Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Clin Nutr ; 43(3): 603-619, 2024 03.
Article in English | MEDLINE | ID: mdl-38301284

ABSTRACT

BACKGROUND: The hypothalamus is a crucial brain region that mediates the effects of insulin and leptin signals on peripheral metabolic functions. Previous research has shown that insulin signals in the hypothalamus act via multiple neuronal circuits and anabolic/catabolic pathways that converge on the vagus nerve and sympathetic fibers to coordinate energy metabolism in peripheral organs. Additionally, neuropeptide FF (NPFF) has been identified as a regulator of feeding behaviors and energy homeostasis in the hypothalamus, but the mechanisms underlying its involvement in metabolic control remain unclear. This study aims to explore the underlying mechanisms of NPFF in modulating metabolic disorders. METHODS: In this study, we investigated the physiological role of NPFF in insulin-related energy homeostasis and metabolic health. First, we evaluated the effects of NPFF and its receptors on central insulin signaling using mouse hypothalamic cell lines and Npffr2-overexpressing mice. To further explore the effects of NPFFR2 on insulin-related metabolic disorders, such as diabetes mellitus, we used Npffr2-deleted mice in combination with the streptozotocin (STZ)-induced type 1 diabetes and high-fat diet/STZ-induced type 2 diabetic mouse models. The impacts of central NPFFR2 were demonstrated specifically through Npffr2 overexpression in the hypothalamic arcuate nucleus, which subsequently induced type 2 diabetes. RESULTS: We found that stimulating NPFFR2 in the hypothalamus blocked hypothalamic insulin activity. Npffr2 deletion improved central and peripheral metabolic symptoms in both mouse models of diabetes mellitus, exerting effects on central and systemic insulin resistance, feeding behaviors, glucose and insulin intolerance, lipid metabolism, liver steatosis, and inflammation of white adipose tissues. The overexpression of ARC Npffr2 augmented the metabolic dysregulation in the mouse model of type 2 diabetes. CONCLUSIONS: Our findings demonstrate that hypothalamic NPFFR2 negatively regulates insulin signaling in the central nervous system and plays an important role in maintaining systemic metabolic health, thereby providing valuable insights for potential clinical interventions targeting these health challenges.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Animals , Mice , Insulin , Diabetes Mellitus, Type 2/genetics , Hypothalamus , Homeostasis , Disease Models, Animal
2.
IBRO Neurosci Rep ; 12: 228-239, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35746965

ABSTRACT

Ghrelin is a stomach-derived peptide hormone that acts via the growth hormone secretagogue receptor (GHSR) and displays a plethora of neuroendocrine, metabolic, autonomic and behavioral actions. It has been proposed that some actions of ghrelin are exerted via the vagus nerve, which provides a bidirectional communication between the central nervous system and peripheral systems. The vagus nerve comprises sensory fibers, which originate from neurons of the nodose and jugular ganglia, and motor fibers, which originate from neurons of the medulla. Many anatomical studies have mapped GHSR expression in vagal sensory or motor neurons. Also, numerous functional studies investigated the role of the vagus nerve mediating specific actions of ghrelin. Here, we critically review the topic and discuss the available evidence supporting, or not, a role for the vagus nerve mediating some specific actions of ghrelin. We conclude that studies using rats have provided the most congruent evidence indicating that the vagus nerve mediates some actions of ghrelin on the digestive and cardiovascular systems, whereas studies in mice resulted in conflicting observations. Even considering exclusively studies performed in rats, the putative role of the vagus nerve in mediating the orexigenic and growth hormone (GH) secretagogue properties of ghrelin remains debated. In humans, studies are still insufficient to draw definitive conclusions regarding the role of the vagus nerve mediating most of the actions of ghrelin. Thus, the extent to which the vagus nerve mediates ghrelin actions, particularly in humans, is still uncertain and likely one of the most intriguing unsolved aspects of the field.

3.
J Cell Physiol ; 237(5): 2574-2588, 2022 05.
Article in English | MEDLINE | ID: mdl-35312067

ABSTRACT

Chronic high salt intake is one of the leading causes of hypertension. Salt activates the release of the key neurotransmitters in the hypothalamus such as vasopressin to increase blood pressure, and neuropepetide Y (NPY) has been implicated in the modulation of vasopressin levels. NPY in the hypothalamic arcuate nucleus (Arc) is best known for its control in appetite and energy homeostasis, but it is unclear whether it is also involved in the development of salt-induced hypertension. Here, we demonstrate that wild-type mice given 2% NaCl salt water for 8 weeks developed hypertension which was associated with marked downregulation of NPY expression in the hypothalamic Arc as demonstrated in NPY-GFP reporter mice as well as by in situ hybridization analysis. Furthermore, salt intake activates neurons in the hypothalamic paraventricular nucleus (PVN) where mRNA expression of brain-derived neurotrophic factor (BDNF) and vasopressin was found to be upregulated, leading to elevated serum vasopressin levels. This finding suggests an inverse correlation between the Arc NPY level and expression of vasopressin and BDNF in the PVN. Specific restoration of NPY by injecting AAV-Cre recombinase into the Arc only of the NPY-targeted mutant mice carrying a loxP-flanked STOP cassette reversed effects of salt intake on vasopressin and BDNF expression, leading to a normalization of salt-dependent blood pressure. In summary, our study uncovers an important Arc NPY-originated neuronal circuitry that could sense and respond to peripheral electrolyte signals and thereby regulate hypertension via vasopressin and BDNF in the PVN.


