Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 791
Filter
1.
Article in English | MEDLINE | ID: mdl-39060903

ABSTRACT

BACKGROUND: Sarcopenia is associated with many adverse outcomes in patients with cirrhosis. The tools currently in use for assessing sarcopenia have numerous flaws. We evaluated the utility of portable ultrasonography and a dynamometer for the bedside assessment of sarcopenia and its implications in hospitalized cirrhosis patients. METHODS: A dynamometer was used to test the hand-grip strength (HGS) and ultrasound was used to measure the thickness of the forearm and quadriceps muscles. HGS value < 27 kg for men and < 16 kg for women was taken as significant according to the European Working Group on Sarcopenia in Older People (EWGSOP2) criteria. The lower normal limit of muscle mass (5th percentile) was determined on 100 matched healthy controls. RESULTS: According to the EWGSOP2 criteria and HGS values, the prevalence of sarcopenia and probable sarcopenia among 300 cirrhosis patients were 56% and 62.3%, respectively. HGS alone identified sarcopenia in 88.9% of patients, while overestimated it in 6.3% of cases. The prevalence rate of sarcopenic obesity was 11%. Compared to patients without sarcopenia, sarcopenic patients had more complications of cirrhosis such as ascites, variceal bleeding, hepatic encephalopathy, spontaneous bacterial peritonitis, sepsis, hepatorenal syndrome and refractory ascites. In-hospital (p = 0.037), three-month (p < 0.001), and six-month (p < 0.001) mortality rates were all higher among sarcopenic patients. On cox regression survival analysis, overall six-month mortality was significantly higher in sarcopenic patients compared to patients without sarcopenia (hazard ratio, 6.37; 95% confidence interval, 3.15-12.8, p < 0.001). CONCLUSION: Bedside assessment of sarcopenia using a portable ultrasound machine and a dynamometer detects liver cirrhosis patients with high risk of complications and mortality.

2.
Metabolites ; 14(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39057686

ABSTRACT

L-carnitine (LC) through diet is highly beneficial for critical patients. Studies have found that acetyl-L-carnitine (ALC) can reduce cerebral edema and neurological complications in TBI patients. It significantly improves their neurobehavioral and neurocognitive functions. ALC has also been shown to have a neuroprotective effect in cases of global and focal cerebral ischemia. Moreover, it is an effective agent in reducing nephrotoxicity by suppressing downstream mitochondrial fragmentation. LC can reduce the severity of renal ischemia-reperfusion injury, renal cast formation, tubular necrosis, iron accumulation in the tubular epithelium, CK activity, urea levels, Cr levels, and MDA levels and restore the function of enzymes such as SOD, catalase, and GPx. LC can also be administered to patients with hyperammonemia (HA), as it can suppress ammonia levels. It is important to note, however, that LC levels are dysregulated in various conditions such as aging, cirrhosis, cardiomyopathy, malnutrition, sepsis, endocrine disorders, diabetes, trauma, starvation, obesity, and medication interactions. There is limited research on the effects of LC supplementation in critical illnesses such as TBI, AKI, and HA. This scarcity of studies highlights the need for further research in this area.

3.
Heliyon ; 10(12): e33458, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39027435

ABSTRACT

Sepsis is a syndrome that causes dysfunction of multiple organs due to the host's uncontrolled response to infection and is a significant contributor to morbidity and mortality in intensive care units worldwide. Surviving patients are often left with acute brain injury and long-term cognitive impairment, known as sepsis-associated encephalopathy (SAE). In recent years, researchers have directed their focus towards the pathogenesis of SAE. However, due to the complexity of its development, there remains a lack of effective treatment measures that arise as a serious issue affecting the prognosis of sepsis patients. Further research on the possible causes of SAE aims to provide clinicians with potential therapeutic targets and help develop targeted prevention strategies. This paper aims to review recent research on the pathogenesis of SAE, in order to enhance our understanding of this syndrome.

