Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Respir Res ; 25(1): 270, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987833

ABSTRACT

BACKGROUND: Hypoxic pulmonary hypertension (HPH) is a challenging lung arterial disorder with remarkably high incidence and mortality rates, and the efficiency of current HPH treatment strategies is unsatisfactory. Endothelial-to-mesenchymal transition (EndMT) in the pulmonary artery plays a crucial role in HPH. Previous studies have shown that lncRNA-H19 (H19) is involved in many cardiovascular diseases by regulating cell proliferation and differentiation but the role of H19 in EndMT in HPH has not been defined. METHODS: In this research, the expression of H19 was investigated in PAH human patients and rat models. Then, we established a hypoxia-induced HPH rat model to evaluate H19 function in HPH by Echocardiography and hemodynamic measurements. Moreover, luciferase reporter gene detection, and western blotting were used to explore the mechanism of H19. RESULTS: Here, we first found that the expression of H19 was significantly increased in the endodermis of pulmonary arteries and that H19 deficiency obviously ameliorated pulmonary vascular remodelling and right heart failure in HPH rats, and these effects were associated with inhibition of EndMT. Moreover, an analysis of luciferase activity indicated that microRNA-let-7 g (let-7 g) was a direct target of H19. H19 deficiency or let-7 g overexpression can markedly downregulate the expression of TGFßR1, a novel target gene of let-7 g. Furthermore, inhibition of TGFßR1 induced similar effects to H19 deficiency. CONCLUSIONS: In summary, our findings demonstrate that the H19/let-7 g/TGFßR1 axis is crucial in the pathogenesis of HPH by stimulating EndMT. Our study may provide new ideas for further research on HPH therapy in the near future.


Subject(s)
Epithelial-Mesenchymal Transition , Hypertension, Pulmonary , Hypoxia , MicroRNAs , RNA, Long Noncoding , Rats, Sprague-Dawley , Signal Transduction , Transforming Growth Factor beta , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Rats , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Hypoxia/metabolism , Hypoxia/genetics , Signal Transduction/physiology , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Male , Epithelial-Mesenchymal Transition/physiology , Epithelial-Mesenchymal Transition/genetics , Transforming Growth Factor beta/metabolism , Female , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Disease Models, Animal , RNA, Competitive Endogenous
2.
Curr Pharm Des ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38867532

ABSTRACT

BACKGROUND: Hypoxic Pulmonary Hypertension (HPH), a prevalent disease in highland areas, is a crucial factor in various complex highland diseases with high mortality rates. Zhishi-Xiebai-Guizhi Decoction (ZXGD), traditional Chinese medicine with a long history of use in treating heart and lung diseases, lacks a clear understanding of its pharmacological mechanism. OBJECTIVE: This study aimed to investigate the pharmacological effects and mechanisms of ZXGD on HPH. METHODS: We conducted a network pharmacological prediction analysis and molecular docking to predict the effects, which were verified through in vivo experiments. RESULTS: Network pharmacological analysis revealed 51 active compounds of ZXGD and 701 corresponding target genes. Additionally, there are 2,116 target genes for HPH, 311 drug-disease co-target genes, and 17 core target genes. GO functional annotation analysis revealed that the core target genes primarily participate in biological processes such as apoptosis and cellular response to hypoxia. Furthermore, KEGG pathway enrichment analysis demonstrated that the core targets are involved in several pathways, including the phosphatidylinositol- 3 kinase/protein kinase B (PI3K/Akt) signaling pathway and Hypoxia Inducible Factor 1 (HIF1) signaling pathway. In vivo experiments, the continuous administration of ZXGD demonstrated a significant improvement in pulmonary artery pressure, right heart function, pulmonary vascular remodeling, and pulmonary vascular fibrosis in HPH rats. Furthermore, ZXGD was found to inhibit the expression of PI3K, Akt, and HIF1α proteins in rat lung tissue. CONCLUSION: In summary, this study confirmed the beneficial effects and mechanism of ZXGD on HPH through a combination of network pharmacology and in vivo experiments. These findings provided a new insight for further research on HPH in the field of traditional Chinese medicine.