Subject(s)
Brain-Derived Neurotrophic Factor , Hypertension , Animals , Brain-Derived Neurotrophic Factor/genetics , Hypertension/chemically induced , Mice , Neuropeptide Y/metabolism , Sodium Chloride , Sodium Chloride, Dietary , Vasopressins
4.
Toxicol Appl Pharmacol ; 437: 115893, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35085591

ABSTRACT

Background Oxidative stress and inflammation play important roles in the development of diabetes. Metformin (MET) is considered as the first-line therapy for patients with type 2 diabetes (T2D). Hypothalamic paraventricular nucleus (PVN) and hypothalamic arcuate nucleus (ARC) are vital in obesity and diabetes. However, there have been few studies on the effects of MET on inflammatory reaction and oxidative stress in the PVN and ARC of T2D diabetic rats. Methods Male Sprague-Dawley (SD) rats were fed with high-fat diet (HFD), and intraperitoneally injected with low-dose streptozotocin (STZ, 30 mg/kg) at 6th week to induce T2D diabetes. After injection of STZ, they were fed with HFD continually. Starting from the 8th week of HFD feeding, T2D rats received intragastrical administration of MET (150 mg/kg/day) in addition to the HFD for another 8 weeks. At the end of the 15th week, the rats were anaesthetized to record the sympathetic nerve activity and collect blood and tissue samples. Results In comparison with control rats, T2D diabetic rats had higher levels of pro-inflammatory cytokines (PICs) and excessive oxidative stress in the PVN and ARC, accompanied with more activated astrocytes. The renal sympathetic nerve activity (RSNA) and the plasma norepinephrine (NE) increased in T2D diabetic rats. The expression of tyrosine hydroxylase (TH) increased and the expression of 67-kDa isoform of glutamate decarboxylase (GAD67) decreased in T2D diabetic rats. Supplementation of MET decreased blood glucose, suppressed RSNA, decreased PICs (TNF-α, IL-1ß and IL-6) in PVN and ARC, attenuated oxidative stress and activation of astrocytes in ARC and PVN of T2D diabetic rats, as well as restored the balance of neurotransmitter synthetase. The number of Fra-LI (chronic neuronal excitation marker) positive neurons in the ARC and PVN of T2D diabetic rats increased. Chronic supplementation of MET also decreased the number of Fra-LI positive neurons in the ARC and PVN of T2D diabetic rats. Conclusion These findings suggest that the PVN and ARC participate in the beneficial effects of MET in T2D diabetic rats, which is possibly mediated via down-regulating of inflammatory molecules, attenuating oxidative stress and restoring the balance of neurotransmitter synthetase by MET in the PVN and ARC.


Subject(s)
Arcuate Nucleus of Hypothalamus/drug effects , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Paraventricular Hypothalamic Nucleus/drug effects , Animals , Astrocytes/drug effects , Blood Glucose/drug effects , Body Weight/drug effects , Diabetes Mellitus, Experimental/drug therapy , Gene Expression Regulation, Enzymologic/drug effects , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Male , Oxidative Stress , Rats , Rats, Sprague-Dawley , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
5.
Nutr Rev ; 78(Suppl 2): 25-31, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33196091

ABSTRACT

In the United States and Mexico, the obesity epidemic represents a significant public health problem. Although obesity is often attributed to a Western-style, high-fat diet and decreased activity, there is now compelling evidence that this, in part, occurs because of the developmental programming effects resulting from exposure to maternal overnutrition. Human and animal studies demonstrate that maternal obesity and high-fat diet result in an increased risk for childhood and adult obesity. The potential programming effects of obesity have been partly attributed to hyperphagia, which occurs as a result of increased appetite with reduced satiety neuropeptides or neurons. However, depending on maternal nutritional status during the nursing period, the programmed hyperphagia and obesity can be exacerbated or prevented in offspring born to obese mothers. The underlying mechanism of this phenomenon likely involves the plasticity of the appetite regulatory center and thus presents an opportunity to modulate feeding and satiety regulation and break the obesity cycle.