4.
Am J Med Genet A ; : e63809, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949089

ABSTRACT

Carbonic anhydrase 5A (CA5A) belongs to a family of carbonic anhydrases which are zinc metalloenzymes involved in the reversible hydration of CO2 to bicarbonate. Mutations in CA5A are very rare and known to cause Carbonic anhydrase 5A deficiency (CA5AD), an autosomal recessive inborn error of metabolism characterized clinically by acute onset of encephalopathy in infancy or early childhood. CA5A also has two very identical pseudogenes whose interference may result in compromised accuracy in targeted sequencing. We report a unique case of CA5AD caused by compound heterozygous variant (NM_001739.2: c.721G>A: p.Glu241Lys & NM_001739.2: c.619-3420_c.774 + 502del4078bp) in an infant in order to expand the phenotypic spectrum and underscore the impact of pseudogenes, which can introduce complexities in molecular genetic analysis.

5.
JIMD Rep ; 65(4): 226-232, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38974611

ABSTRACT

Carbonic anhydrase VA (CA-VA) deficiency is a rare cause of hyperammonemia caused by biallelic mutations in CA5A. Most patients present with hyperammonemic encephalopathy in early infancy to early childhood, and patients usually have no further recurrence of hyperammonemia with a favorable outcome. This retrospective cohort study reports 18 patients with CA-VA deficiency caused by homozygosity for a founder mutation, c.59G>A p.(Trp20*) in CA5A. The reported patients show significant intrafamilial and interfamilial variability, and display atypical clinical features. Two adult patients were asymptomatic, 7/18 patients had recurrent hyperammonemia, 7/18 patients developed variable degree of developmental delay, 9/11 patients had hyperCKemia, and 7/18 patients had failure to thrive. Microcephaly was seen in three patients and one patient developed a metabolic stroke. The same variant had been reported already in a single South Asian patient presenting with neonatal hyperammonemic encephalopathy and subsequent development of seizures and developmental delay. This report highlights the limitations of current understanding of the pathomechanisms involved in this disorder, and calls for further evaluation of the possible role of genetic modifiers in this condition.

6.
Front Pediatr ; 12: 1431008, 2024.
Article in English | MEDLINE | ID: mdl-39040669

ABSTRACT

Purpose: Renal replacement therapy (RRT) is used in hyperammonemia to reduce the concentration of ammonia in the blood. In the case of plasma hyperosmolarity, RRT can also rapidly decrease plasma osmolarity, which may increase cerebral edema in these patients and favor the occurrence of brain herniation. Methods: We conducted a retrospective clinical study in a tertiary care university-affiliated hospital. All patients admitted in a Pediatric Intensive Care Unit (PICU), less than 18 years old with ammonemia >150 µmol/L and who underwent RRT between January 2015 and June 2023 were included. We collected data on plasma osmolarity levels, osmolar gap and blood ammonia levels before and during RRT. Results: Eleven patients were included (10 with acute liver failure and 1 with a urea cycle disorders). Their mean age was 36.2 months. Before RRT, the median highest measured osmolarity was 320 (305-324) mOsm/L, whereas the median calculated osmolarity was 303 (293-314) mOsm/L, corresponding to an osmolar gap of 14 mOsm/L. Ammonia blood level over 400 µmol/L are significantly associated with higher plasma osmolarity (P-Value <0.001). In one case, a patient had a brain herniation episode after a quick osmolar drop. This episode was reversed by the administration of hyperosmolar agents and the temporary suspension of RRT. Conclusion: This study highlights the hyperosmolarity and high osmolar gap that occur in children with hyperammonemia. A careful monitoring and control of plasma osmolarity evolution may alert clinician on the risk of occurrence of neurological complication such as brain herniation.

7.
Intern Med ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39048368

ABSTRACT

A 71-year-old woman diagnosed with unresectable locally advanced pancreatic cancer was initially treated with gemcitabine and nab-paclitaxel as first-line therapy. The tumor exhibited no significant progression; however, after 12 cycles, the patient developed drug-induced interstitial pneumonia, leading to the discontinuation of gemcitabine and nab-paclitaxel therapy. Following recovery from pneumonia, S-1 therapy was initiated as second-line treatment. During S-1 treatment, she was hospitalized because of impaired consciousness and was subsequently diagnosed with hyperammonemia induced by S-1. Although rarely reported, S-1-induced hyperammonemia is potentially a significant adverse effect. Here, we herein report the case of a patient with pancreatic cancer.

