the elimination of toxic organic contaminants.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Ozone , Pyridines , Pyridines/chemistry , Pyridines/toxicity , Ozone/chemistry , Electrodes , Oxidation-Reduction , Hydrogen Peroxide/chemistry , Diffusion , Membranes, Artificial
16.
Sci Total Environ ; 946: 174500, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38971245

ABSTRACT

Paddy drainage is the critical period for rice grain to accumulate cadmium (Cd), however, its roles on spatial heterogeneity of grain Cd within individual fields are still unknown. Herein, field plot experiments were conducted to study the spatial variations of rice Cd under continuous and intermittent (drainage at the tillering or grain-filling or both stages) flooding conditions. The spatial heterogeneity of soil moisture and key factors involved in Cd mobilization during drainages were further investigated to explain grain Cd variation. Rice grain Cd levels under continuous flooding ranged from 0.16 to 0.22 mg kg-1 among nine sampling sites within an individual field. Tillering drainage slightly increased grain Cd levels (0.19-0.31 mg kg-1) with little change in spatial variation. However, grain-filling drainage greatly increased grain Cd range to 0.33-0.95 mg kg-1, with a huge spatial variation observed among replicated sites. During two drainage periods, soil moisture decreased variously in different monitoring sites; greater variation (mean values ranged from 0.14 to 0.27 m3 m-3) was observed during grain-filling drainage. Accordingly, 2.9-3.3-fold variation in soil Eh and 0.55-0.67-unit variation in soil pH were observed among those sites. In the soil with low moisture, ferrous fractions such as ferrous sulfide (FeS) were prone to be oxidized to ferric fractions; meanwhile, the followed generation of hydroxyl radicals involved in Cd remobilization was enhanced. Consequently, soil dissolved Cd changed from 2.97 to 8.92 µg L-1 among different sampling sites during grain-filling drainage; thus, large variation was observed in grain Cd levels. The findings suggest that grain-filling drainage is the main process controlling spatial variation of grain Cd, which should be paid more attention in paddy Cd evaluation.


Subject(s)
Cadmium , Environmental Monitoring , Oryza , Soil Pollutants , Soil , Cadmium/analysis , Oryza/chemistry , Soil Pollutants/analysis , Soil/chemistry , Agriculture/methods , Edible Grain/chemistry
17.
Environ Sci Technol ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028924

ABSTRACT

Natural attenuation of organic contaminants can occur under anoxic or oxic conditions. However, the effect of the coupling anoxic-oxic process, which often happens in subsurface soil, on contaminant transformation remains poorly understood. Here, we investigated 2,4-dichlorophenol (2,4-DCP) transformation in Fe-rich soil under anoxic-oxic alternation. The anoxic and oxic periods in the alternating system showed faster 2,4-DCP transformation than the corresponding control single anoxic and oxic systems; therefore, a higher transformation rate (63.4%) was obtained in the alternating system relative to control systems (27.9-42.4%). Compared to stable pH in the alternating system, the control systems presented clear OH- accumulation, caused by more Fe(II) regeneration in the control anoxic system and longer oxygenation in the control oxic system. Since 2,4-DCP was transformed by ion exchangeable Fe(II) in soil via direct reduction in the anoxic process and induced ·OH oxidation in the oxic process, OH- accumulation was unbeneficial because it competed for proton with direct reduction and inhibited •OH generation via complexing with Fe(II). However, the alternating system exhibited OH--buffering capacity via anoxic-oxic coupling processes because the subsequent oxic periods intercepted Fe(II) regeneration in anoxic periods, while shorter exposure to O2 in oxic periods avoided excessive OH- generation. These findings highlight the significant role of anoxic-oxic alternation in contaminant attenuation persistently.