Subject(s)
Infant Nutritional Physiological Phenomena , Maternal Nutritional Physiological Phenomena , Obesity/etiology , Animals , Appetite , Diet, High-Fat/adverse effects , Diet, Western/adverse effects , Female , Humans , Hyperphagia , Infant , Infant, Newborn , Obesity/physiopathology , Obesity/psychology , Obesity, Maternal/complications , Obesity, Maternal/physiopathology , Overnutrition , Pregnancy , Satiation
6.
Nutrients ; 12(11)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33138074

ABSTRACT

Maternal high-fat (HF) is associated with offspring hyperphagia and obesity. We hypothesized that maternal HF alters fetal neuroprogenitor cell (NPC) and hypothalamic arcuate nucleus (ARC) development with preferential differentiation of neurons towards orexigenic (NPY/AgRP) versus anorexigenic (POMC) neurons, leading to offspring hyperphagia and obesity. Furthermore, these changes may involve hypothalamic bHLH neuroregulatory factors (Hes1, Mash1, Ngn3) and energy sensor AMPK. Female mice were fed either a control or a high fat (HF) diet prior to mating, and during pregnancy and lactation. HF male newborns were heavier at birth and exhibited decreased protein expression of hypothalamic bHLH factors, pAMPK/AMPK and POMC with increased AgRP. As adults, these changes persisted though with increased ARC pAMPK/AMPK. Importantly, the total NPY neurons were increased, which was consistent with the increased food intake and adult fat mass. Further, NPCs from HF newborn hypothalamic tissue showed similar changes with preferential NPC neuronal differentiation towards NPY. Lastly, the role of AMPK was further confirmed with in vitro treatment of Control NPCs with pharmacologic AMPK modulators. Thus, the altered ARC development of HF offspring results in excess appetite and reduced satiety leading to obesity. The underlying mechanism may involve AMPK/bHLH pathways.


Subject(s)
Animals, Newborn/metabolism , Diet, High-Fat/adverse effects , Hyperphagia/etiology , Maternal Nutritional Physiological Phenomena , Obesity/etiology , Prenatal Exposure Delayed Effects/etiology , AMP-Activated Protein Kinases/metabolism , Agouti-Related Protein/metabolism , Animals , Appetite/physiology , Arcuate Nucleus of Hypothalamus/growth & development , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation/physiology , Female , Hypothalamus/metabolism , Male , Mice , Neurogenesis/physiology , Neurons/metabolism , Pregnancy , Satiation/physiology
7.
Acta Histochem ; 122(7): 151616, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33066838

ABSTRACT

Leptin is an adipokine that plays an important role in the regulation of energy homeostasis. The failure of endogenous and exogenous leptin to mediate its effects (for example, at suppressing appetite and decreasing body weight) has been termed leptin resistance. Hyperleptinemia and leptin resistance can be well demonstrated in animals in which obesity is induced by consumption of a palatable, high-calorie diet (e.g., cafeteria diet-induced obesity). Since leptin receptor signaling is known to be impaired in the hypothalamic arcuate nucleus (ARC) of obese rodents, we investigated the effect of leptin on nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) reactivity in the ARC of male Wistar rats with cafeteria diet-induced obesity. Our results have shown that after intraperitoneal administration of leptin, the number of NADPH-d positive neurons in the ARC was significantly lower in obese rats compared with that observed in normal weight rats. Additionally, we have found that leptin-induced NADPH-d staining in ARC neurons and the adjacent ependyma was decreased in obese rats. The results presented here suggest that the ability of leptin to activate nitric oxide synthase in neurons within the ARC as well as tanycytes and ependymal cells of the third ventricle is reduced in rats made obese by a cafeteria diet. We speculate that impairment in leptin-induced NO production presents a potential mechanism, involved in the pathogenesis of obesity and obesity-related disease states.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Diet, High-Fat/adverse effects , Leptin/metabolism , NADP/metabolism , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Eating/physiology , Male , Obesity/etiology , Obesity/metabolism , Rats, Wistar , Receptors, Leptin/metabolism , Signal Transduction/drug effects
8.
CNS Neurosci Ther ; 26(5): 558-566, 2020 05.
Article in English | MEDLINE | ID: mdl-31880085

ABSTRACT

AIMS: Many patients taking risperidone for the treatment of psychiatric disorders experience substantial body weight gain. Researchers have speculated that risperidone induces obesity by modulating central signals; however, the precise central mechanisms involved remain to be fully elucidated. METHODS: Twenty-four C57BL/6J mice were divided into four groups: a control group; a risperidone-treated group; a lorcaserin-treated group; and a combined risperidone + lorcaserin-treated group. The mice were received the corresponding treatments for 4 weeks, and their brains were collected for in situ hybridization analysis. A subset of C57BL/6J mice was administrated with risperidone or placebo, and brains were collected 60 minutes post-treatment for determination of c-fos activity. In addition, brains of NPY-GFP mice treated with or without risperidone were collected to perform colocalization of NPY and c-fos, as well as NPY and 5-HT2c receptor using immunohistochemistry. RESULTS: There was significantly elevated c-fos expression in the hypothalamic arcuate nucleus (Arc) of risperidone-treated mice. More than 68% c-fos-positive neurons were NPY-expressing neurons. Furthermore, in situ hybridization revealed that Arc NPY mRNA expression was significantly increased in the risperidone-treated group compared with control group. Moreover, we identified that 95% 5-HT2c receptors were colocalized with NPY positive neurons, and increased Arc NPY mRNA expression induced by risperidone was markedly reduced by cotreatment with lorcaserin, a specific 5-HT2c receptor agonist. CONCLUSION: Our findings provide critical insight into the mechanisms underlying antipsychotic-induced obesity, which may assist the development of therapeutic strategies to address metabolic side effects of risperidone.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Eating/drug effects , Neuropeptide Y/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Risperidone/toxicity , Weight Gain/drug effects , Animals , Arcuate Nucleus of Hypothalamus/chemistry , Arcuate Nucleus of Hypothalamus/drug effects , Body Weight/drug effects , Body Weight/physiology , Eating/physiology , Female , Mice , Mice, Inbred C57BL , Neuropeptide Y/analysis , Serotonin Antagonists/toxicity , Signal Transduction/drug effects , Signal Transduction/physiology , Weight Gain/physiology
9.
J Neurosci Res ; 98(2): 384-403, 2020 02.
Article in English | MEDLINE | ID: mdl-31407399