8.
Proc Natl Acad Sci U S A ; 121(31): e2314760121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39052834

ABSTRACT

Transceptors, solute transporters that facilitate intracellular entry of molecules and also initiate intracellular signaling events, have been primarily studied in lower-order species. Ammonia, a cytotoxic endogenous metabolite, is converted to urea in hepatocytes for urinary excretion in mammals. During hyperammonemia, when hepatic metabolism is impaired, nonureagenic ammonia disposal occurs primarily in skeletal muscle. Increased ammonia uptake in skeletal muscle is mediated by a membrane-bound, 12 transmembrane domain solute transporter, Rhesus blood group-associated B glycoprotein (RhBG). We show that in addition to its transport function, RhBG interacts with myeloid differentiation primary response-88 (MyD88) to initiate an intracellular signaling cascade that culminates in activation of NFκB. We also show that ammonia-induced MyD88 signaling is independent of the canonical toll-like receptor-initiated mechanism of MyD88-dependent NFκB activation. In silico, in vitro, and in situ experiments show that the conserved cytosolic J-domain of the RhBG protein interacts with the Toll-interleukin-1 receptor (TIR) domain of MyD88. In skeletal muscle from human patients, human-induced pluripotent stem cell-derived myotubes, and myobundles show an interaction of RhBG-MyD88 during hyperammonemia. Using complementary experimental and multiomics analyses in murine myotubes and mice with muscle-specific RhBG or MyD88 deletion, we show that the RhBG-MyD88 interaction is essential for the activation of NFkB but not ammonia transport. Our studies show a paradigm of substrate-dependent regulation of transceptor function with the potential for modulation of cellular responses in mammalian systems by decoupling transport and signaling functions of transceptors.


Subject(s)
Ammonia , Membrane Transport Proteins , Myeloid Differentiation Factor 88 , NF-kappa B , Signal Transduction , Animals , Humans , Mice , Ammonia/metabolism , Hyperammonemia/metabolism , Hyperammonemia/genetics , Mice, Knockout , Muscle, Skeletal/metabolism , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , NF-kappa B/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism
9.
J Inherit Metab Dis ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837457

ABSTRACT

The pathway of ammonia disposal in the mammalian organism has been described in 1932 as a metabolic cycle present in the liver in different compartments. In 1958, the first human disorder affecting this pathway was described as a genetic condition leading to cognitive impairment and constant abnormalities of amino acid metabolism. Since then, defects in all enzymes and transporters of the urea cycle have been described, referring to them as primary urea cycle disorders causing primary hyperammonemia. In addition, there is a still increasing list of conditions that impact on the function of the urea cycle by various mechanisms, hereby leading to secondary hyperammonemia. Despite great advances in understanding the molecular background and the biochemical specificities of both primary and secondary hyperammonemias, there remain many open questions: we do not fully understand the pathophysiology in many of the conditions; we do not always understand the highly variable clinical course of affected patients; we clearly appreciate the need for novel and improved diagnostic and therapeutic approaches. This study does look back to the beginning of the urea cycle (hi)story, briefly describes the journey through past decades, hereby illustrating advancements and knowledge gaps, and gives examples for the extremely broad perspective imminent to some of the defects of ureagenesis and allied conditions.

10.
Microbiome Res Rep ; 3(2): 17, 2024.
Article in English | MEDLINE | ID: mdl-38841407

ABSTRACT

Hepatic encephalopathy (HE) is a clinical manifestation of neurological and psychiatric abnormalities that are caused by complications of liver dysfunction including hyperammonemia, hyperuricemia, and portal hypertension. Accumulating evidence suggests that HE could be reversed through therapeutic modifications of gut microbiota. Multiple preclinical and clinical studies have indicated that gut microbiome affects the physiological function of the liver, such as the regulation of metabolism, secretion, and immunity, through the gut-liver crosstalk. In addition, gut microbiota also influences the brain through the gut-brain crosstalk, altering its physiological functions including the regulation of the immune, neuroendocrine, and vagal pathways. Thus, key molecules that are involved in the microbiota-gut-liver-brain axis might be able to serve as clinical biomarkers for early diagnosis of HE, and could be effective therapeutic targets for clinical interventions. In this review, we summarize the pathophysiology of HE and further propose approaches modulating the microbiota-gut-liver-brain axis in order to provide a comprehensive understanding of the prevention and potential clinical treatment for HE with a microbiota-targeted therapy.