3.
Biochem Pharmacol ; 226: 116382, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909785

ABSTRACT

Hypoxic pulmonary hypertension (HPH) is a serious and life-threatening chronic cardiopulmonary disease characterized by progressive elevation of pulmonary artery pressure and pulmonary vascular remodeling. Mesenchymal stem cell- derived exosomes (MSC-Exos) can relieve HPH by reversing pulmonary vascular remodeling. The HPH model was established in healthy male Sprague-Dawley (SD) rats aged 6 to 8 weeks. The rats were placed in a room with oxygen concentration of (10 ± 1) % for 8 hours a day over 28 days, were then injected intravenously with MSC-Exos (100 ug protein/kg) or equal-volume phosphate buffer saline (PBS) once a day over 1 week. Right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI) and pulmonary vascular remodeling were observed after anesthesia. In addition, platelet-derived growth factor BB (PDGF-BB) was used to stimulate rat pulmonary artery smooth muscle cells (PASMCs) to construct HPH pathological cell models. The results showed that MSC-Exos could not only reduce the elevation of RVSP, right ventricular hypertrophy and the degree of pulmonary vascular remodeling in HPH rats, but also reduce the proliferation, migration and apoptosis resistance of PASMCs. Finally, GSE53408 and GSE113439 datasets were analyzed and showed that the expression of Hsp90aa1 and pERK/ERK were significantly increased in HPH, also could be inhibited by MSC-Exos. Meanwhile, inhibition of Hsp90aa1 also reduced PASMCs migration and pERK/ERK protein level. In conclusion, MSC-Exos alleviated HPH by suppressing PASMCs proliferation, migration and apoptosis resistance through inhibiting the Hsp90aa1/ERK/pERK pathway.

4.
J Mol Cell Cardiol ; 194: 16-31, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821243

ABSTRACT

BACKGROUND: Hypoxia-induced pulmonary artery hypertension (HPH) is a complication of chronic hypoxic lung disease and the third most common type of pulmonary artery hypertension (PAH). Epigenetic mechanisms play essential roles in the pathogenesis of HPH. N6-methyladenosine (m6A) is an important modified RNA nucleotide involved in a variety of biological processes and an important regulator of epigenetic processes. To date, the precise role of m6A and regulatory molecules in HPH remains unclear. METHODS: HPH model and pulmonary artery smooth muscle cells (PASMCs) were constructed from which m6A changes were observed and screened for AlkB homolog 5 (Alkbh5). Alkbh5 knock-in (KI) and knock-out (KO) mice were constructed to observe the effects on m6A and evaluate right ventricular systolic pressure (RVSP), left ventricular and septal weight [RV/(LV + S)], and pulmonary vascular remodeling in the context of HPH. Additionally, the effects of Alkbh5 knockdown using adenovirus were examined in vitro on m6A, specifically in PASMCs with regard to proliferation, migration and cytochrome P450 1A1 (Cyp1a1) mRNA stability. RESULTS: In both HPH mice lung tissues and hypoxic PASMCs, a decrease in m6A was observed, accompanied by a significant up-regulation of Alkbh5 expression. Loss of Alkbh5 attenuated the proliferation and migration of hypoxic PASMCs in vitro, with an associated increase in m6A modification. Furthermore, Alkbh5 KO mice exhibited reduced RVSP, RV/(LV + S), and attenuated vascular remodeling in HPH mice. Mechanistically, loss of Alkbh5 inhibited Cyp1a1 mRNA decay and increased its expression through an m6A-dependent post-transcriptional mechanism, which hindered the proliferation and migration of hypoxic PASMCs. CONCLUSION: The current study highlights the loss of Alkbh5 impedes the proliferation and migration of PASMCs by inhibiting post-transcriptional Cyp1a1 mRNA decay in an m6A-dependent manner.