ABSTRACT

The cAMP-dependent protein kinase A family (PKAs), protein kinase C family (PKCs), and Src family kinases (SFKs) are found to play important roles in pain hypersensitivity. However, more detailed investigations are still needed in order to understand the mechanisms underlying the actions of PKAs, PKCs, and SFKs. Neurons in the hypothalamic arcuate nucleus (ARC) are found to be involved in the regulation of pain hypersensitivity. Here we report that the action potential (AP) firing activity of ARC neurons in culture was up-regulated by application of the adenylate cyclase activator forskolin or the PKC activator PMA, and that the forskolin or PMA application-induced up-regulation of AP firing activity could be blocked by pre-application of the SFK inhibitor PP2. SFK activation also up-regulated the AP firing activity and this effect could be prevented by pre-application of the inhibitors of PKCs, but not of PKAs. Furthermore, we identified that forskolin or PMA application caused increases in the phosphorylation not only in PKAs at T197 or PKCs at S660 and PKCα/ßII at T638/641, but also in SFKs at Y416. The forskolin or PMA application-induced increase in the phosphorylation of PKAs or PKCs was not affected by pre-treatment with PP2. The regulations of the SFK and AP firing activities by PKCs were independent upon the translocation of either PKCα or PKCßII. Thus, it is demonstrated that PKAs may act as an upstream factor(s) to enhance SFKs while PKCs and SFKs interact reciprocally, and thereby up-regulate the AP firing activity in hypothalamic ARC neurons.


Subject(s)
Action Potentials/physiology , Arcuate Nucleus of Hypothalamus/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Neurons/metabolism , Protein Kinase C/metabolism , src-Family Kinases/metabolism , Action Potentials/drug effects , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Cells, Cultured , Colforsin/pharmacology , Female , Male , Neurons/drug effects , Oligopeptides/pharmacology , Patch-Clamp Techniques , Phosphorylation/drug effects , Rats , Rats, Sprague-Dawley , Vasodilator Agents/pharmacology
10.
J Surg Res ; 246: 527-534, 2020 02.
Article in English | MEDLINE | ID: mdl-31668932

ABSTRACT

BACKGROUND: Anorexia is a serious problem in patients with gastric cancer who have undergone gastrectomy. Ghrelin, an orexigenic hormone primarily secreted from the stomach, has been proposed to prevent anorexia. Significant reduction in plasma ghrelin levels after gastrectomy may contribute to lack of appetite and weight loss. In this study, we investigated the effects of Z-505, a ghrelin receptor agonist, on anorexia after total gastrectomy (TG) in a rat model. METHODS AND MATERIALS: Male Sprague-Dawley rats were used to establish a TG model, and then sham-operated (control) and TG rats were randomly assigned to four subgroups receiving administration of Z-505 (100 mg/kg, p.o., once daily) or vehicle for 14 d from day 14 to day 27 after TG. The food intake, body weight, and fat weight were evaluated during the test period. Moreover, the neuronal activity in the hypothalamus was evaluated on day 21 to investigate the mechanism of action of Z-505. RESULTS: In TG rats, Z-505 significantly improved the decrease in cumulative food intake induced by the surgery over 14 d (TG + vehicle; 213.8 ± 15.3 g, n = 12 versus TG + Z-505; 258.2 ± 13.1 g, n = 14, P < 0.05). Z-505 also significantly increased fat weight and had a milder effect on body weight over 14 d. In addition, Z-505 significantly increased the number of c-Fos-positive cells in the hypothalamic arcuate nucleus (TG + vehicle; 17.8 ± 2.0, n = 12 versus TG + Z-505; 72.2 ± 11.8, n = 12, P < 0.001). CONCLUSIONS: Z-505 may be a useful therapeutic treatment for anorexia after TG.


