Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Sensors (Basel) ; 23(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38139530

ABSTRACT

The development of spectral sensors (SSs) capable of retrieving spectral information have opened new opportunities to improve several environmental and agricultural practices, e.g., crop breeding, plant phenotyping, land use monitoring, and crop classification. The SSs are classified as multispectral and hyperspectral (HS) based on the number of the spectral bands resolved and sampled during data acquisition. Large-scale applications of the HS remain limited due to the cost of this type of technology and the technical difficulties in hyperspectral data processing. Low-cost portable hyperspectral cameras (PHCs) have been progressively developed; however, critical aspects associated with data acquisition and processing, such as the presence of spectral discontinuities, signal jumps, and a high level of background noise, were reported. The aim of this work was to analyze and improve the hyperspectral output of a PHC Senop HSC-2 device by developing a general use methodology. Several signal gaps were identified as falls and jumps across the spectral signatures near 513, 650, and 930 nm, while the dark current signal magnitude and variability associated with instrumental noise showed an increasing trend over time. A data correction pipeline was successfully developed and tested, leading to 99% and 74% reductions in radiance signal jumps identified at 650 and 830 nm, respectively, while the impact of noise on the acquired signal was assessed to be in the range of 10% to 15%. The developed methodology can be effectively applied to other low-cost hyperspectral cameras.

2.
Sensors (Basel) ; 22(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35591036

ABSTRACT

Automatic identification and sorting of livestock organs in the meat processing industry could reduce costs and improve efficiency. Two hyperspectral sensors encompassing the visible (400-900 nm) and short-wave infrared (900-1700 nm) spectra were used to identify the organs by type. A total of 104 parenchymatous organs of cattle and sheep (heart, kidney, liver, and lung) were scanned in a multi-sensory system that encompassed both sensors along a conveyor belt. Spectral data were obtained and averaged following manual markup of three to eight regions of interest of each organ. Two methods were evaluated to classify organs: partial least squares discriminant analysis (PLS-DA) and random forest (RF). In addition, classification models were obtained with the smoothed reflectance and absorbance and the first and second derivatives of the spectra to assess if one was superior to the rest. The in-sample accuracy for the visible, short-wave infrared, and combination of both sensors was higher for PLS-DA compared to RF. The accuracy of the classification models was not significantly different between data pre-processing methods or between visible and short-wave infrared sensors. Hyperspectral sensors, particularly those in the visible spectrum, seem promising to identify organs from slaughtered animals which could be useful for the automation of quality and process control in the food supply chain, such as in abattoirs.


Subject(s)
Hyperspectral Imaging , Livestock , Animals , Cattle , Discriminant Analysis , Least-Squares Analysis , Sheep , Spectroscopy, Near-Infrared/methods
3.
Sensors (Basel) ; 21(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34696068

ABSTRACT

Visible and infrared reflectance imaging spectroscopy is one of the several non-invasive techniques used during Operation Night Watch for the study of Rembrandt's iconic masterpiece The Night Watch (1642). The goals of this project include the identification and mapping of the artists' materials, providing information about the painting technique used as well as documenting the painting's current state and ultimately determining the possible conservation plan. The large size of the painting (3.78 m by 4.53 m) and the diversity of the technical investigations being performed make Operation Night Watch the largest research project ever undertaken at the Rijksmuseum. To construct a complete reflectance image cube at a high spatial resolution (168 µm2) and spectral resolution (2.54 to 6 nm), the painting was imaged with two high-sensitivity line scanning hyperspectral cameras (VNIR 400 to 1000 nm, 2.54 nm, and SWIR 900 to 2500 nm, 6 nm). Given the large size of the painting, a custom computer-controlled 3-D imaging frame was constructed to move each camera, along with lights, across the painting surface. A third axis, normal to the painting, was added along with a distance-sensing system which kept the cameras in focus during the scanning. A total of 200 hyperspectral image swaths were collected, mosaicked and registered to a high-resolution color image to sub-pixel accuracy using a novel registration algorithm. The preliminary analysis of the VNIR and SWIR reflectance images has identified many of the pigments used and their distribution across the painting. The SWIR, in particular, has provided an improved visualization of the preparatory sketches and changes in the painted composition. These data sets, when combined with the results from the other spectral imaging modalities and paint sample analyses, will provide the most complete understanding of the materials and painting techniques used by Rembrandt in The Night Watch.


Subject(s)
Paintings , Algorithms , Diagnostic Imaging , Glass , Spectrum Analysis
4.
Ciênc. rural (Online) ; 50(3): e20190587, 2020. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1089562

ABSTRACT

ABSTRACT: Vis-NIR-SWIR reflectance spectra of leaf samples, collected in the laboratory, allow the calibration of predictive models to quantify their physicochemical attributes in a practical manner and without producing chemical residues. This technique should enable the development of management strategies for intensification of pasture use. However, spectral analysis performed in the laboratory may be affected by the deterioration of plant material during transport from the field to the lab, so storage methods are necessary. This research aimed to evaluate the effects of different storage methods on the spectral response of Mombasa grass leaves. Three methods were evaluated: (i) artificially refrigerated environment, (ii) humid environment, and (iii) without microenvironment control. These methods were tested in five different storage times: 2 hours, 4 hours, 8 hours, 24 hours and 48 hours. The spectral behavior of the leaves still inserted in the plant was used as a quality reference. Results showed notable changes at the earliest storage time for the treatment without microenvironment control. Both methods with microenvironment control stabilized the occurrence of spectral changes over 48 hours of the samples storage, thus both were suggested for this species.


RESUMO: Espectros de reflectância vis-NIR-SWIR de amostras foliares, coletados em laboratório, permitem a calibração de modelos preditivos para quantificação de seus atributos físico-químicos de maneira prática e sem produção de resíduos químicos. Esta técnica permite o desenvolvimento de estratégias de manejo para a intensificação do uso de pastagens. Contudo, análises espectrais realizadas em laboratório podem ser afetadas pela deterioração do material vegetal durante o transporte do campo ao laboratório, fazendo-se necessário a utilização de métodos de armazenamento. O presente trabalho objetivou avaliar o efeito de diferentes métodos de armazenamento na resposta espectral de folhas de capim Mombaça. Avaliou-se três métodos: (i) ambiente refrigerado artificialmente; (ii) ambiente úmido; e (iii) ao ar livre, sem controle do microambiente; assim como, cinco diferentes tempos de armazenamento: 2 horas, 4 horas, 8 horas, 24 horas e 48 horas. O comportamento espectral das folhas ainda inseridas na planta foi utilizado como referência de qualidade. Os resultados mostraram alterações pronunciadas para o armazenamento ao ar livre já nos primeiros intervalos de tempo. Ambos métodos com controle de microambiente permitiram estabilizar a ocorrência de alterações espectrais ao longo das 48h de armazenamento das amostras, sendo ambos sugeridos para esta espécie.

SELECTION OF CITATIONS
SEARCH DETAIL
...