11.
JA Clin Rep ; 10(1): 42, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904738

ABSTRACT

BACKGROUND: Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is a rare autosomal recessive urea cycle disorder associated with a high risk of exacerbation of hyperammonemia during the perioperative period. Here, we describe an adult patient with HHH syndrome who developed hyperammonemic encephalopathy secondary to postoperative constipation. CASE PRESENTATION: A 52-year-old patient with HHH syndrome underwent intrathecal baclofen pump insertion for lower limb spasticity under general anesthesia. The surgery was uneventful, without any increase in serum ammonia levels. However, after surgery, he was constipated, and on postoperative day (POD) 3, he fell into a coma with an exacerbation of hyperammonemia (894 µg/dL). After administering a glycerin enema, he defecated, leading to a rapid decrease in serum ammonia levels to 165 µg/dL. He regained consciousness, and serum ammonia levels remained stable as long as he defecated. CONCLUSIONS: We suggest strict management of defecation during the perioperative period to prevent hyperammonemia in patients with HHH syndrome.

12.
Heliyon ; 10(11): e32134, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38912440

ABSTRACT

Hyperammonemia syndrome has a high mortality rate in the immunosuppressed population due to its association with mental status changes. Recently studies have shown that Ureaplasma organisms' infection can lead to hyperammonemia in post-transplant patients. Symptoms typically occur within 30 days postoperatively. However, the late-onset hyperammonemia caused by Ureaplasma parvum infection after kidney transplantation has never been reported. In this case study, a 64-year-old Chinese male presented with symptoms such as nausea, vomiting, trouble sleeping, and deteriorating mental status 81 days after kidney transplantation. His plasma ammonia level was significantly elevated, and there was no evidence of liver synthetic dysfunction. Although common methods for ammonia clearance, such as haemodialysis and oral lactulose were initiated, his serum ammonia levels remained high. Metagenomic sequencing of serum determined Ureaplasma parvum infection. Levofloxacin and minocycline were administered respectively, which resulted in a decrease in ammonia levels, but normalization was not achieved. The computed tomographic scan revealed the presence of cerebral edema. Unfortunately, the patient eventually became brain dead with multiple organ failure. This case highlights that Ureaplasma parvum can cause late-onset hyperammonemia in kidney transplant patients. Once the mental status changes are identified, immediate empiric treatments should be initiated without waiting for a confirmed diagnosis of Ureaplasma spp. infection.

13.
Metab Brain Dis ; 39(5): 909-913, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833093

ABSTRACT

Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome is an extremely rare disorder of urea cycle, with few patients reported worldwide. Despite hyperammonemia control, the long-term outcome remains poor with progressive neurological deterioration. We report the clinical, biochemical, and molecular features of two Lebanese siblings diagnosed with this disorder and followed for 8 and 15 years, respectively. Variable clinical manifestations and neurological outcome were observed. The patient with earlier onset of symptoms had a severe neurological deterioration while the other developed a milder form of the disease at an older age. Diagnosis was challenging in the absence of the complete biochemical triad and the non-specific clinical presentations. Whole exome sequencing revealed a homozygous variant, p.Phe188del, in the SLC25A15 gene, a French- Canadian founder mutation previously unreported in Arab patients. Hyperammonemia was controlled in both patients but hyperonithinemia persisted. Frequent hyperalaninemia spikes and lactic acidosis occured concomitantly with the onset of seizures in one of the siblings. Variable neurological deterioration and outcome were observed within the same family. This is the first report from the Arab population of the long-term outcome of this devastating neurometabolic disorder.