Subject(s)
Amides/administration & dosage , Anorexia/drug therapy , Gastrectomy/adverse effects , Ghrelin/blood , Pyrrolidines/administration & dosage , Receptors, Ghrelin/agonists , Animals , Anorexia/blood , Anorexia/etiology , Arcuate Nucleus of Hypothalamus/cytology , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/metabolism , Body Weight/drug effects , Disease Models, Animal , Eating/drug effects , Humans , Male , Neurons/drug effects , Neurons/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley , Stomach Neoplasms/surgery
11.
J Nutr Biochem ; 75: 108257, 2020 01.
Article in English | MEDLINE | ID: mdl-31710935

ABSTRACT

Maternal high-fat diet (HFD) overfeeding pre- and during pregnancy and lactation may 'program' a 'diabesity' predisposition in the offspring, for inconclusive reasons. Acquired alterations of the hypothalamic promoter methylation and mRNA expression of the satiety neurohormone Pomc are possibly of critical importance here. We investigated within one developmental approach, including male and female rats, the sex-specific DNA methylation pattern and corresponding mRNA expression of both Pomc and its endogenous functional antagonist Agrp in the hypothalamus of adult HFD offspring. Obesity and diabetic disturbances occurred in both male and female HFD offspring, accompanied by altered Pomc promoter methylation pattern. However, this was not related to significant Pomc mRNA expression alterations. In contrast, male-specific alterations of Agrp promoter methylation were found, even associated with reduced mRNA expression of this orexigenic/anabolic Pomc antagonist. In conclusion, acquired epigenetic alterations of the hypothalamic Agrp-Pomc system hardly explain the 'diabesity' phenotype in HFD offspring, while distinct vulnerability and functionality of Agrp promoter and related genomic regions methylation should be further investigated.


Subject(s)
Agouti-Related Protein/genetics , Diabetes Mellitus/genetics , Epigenesis, Genetic , Hypothalamus/metabolism , Obesity/genetics , Pro-Opiomelanocortin/genetics , Animals , Blood Glucose/analysis , Body Composition , DNA Methylation , Diabetes Complications , Diet, High-Fat , Female , Male , Maternal Nutritional Physiological Phenomena , Neuropeptides/chemistry , Overnutrition/genetics , Phenotype , Pregnancy , Pregnancy, Animal , Prenatal Exposure Delayed Effects/genetics , Promoter Regions, Genetic , Rats , Rats, Wistar , Sex Factors
12.
Pharmacol Rep ; 71(6): 1210-1212, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31671379

ABSTRACT

BACKGROUND: Our previous study has demonstrated that activation of the 5-HT2, but not 5-HT1 serotonin receptor type in the hypothalamic arcuate nucleus (ARC) is responsible for the neuroendocrine regulation of liver cytochrome P450. The goal of these studies was to determine whether 5-HT2C serotonin receptor subtype in the ARC is engaged in the regulation of liver cytochrome P450. METHODS: The 5-HT2C serotonin receptor agonist CP-809,101 was injected into the ARC for 5 days. The liver cytochrome P450 activity and protein level were measured. RESULTS: In rats receiving an injection of the 5-HT2C serotonin receptor agonist CP-809,101 into the ARC (1 µg/side) for five days, the activities of CYP2B, CYP2C11 and CYP3A significantly increased corresponding with the elevated enzyme protein level. CONCLUSIONS: The obtained results suggest that the 5-HT2C serotonin receptor subtype in the ARC is involved in the positive neuroendocrine regulation of cytochrome P450. Further studies are in progress to explain the physiological mechanism which is responsible for the observed regulation of cytochrome P450 by 5-HT2C receptor present in the ARC.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Liver/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Receptors, Serotonin/metabolism , Serotonin/metabolism , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Cytochrome P-450 Enzyme System/metabolism , Liver/drug effects , Male , Neurosecretory Systems/drug effects , Neurosecretory Systems/metabolism , Piperazines/pharmacology , Pyrazines/pharmacology , Rats , Rats, Wistar , Serotonin Receptor Agonists/pharmacology
13.
Endocr Regul ; 53(1): 8-13, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-31517616

ABSTRACT

OBJECTIVE: The hypothalamic arcuate nucleus proopiomelanocortin (POMC) and neuropeptide Y (NPY) circuitries are involved in the inhibition and stimulation of the appetite, respectively. The aim of this study was to investigate the effects of one-month lasting high-intensity exercise on the POMC mRNA and NPY mRNA expression in the above-mentioned brain structure and appetite and food intake levels. METHODS: Fourteen male Wistar rats (250±50 g) were used and kept in the well-controlled conditions (22±2 °C, 50±5% humidity, and 12 h dark/light cycle) with food and water ad libitum. The rats were divided into two groups (n=7): 1) control group (C, these rats served as controls) and 2) exercised group (RIE, these rats performed a high-intensity exercise for one month (5 days per week) 40 min daily with speed 35 m/min. The total exercise time was 60 min. The body weight and food intake were recorded continuously during the experiments. RESULTS: The results showed relative mRNA expression of POMC and NPY estimated in the hypothalamic arcuate nucleus. There were no significant differences in the NPY and POMC mRNAs expression levels and food intake between C and RIE groups. CONCLUSIONS: The present data indicate that one-month regular intensive exercise did not alter the levels of NPY and POMC mRNAs expression (as two important factors in the regulation of appetite) in the hypothalamic arcuate nucleus and food intake suggesting that this type of exercise itself is not an appropriate procedure for the body weight reduction.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Eating/physiology , Neuropeptide Y/genetics , Physical Conditioning, Animal/physiology , Pro-Opiomelanocortin/genetics , Animals , Gene Expression Regulation , Male , Neuropeptide Y/metabolism , Physical Conditioning, Animal/methods , Pro-Opiomelanocortin/metabolism , Random Allocation , Rats , Rats, Wistar , Time Factors
14.
J Nutr Biochem ; 67: 28-35, 2019 05.
Article in English | MEDLINE | ID: mdl-30849557