18.
Chemosphere ; 361: 142549, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851501

ABSTRACT

Titanium dioxide nanoparticles (TiO2-NP) present in wastewater effluent are discharged into freshwater and saltwater (i.e., marine) systems. TiO2-NP can be solar-driven photoactivated by ultraviolet (UV)-light producing reactive oxygen species including hydroxyl radicals (·OH). ·OH are non-selective and react with a broad range of species in water. In other studies, photoactivation of TiO2-NP has been correlated with oxidative stress and ecotoxicological impacts on plant and animal biota. This study examined the photoactivation of TiO2-NP in freshwater and saltwater systems, and contrasted the oxidation potential in both systems using methylene blue (MB) as a reaction probe. Maximum MB loss (51.9%, n = 4; 95% confidence interval 49.4-54.5) was measured in salt-free, deionized water where ·OH scavenging was negligible; minimum MB loss (1%) was measured in saltwater due to significant ·OH scavenging, indicating the inverse correlation between MB loss and radical scavenging. A kinetic analysis of scavenging by seawater constituents indicated Cl- had the greatest impact due to high concentration and high reaction rate constant. Significant loss of MB occurred in the presence of Br- relative to other less aggressive scavengers present in seawater (i.e., HCO3-, HSO4-). This result is consistent with the formation of Bromate, a strong oxidant that subsequently reacts with MB. In freshwater samples collected from different water bodies in Oklahoma (n = 12), the average MB loss was 13.4%. Greater MB loss in freshwater systems relative to marine systems was due to lower ·OH scavenging by various water quality parameters. Overall, TiO2-NP photoactivation in freshwater systems has the potential to cause greater oxidative stress and ecotoxicological impacts than in marine systems where ·OH scavenging is a dominant reaction.


Subject(s)
Free Radical Scavengers , Fresh Water , Oxidation-Reduction , Seawater , Titanium , Water Pollutants, Chemical , Titanium/chemistry , Titanium/toxicity , Fresh Water/chemistry , Seawater/chemistry , Free Radical Scavengers/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Hydroxyl Radical/chemistry , Nanoparticles/chemistry , Nanoparticles/toxicity , Ultraviolet Rays , Wastewater/chemistry , Methylene Blue/chemistry
19.
Environ Monit Assess ; 196(7): 674, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942963

ABSTRACT

Solar Fenton is an important and extensively used advanced oxidation process (AOP) to degrade pharmaceutical pollutants. The objective of this study was to evaluate the performance of simultaneous degradation of the mixed pollutants (amoxicillin, acetaminophen, and ciprofloxacin) for an aqueous solution using the solar Fenton process. Operating parameters such as pH, iron doses, H2O2 doses, pollutant concentrations, and time were studied. From the experimental results, the ideal conditions were obtained for the removal of mixed pollutants such as pH 3, Fe2+ 0.04 mM, H2O2 4 mM, the concentration of the mixed pollutants 5 mg/L, solar radiation 400 W/m2, and time 10 min, respectively. The pseudo-first-order kinetics were utilized to investigate the degradation efficacy of the mixed pollutants. The result of the study indicates that the degradation efficiency was > 99% for the mixed pollutants. A maximum of 63% mineralization was observed, and hydroxyl radical scavenger effects were studied. The best optimal conditions were applied to assess the spiked wastewater (municipal wastewater (MWW) and hospital wastewater (HWW)). The highest elimination rates for AMX, ACET, and CIP were observed as 65%, 89%, and 85% for MWW and 76%, 92%, and 80% for HWW, respectively. The degraded by-products were detected by LC-ESI-MS in the water matrix (aqueous solution and spiked wastewater), and ECOSAR analysis was performed for the transformed products. The study concluded that the solar Fenton technique is promising and effective for the removal of mixed pollutants from the water matrix.


Subject(s)
Hydrogen Peroxide , Iron , Sunlight , Waste Disposal, Fluid , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Hydrogen Peroxide/chemistry , Kinetics , Iron/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Oxidation-Reduction , Ciprofloxacin/chemistry , Ciprofloxacin/analysis , Acetaminophen/chemistry , Acetaminophen/analysis , Amoxicillin/chemistry , Amoxicillin/analysis
20.
J Hazard Mater ; 474: 134842, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38852246

ABSTRACT

Heterogeneous catalytic ozonation (HCO) enables the destruction of organic pollutants in wastewater via oxidation by powerful hydroxyl radicals (·OH). However, the availability of short-lived ·OH in aqueous bulk is low in practical treatment scenarios due to mass transfer limitations and quenching of water constituents. Herein, we overcome these challenges by loading MgO catalysts inside the pores of a tubular ceramic membrane (denoted as CCM) to confine ·OH within the nanopores and achieve efficient pollutant removal. When the pore size of the membrane was reduced from 1000 to 50 nm, the removal of ibuprofen (IBU) by CCM was increased from 49.6 % to 90.2 % due to the enhancement of ·OH enrichment in the nanospace. In addition, the CCM exhibited high catalytic activity in the presence of co-existing ions and over a wide pH range, as well as good self-cleaning ability in treating secondary wastewater. The experimental results revealed that ·OH were the dominant reactive oxygen species (ROS) in pollutant degradation, while surface hydroxyl groups were active sites for the generation of ·OH via ozone decomposition. This work provides a promising strategy to enhance the utilization of ·OH in HCO for the efficient degradation of organic pollutants in wastewater under spatial confinement.

SELECTION OF CITATIONS
SEARCH DETAIL