Subject(s)
Hyperammonemia , Siblings , Urea Cycle Disorders, Inborn , Humans , Hyperammonemia/genetics , Urea Cycle Disorders, Inborn/genetics , Urea Cycle Disorders, Inborn/complications , Male , Female , Ornithine/blood , Ornithine/deficiency , Citrulline/analogs & derivatives , Adolescent , Child , Mitochondrial Membrane Transport Proteins/genetics , Mutation
14.
Genes (Basel) ; 15(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38927689

ABSTRACT

The genetic bases of Alzheimer's disease (AD) and frontotemporal dementia (FTD) have been comprehensively studied, which is not the case for atypical cases not classified into these diagnoses. In the present study, we aim to contribute to the molecular understanding of the development of non-AD and non-FTD dementia due to hyperammonemia caused by mutations in urea cycle genes. The analysis was performed by pooled whole-exome sequencing (WES) of 90 patients and by searching for rare pathogenic variants in autosomal genes for enzymes or transporters of the urea cycle pathway. The survey returned two rare pathogenic coding mutations leading to citrullinemia type I: rs148918985, p.Arg265Cys, C>T; and rs121908641, p.Gly390Arg, G>A in the argininosuccinate synthase 1 (ASS1) gene. The p.Arg265Cys variant leads to enzyme deficiency, whereas p.Gly390Arg renders the enzyme inactive. These variants found in simple or compound heterozygosity can lead to the late-onset form of citrullinemia type I, associated with high ammonia levels, which can lead to cerebral dysfunction and thus to the development of dementia. The presence of urea cycle disorder-causing mutations can be used for the early initiation of antihyperammonemia therapy in order to prevent the neurotoxic effects.


Subject(s)
Alzheimer Disease , Argininosuccinate Synthase , Exome Sequencing , Frontotemporal Dementia , Hyperammonemia , Humans , Hyperammonemia/genetics , Frontotemporal Dementia/genetics , Alzheimer Disease/genetics , Female , Male , Argininosuccinate Synthase/genetics , Aged , Mutation , Middle Aged , Citrullinemia/genetics , Dementia/genetics
15.
J Zhejiang Univ Sci B ; 25(6): 485-498, 2024 May 15.
Article in English, Chinese | MEDLINE | ID: mdl-38910494

ABSTRACT

End-stage liver diseases, such as cirrhosis and liver cancer caused by hepatitis B, are often combined with hepatic encephalopathy (HE); ammonia poisoning is posited as one of its main pathogenesis mechanisms. Ammonia is closely related to autophagy, but the molecular mechanism of ammonia's regulatory effect on autophagy in HE remains unclear. Sialylation is an essential form of glycosylation. In the nervous system, abnormal sialylation affects various physiological processes, such as neural development and synapse formation. ST3 ß|-galactoside α2,|3-sialyltransferase 6 (ST3GAL6) is one of the significant glycosyltransferases responsible for adding α2,3-linked sialic acid to substrates and generating glycan structures. We found that the expression of ST3GAL6 was upregulated in the brains of mice with HE and in astrocytes after ammonia induction, and the expression levels of α2,3-sialylated glycans and autophagy-related proteins microtubule-associated protein light chain 3 (LC3) and Beclin-1 were upregulated in ammonia-induced astrocytes. These findings suggest that ST3GAL6 is related to autophagy in HE. Therefore, we aimed to determine the regulatory relationship between ST3GAL6 and autophagy. We found that silencing ST3GAL6 and blocking or degrading α2,3-sialylated glycans by way of Maackia amurensis lectin-II (MAL-II) and neuraminidase can inhibit autophagy. In addition, silencing the expression of ST3GAL6 can downregulate the expression of heat shock protein ß8 (HSPB8) and Bcl2-associated athanogene 3 (BAG3). Notably, the overexpression of HSPB8 partially restored the reduced autophagy levels caused by silencing ST3GAL6 expression. Our results indicate that ST3GAL6 regulates autophagy through the HSPB8-BAG3 complex.