ABSTRACT

Maternal overnutrition around reproduction has been shown to increase the offspring's risk for "diabesity," mediated by altered hypothalamic neuropeptide expression. In this report, a possible contribution of altered hypothalamic sensing capacity for the peripheral satiety signals glucose, insulin and leptin will be addressed, taking into account potential sex differences. Specifically, we evaluated the effects a maternal high-fat diet (HFD) overfeeding has in rats pre- and during pregnancy and lactation on the hypothalamic gene expression patterns of insulin and leptin receptors (InsR, ObRb) and glucose transporter 3 (Glut3) as well as DNA methylation in the offspring at adult age (day 200 of life). Maternal HFD consumption resulted in a metabolic syndrome phenotype, i.e., obesity, hyperleptinemia, hyperinsulinemia, impaired glucose tolerance and increased homeostatic model assessment of insulin resistance. Interestingly, in turn, insulin resistance was more pronounced in male offspring, accompanied by decreased hypothalamic InsR-mRNA. This was linked with hypermethylation of an activating transcription factor binding site within the hypothalamic InsR promoter. The degree of methylation correlated inversely with respective InsR expression, while InsR expression itself was inversely related to phenotypic "diabesity." Expression of ObRb and Glut3 mRNA was not significantly changed. In conclusion, sex-specific alterations of hypothalamic InsR expression and DNA promoter methylation in adult offspring of HFD-overfed dams may lead to hypothalamic insulin resistance and "diabesity," with males predisposed to this epigenetic malprogramming.


Subject(s)
DNA Methylation , Diet, High-Fat/adverse effects , Hypothalamus/physiology , Receptor, Insulin/genetics , Adiposity , Animals , Female , Gene Expression Regulation , Glucose Intolerance , Glucose Transporter Type 3/genetics , Male , Maternal Nutritional Physiological Phenomena , Obesity/etiology , Pregnancy , Prenatal Exposure Delayed Effects , Promoter Regions, Genetic , Receptor, Insulin/metabolism , Receptors, Leptin/genetics , Sex Factors , Weight Gain/drug effects
15.
J Chem Neuroanat ; 77: 30-40, 2016 11.
Article in English | MEDLINE | ID: mdl-27154870

ABSTRACT

Ethanol is a macronutrient whose intake is a form of ingestive behavior, sharing physiological mechanisms with food intake. Chronic ethanol consumption is detrimental to the brain, inducing gender-dependent neuronal damage. The hypothalamic arcuate nucleus (ARN) is a modulator of food intake that expresses feeding-regulatory neuropeptides, such as alpha melanocyte-stimulating hormone (α-MSH) and neuropeptide Y (NPY). Despite its involvement in pathways associated with eating disorders and ethanol abuse, the impact of ethanol consumption and withdrawal in the ARN structure and neurochemistry in females is unknown. We used female rat models of 20% ethanol consumption for six months and of subsequent ethanol withdrawal for two months. Food intake and body weights were measured. ARN morphology was stereologically analyzed to estimate its volume, total number of neurons and total number of neurons expressing NPY, α-MSH, tyrosine hydroxylase (TH) and estrogen receptor alpha (ERα). Ethanol decreased energy intake and body weights. However, it did not change the ARN morphology or the expression of NPY, α-MSH and TH, while increasing ERα expression. Withdrawal induced a significant volume and neuron loss that was accompanied by an increase in NPY expression without affecting α-MSH and TH expression. These findings indicate that the female ARN is more vulnerable to withdrawal than to excess alcohol. The data also support the hypothesis that the same pathways that regulate the expression of NPY and α-MSH in long-term ethanol intake may regulate food intake. The present model of long-term ethanol intake and withdrawal induces new physiological conditions with adaptive responses.


Subject(s)
Arcuate Nucleus of Hypothalamus/anatomy & histology , Arcuate Nucleus of Hypothalamus/metabolism , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Substance Withdrawal Syndrome/metabolism , Alcoholism/metabolism , Alcoholism/psychology , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Body Weight/drug effects , Cell Count , Eating/drug effects , Energy Intake/drug effects , Female , Neurons/drug effects , Rats , Rats, Wistar
16.
Neuroscience ; 327: 95-114, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27072848