Subject(s)
Apoptosis Regulatory Proteins , Autophagy , Brain , Hepatic Encephalopathy , Polysaccharides , Sialyltransferases , Sialyltransferases/metabolism , Sialyltransferases/genetics , Animals , Mice , Polysaccharides/metabolism , Hepatic Encephalopathy/metabolism , Apoptosis Regulatory Proteins/metabolism , Brain/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Ammonia/metabolism , Astrocytes/metabolism , Male , beta-Galactoside alpha-2,3-Sialyltransferase , Molecular Chaperones/metabolism , Heat-Shock Proteins/metabolism , Humans , Gene Silencing , Microtubule-Associated Proteins/metabolism , Mice, Inbred C57BL
16.
Clin Liver Dis ; 28(3): 541-554, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945642

ABSTRACT

Portal hypertension has cerebral consequences via its causes and complications, namely hepatic encephalopathy (HE), a common and devastating brain disturbance caused by liver insufficiency and portosystemic shunting. The pathogenesis involves hyperammonemia and systemic inflammation. Symptoms are disturbed personality and reduced attention. HE is minimal or grades I to IV (coma). Bouts of HE are episodic and often recurrent. Initial treatment is of events that precipitated the episode and exclusion of nonhepatic causes. Specific anti-HE treatment is lactulose. By recurrence, rifaximin is add-on. Anti-HE treatment is efficacious also for prophylaxis, but emergence of HE marks advanced liver disease and a dismal prognosis.


Subject(s)
Hepatic Encephalopathy , Hypertension, Portal , Lactulose , Hepatic Encephalopathy/etiology , Hepatic Encephalopathy/physiopathology , Humans , Hypertension, Portal/etiology , Hypertension, Portal/complications , Hypertension, Portal/physiopathology , Lactulose/therapeutic use , Rifaximin/therapeutic use , Gastrointestinal Agents/therapeutic use , Hyperammonemia/etiology , Hyperammonemia/complications
17.
Microbiol Spectr ; 12(7): e0390223, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38842310

ABSTRACT

Cryptococcus neoformans and Cryptococcus gattii are both known urease producers and have the potential to cause hyperammonemia. We hypothesized that the risk of hyperammonemia is increased by renal failure, burden of cryptococcal infection, and fungal strain characteristics. We performed a retrospective review of plasma ammonia levels in patients with cryptococcal infections. Risk factors for hyperammonemia were statistically compared between patients with and without hyperammonemia (>53 µmol/L). Cryptococcal cells from three patients included in the study were recovered from our biorepository. Strain characteristics including urease activity, ammonia production, growth curves, microscopy, melanin production, and M13 molecular typing were analyzed and compared with a wild-type (WT) C. neoformans strain. We included 29 patients, of whom 37.9% had hyperammonemia, 59% had disseminated cryptococcal infection (DCI), and 41% had isolated central nervous system infection. Thirty-eight percent of patients had renal failure and 28% had liver disease. Renal failure was associated with 4.4 times (95% confidence interval [CI] 1.5, 13.0) higher risk of hyperammonemia. This risk was higher in DCIs (RR 6.2, 95% CI 1.0, 40.2) versus isolated cryptococcal meningitis (RR 2.5, 95% CI, 0.40, 16.0). Liver disease and cryptococcal titers were not associated with hyperammonemia. C. neoformans from one patient with extreme hyperammonemia demonstrated a 4- to 5-fold increase in extracellular urease activity, slow growth, enlarged cell size phenotypes, and diminished virulence factors. Hyperammonemia was strongly associated with renal failure in individuals with DCI, surpassing associations with liver failure or cryptococcal titers. However, profound hyperammonemia in one patient was attributable to high levels of urease secretion unique to that cryptococcal strain. Prospective studies are crucial to exploring the significance of this association.IMPORTANCECryptococcus produces and secretes the urease enzyme to facilitate its colonization of the host. Urease breaks down urea into ammonia, overwhelming the liver's detoxification process and leading to hyperammonemia in some hosts. This underrecognized complication exacerbates organ dysfunction alongside the infection. Our study investigated this intricate relationship, uncovering a strong association between the development of hyperammonemia and renal failure in patients with cryptococcal infections, particularly those with disseminated infections. We also explore mechanisms underlying increased urease activity, specifically in strains associated with extreme hyperammonemia. Our discoveries provide a foundation for advancing research into cryptococcal metabolism and identifying therapeutic targets to enhance patient outcomes.