ABSTRACT

The arcuate nucleus (ARC) plays an important role in the hypothalamic control of energy homeostasis. Expression of various purinoceptor subtypes in the rat ARC and physiological studies suggest a modulatory function of P2 receptors within the neuroglial ARC circuitry. A differentiated mixed neuronal and glial microculture was therefore established from postnatal rat ARC, revealing neuronal expression of ARC-specific transmitters involved in food intake regulation (neuropeptide Y (NPY), proopiomelanocortin (POMC), tyrosine hydroxylase (TH)). Some NPYergic neurons cosynthesized TH, while POMC and TH expression proved to be mutually exclusive. Stimulation with the general purinoceptor agonists 2-methylthioadenosine-5'triphosphate (2-MeSATP) and ATP but not the P2X1/P2X3 receptor subtype agonist α,ß-methyleneadenosine-5'triphosphate (α,ß-meATP) induced intracellular calcium signals in ARC neurons and astrocytes. Some 5-10% each of 2-MeSATP responsive neurons expressed POMC, NYP or TH. Supporting the calcium imaging data, radioligand binding studies to hypothalamic membranes showed high affinity for 2-MeSATP, ATP but not α,ß-meATP to displace [α-(35)S]deoxyadenosine-5'thiotriphosphate ([(35)S]dATPαS) from P2 receptors. Repetitive superfusion with equimolar 2-MeSATP allowed categorization of ARC cells into groups with a high or low (LDD) degree of purinoceptor desensitization, the latter allowing further receptor characterization. Calcium imaging experiments performed at 37°C vs. room temperature showed further reduction of desensitization. Agonist-mediated intracellular calcium signals were suppressed in all LDD neurons but only 25% of astrocytes in the absence of extracellular calcium, suggestive of metabotropic P2Y receptor expression in the majority of ARC astrocytes. The highly P2Y1-selective receptor agonists MRS2365 and 2-methylthioadenosine-5'diphosphate (2-MeSADP) activated 75-85% of all 2-MeSATP-responsive ARC astrocytes. Taking into consideration the high potency to dose-dependently stimulate ARC cells of the LDD group, the high affinity for rat P2X(1-3) and low affinity for rat P2X4, P2X7 and P2Y receptor subtypes except P2Y1 and P2Y13, the agonist 2-MeSATP primarily acted upon P2X2 and P2Y1 purinoceptors to trigger intracellular calcium signaling in ARC neurons and astrocytes.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Astrocytes/metabolism , Muscle, Smooth/metabolism , Receptors, Purinergic P2/metabolism , Adenosine Triphosphate/analogs & derivatives , Animals , Calcium/metabolism , Calcium Signaling/physiology , Male , Primary Cell Culture , Rats, Wistar
17.
Clin Exp Hypertens ; 37(3): 197-206, 2015.
Article in English | MEDLINE | ID: mdl-25051156

ABSTRACT

Stimulation of µ1-opioid receptors (M1ORs) in the medial nucleus solitarius (mNTS) by endomorphin-2 (EM2) elicits decreases in mean arterial pressure (MAP), heart rate (HR) and greater splanchnic nerve activity (GSNA) in Wistar rats. We tested the hypothesis that EM2-induced responses in the mNTS may be attenuated in the spontaneously hypertensive rat (SHR). Experiments were carried out in urethane-anesthetized, artificially ventilated, adult male SHR and Wistar-Kyoto rats (WKY). Alterations in responses to chemical stimulation of the hypothalamic arcuate nucleus (ARCN) after bilateral blockade of M1ORs in the mNTS were also studied. In SHR, microinjections of EM2 into the mNTS elicited smaller decreases in MAP, HR and GSNA compared to those elicited in WKY; smaller cardiovascular responses in SHR can be explained by lower expression of M1OR mRNA in the NTS of SHR compared to WKY. Decreases in MAP and GSNA and increases in HR were elicited by microinjections of N-methyl-D-aspartic acid (NMDA) into the ARCN of WKY. Bilateral blockade of M1ORs in the mNTS attenuated the decreases in MAP and GSNA and exaggerated the increases in HR elicited by the ARCN stimulation in WKY but not in SHR. Tonic inhibitory activity of neuropeptide Y/gamma-aminobutyric acid (NPY/GABA) neurons in the ARCN is attenuated in SHR; this observation may explain increases in MAP, GSNA and HR elicited by microinjections of NMDA into the ARCN of SHR. These results demonstrate that attenuation of EM2-induced responses in the mNTS of SHR may contribute to the excitatory responses elicited by ARCN stimulation in SHR.


Subject(s)
Cardiovascular System , Hypertension , Oligopeptides , Receptors, Opioid, mu , Solitary Nucleus , Splanchnic Nerves , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/metabolism , Analgesics, Opioid/pharmacokinetics , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus/physiopathology , Cardiovascular System/metabolism , Cardiovascular System/physiopathology , Hypertension/genetics , Hypertension/physiopathology , Male , Microinjections , Oligopeptides/administration & dosage , Oligopeptides/metabolism , Oligopeptides/pharmacokinetics , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Receptors, Opioid, mu/antagonists & inhibitors , Receptors, Opioid, mu/genetics , Solitary Nucleus/metabolism , Solitary Nucleus/physiopathology , Splanchnic Nerves/metabolism , Splanchnic Nerves/physiopathology
18.
Article in English | MEDLINE | ID: mdl-23085507

ABSTRACT

Impaired glucose metabolism and the development of metabolic syndrome contribute to a reduction in the average life expectancy of individuals with schizophrenia. It is unclear whether this association simply reflects an unhealthy lifestyle or whether weight gain and impaired glucose tolerance in patients with schizophrenia are directly attributable to the side effects of atypical antipsychotic medications or disease-inherent derangements. In addition, numerous previous studies have highlighted alterations in the immune system of patients with schizophrenia. Increased concentrations of interleukin (IL)-1, IL-6, and transforming growth factor-beta (TGF-ß) appear to be state markers, whereas IL-12, interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and soluble IL-2 receptor (sIL-2R) appear to be trait markers of schizophrenia. Moreover, the mononuclear phagocyte system (MPS) and microglial activation are involved in the early course of the disease. This review illustrates a "chicken-egg dilemma", as it is currently unclear whether impaired cerebral glucose utilization leads to secondary disturbances in peripheral glucose metabolism, an increased risk of cardiovascular complications, and accompanying pro-inflammatory changes in patients with schizophrenia or whether immune mechanisms may be involved in the initial pathogenesis of schizophrenia, which leads to disturbances in glucose metabolism such as metabolic syndrome. Alternatively, shared underlying factors may be responsible for the co-occurrence of immune system and glucose metabolism disturbances in schizophrenia.


Subject(s)
Glucose Metabolism Disorders/etiology , Immune System/physiopathology , Schizophrenia , Cytokines/metabolism , Humans , Immune System/metabolism , Schizophrenia/complications , Schizophrenia/immunology , Schizophrenia/metabolism
19.
Pharmacol Biochem Behav ; 110: 66-74, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23792540

ABSTRACT

Melanocortins (MC) are central peptides that have been implicated in the modulation of ethanol consumption. There is experimental evidence that chronic ethanol exposure reduces α-MSH expression in the limbic and hypothalamic brain regions and alters central pro-opiomelanocortin (POMC) mRNA activity in adult rats. Adolescence is a critical developmental period of high vulnerability in which ethanol exposure alters corticotropin releasing factor, neuropeptide Y, substance P and neurokinin neuropeptide activities, all of which have key roles in ethanol consumption. Given the involvement of MC and the endogenous inverse agonist AgRP in ethanol drinking, here we evaluate whether a binge-like pattern of ethanol treatment during adolescence has a relevant impact on basal and/or ethanol-stimulated α-MSH and AgRP activities during adulthood. To this end, adolescent Sprague-Dawley rats (beginning at PND25) were pre-treated with either saline (SP group) or binge-like ethanol exposure (BEP group; 3.0 g/kg given in intraperitoneal (i.p.) injections) of one injection per day over two consecutive days, followed by 2 days without injections, repeated for a total of 8 injections. Following 25 ethanol-free days, we evaluated α-MSH and AgRP immunoreactivity (IR) in the limbic and hypothalamic nuclei of adult rats (PND63) in response to ethanol (1.5 or 3.0 g/kgi.p.) and saline. We found that binge-like ethanol exposure during adolescence significantly reduced basal α-MSH IR in the central nucleus of the amygdala (CeA), the arcuate nucleus (Arc) and the paraventricular nucleus of the hypothalamus (PVN) during adulthood. Additionally, acute ethanol elicited AgRP IR in the Arc. Rats given the adolescent ethanol treatment required higher doses of ethanol than saline-treated rats to express AgRP. In light of previous evidence that endogenous MC and AgRP regulate ethanol intake through MC-receptor signaling, we speculate that the α-MSH and AgRP disturbances induced by binge-like ethanol exposure during adolescence may contribute to excessive ethanol consumption during adulthood.


Subject(s)
Age Factors , Amygdala/drug effects , Ethanol/administration & dosage , Hypothalamus/drug effects , alpha-MSH/metabolism , Amygdala/metabolism , Animals , Body Weight/drug effects , Ethanol/blood , Ethanol/pharmacology , Hypothalamus/metabolism , Rats , Rats, Sprague-Dawley
20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-680754

ABSTRACT

6-OHDA was injected into the third cerebroventricle of rats.24 hours later,thanimals were sacrificed and the degeneration of catecholaminergic (CA) nerve term-inals were studied by electron microscopic cytochemical method.The results showedthat there were a number of degenerated nerve terminals in the arcuate nucleus.Thecharacteristics of these terminals were as follows:enhanced axoplasmic electron opa-sity,destroyed mitochondria and synaptic vesicles and the formation of dense bodies.The multilocular forms were commonly encountered.Most of degenerated terminalswere surrouded by processes of glial cells.The degnerated perikarya of the neuronsin arcuate nucleus with decreased RER,destroyed mitochondria and dense bodieswere also observed.Based on the characteristics of degenerated features the authorsbelieved that these damaged terminals should mainly belong to DA fibers.Theymight regulate or control the function of the arcuate nucleus by means of differentkinds of synaptic mechanisms.The source of DA nerve fibers may originate from A_(12)A_(14) or A_(15) cell groups of the hypothalamus.

SELECTION OF CITATIONS
SEARCH DETAIL
...