Subject(s)
Cryptococcosis , Cryptococcus gattii , Cryptococcus neoformans , Hyperammonemia , Urease , Humans , Cryptococcosis/microbiology , Hyperammonemia/microbiology , Hyperammonemia/etiology , Female , Retrospective Studies , Male , Middle Aged , Urease/metabolism , Adult , Aged , Ammonia/metabolism , Risk Factors , Renal Insufficiency/complications , Renal Insufficiency/microbiology , Aged, 80 and over
18.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 512-517, 2024 May 15.
Article in Chinese | MEDLINE | ID: mdl-38802913

ABSTRACT

Glyceryl phenylbutyrate (GPB) serves as a long-term management medication for Ornithine transcarbamylase deficiency (OTCD), effectively controlling hyperammonemia, but there is a lack of experience in using this medicine in China. This article retrospectively analyzes the case of a child diagnosed with OTCD at Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, including a review of related literature. After diagnosis, the patient was treated with GPB, followed by efficacy follow-up and pharmacological monitoring. The 6-year and 6-month-old male patient exhibited poor speech development, disobedience, temper tantrums, and aggressive behavior. Blood ammonia levels peaked at 327 µmol/L; urine organic acid analysis indicated elevated uracil levels; cranial MRI showed extensive abnormal signals in both cerebral hemispheres. Genetic testing revealed de novo mutation in the OTC gene (c.241T>C, p.S81P). Blood ammonia levels were approximately 43, 80, and 56 µmol/L at 1, 2, and 3 months after starting GPB treatment, respectively. During treatment, blood ammonia was well-controlled without drug-related adverse effects. The patient showed improvement in developmental delays, obedience, temperament, and absence of aggressive behavior.


Subject(s)
Ornithine Carbamoyltransferase Deficiency Disease , Phenylbutyrates , Humans , Male , Ornithine Carbamoyltransferase Deficiency Disease/drug therapy , Ornithine Carbamoyltransferase Deficiency Disease/genetics , Phenylbutyrates/therapeutic use , Child , Glycerol/analogs & derivatives
19.
Cureus ; 16(4): e57861, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38721206

ABSTRACT

Hepatic encephalopathy is typically seen in advanced liver disease and in patients with a transjugular intrahepatic portosystemic shunt. Common triggers include infections, gastrointestinal bleeding, electrolyte disturbances, dehydration, and drug/toxin use such as benzodiazepines and alcohol. In rare instances, other metabolic abnormalities such as hypothyroidism may also exacerbate hyperammonemia in patients with underlying liver disease due to hypothyroidism-induced myopathy, which increases urea production and decreases clearance through reduced glutamine synthetase activity. We present the case of a 60-year-old female who presented with markedly elevated thyroid stimulating hormone, reduced free thyroxine, and elevated serum ammonia levels. Although lactulose and rifaximin were initially started, her symptoms did not clinically improve until the underlying cause of her hyperammonemia was treated. Levothyroxine was initiated, and she reported rapid clinical improvement in her symptoms. Hyperammonemia carries a 40% mortality rate, and therefore clinicians need to be aware of this rare but intricate relationship between advanced liver disease and hypothyroidism for the prompt diagnosis and management of this condition.

20.
Indian J Pediatr ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703326

ABSTRACT

Lysinuric protein intolerance (LPI) is an inborn metabolic error caused by cationic amino acid transport defects. The disease has a significant degree of phenotypic variation, with no confirmed genotype-phenotype correlation. Because it presents with symptoms similar to far more common diseases, the diagnosis is often missed, resulting in increased morbidity and mortality. This case series describes three examples of LPI with pulmonary, neurological, and immunological manifestations, emphasising the importance of keeping this disorder on the differential list. Appropriate metabolic and genetic testing is important in providing the correct diagnosis and timely care in such cases.

SELECTION OF CITATIONS
SEARCH DETAIL
...