5.
Apoptosis ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635022

ABSTRACT

Hypoxic pulmonary hypertension (HPH) is a pathophysiological syndrome in which pulmonary vascular pressure increases under hypoxic stimulation and there is an urgent need to develop emerging therapies for the treatment of HPH. LncRNA MIR210HG is a long non-coding RNA closely related to hypoxia and has been widely reported in a variety of tumor diseases. But its mechanism in hypoxic pulmonary hypertension is not clear. In this study, we identified for the first time the potential effect of MIR210HG on disease progression in HPH. Furthermore, we investigated the underlying mechanism through which elevated levels of MIR210HG promotes the transition from a contractile phenotype to a synthetic phenotype in PASMCs under hypoxia via activation of autophagy-dependent ferroptosis pathway. While overexpression of HIF-2α in PASMCs under hypoxia significantly reversed the phenotypic changes induced by MIR210HG knockdown. We further investigated the potential positive regulatory relationship between STAT3 and the transcription of MIR210HG in PASMCs under hypoxic conditions. In addition, we established both in vivo and in vitro models of HPH to validate the differential expression of specific markers associated with hypoxia. Our findings suggest a potential mechanism of LncRNA MIR210HG in the progression of HPH and offer potential targets for disease intervention and treatment.

6.
Stem Cells ; 42(4): 329-345, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38153856

ABSTRACT

Pulmonary hypertension (PH) is an intractable, severe, and progressive cardiopulmonary disease. Recent findings suggest that human umbilical cord mesenchymal stromal cells (HUCMSCs) and HUCMSC-derived exosomes (HUCMSC-Exos) possess potential therapeutic value for PH. However, whether they have beneficial effects on hypoxic pulmonary hypertension (HPH) is unclear. Exos are released into the extracellular environment by the fusion of intracellular multivesicular bodies with the cell membrane, and they play an important role in cellular communication. Exos ameliorate immune inflammation levels, alter macrophage phenotypes, regulate mitochondrial metabolic function, and inhibit pulmonary vascular remodeling, thereby improving PH. Macrophages are important sources of cytokines and other transmitters and can promote the release of cytokines, vasoactive molecules, and reactive oxygen species, all of which are associated with pulmonary vascular remodeling. Therefore, the aim of this study was to investigate whether HUCMSC-Exos could improve the lung inflammatory microenvironment and inhibit pulmonary vascular remodeling by targeting macrophages and identifying the underlying mechanisms. The results showed that HUCMSC-Exos promoted M2 macrophage polarization, decreased pro-inflammatory factors, increased IL-10 levels, and inhibited IL-33/ST2 axis expression, thereby inhibiting hypoxia-induced proliferation of pulmonary artery smooth muscle cells and ameliorating HPH.


Subject(s)
Exosomes , Hypertension, Pulmonary , Mesenchymal Stem Cells , Pulmonary Arterial Hypertension , Humans , Mice , Animals , Pulmonary Arterial Hypertension/metabolism , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/therapy , Hypertension, Pulmonary/metabolism , Exosomes/metabolism , Vascular Remodeling , Umbilical Cord/metabolism , Hypoxia/complications , Hypoxia/metabolism , Macrophages/metabolism , Cytokines/metabolism , Mesenchymal Stem Cells/metabolism
7.
Chinese Pharmacological Bulletin ; (12): 565-573, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013655

ABSTRACT

Aim To explore the efficacy of levosimendan on hypoxia pulmonary hypertension through animal experiments, and to further explore the potential mechanism of action using network pharmacological methods and molecular docking technique. Methods The rat model of hypoxia pulmonary hypertension was constructed to detect right heart systolic pressure and right heart remodeling index. HE , Masson, and VG staining were core targets were screened out. GO and KEGG pathway enrichment analysis were performed using the DAVID database. Molecular docking of the core targets was performed with the AutoDock software. Results The results of animal experiments showed that levosimendan had obvious therapeutic effect on hypoxia pulmonary hypertension. The network pharmacology results showed that SRC, HSP90AA1, MAPK1, PIK3R1, AKT1, HRAS, MAPK14, LCK, EGFR and ESR1 used to analyze the changes of rat lung histopathology. Search the Swiss Target Prediction, DrugBank Online, BatMan, Targetnet, SEA, and PharmMapper databases were used to screen for drug targets. Disease targets were retrieved from the GeneCards, OMIM databases. The "drug-target-disease" network was constructed after identification of the two intersection targets. The protein interaction network was constructed and the were the key targets to play a therapeutic role. Molecular docking showed good docking of levosimendan with all the top five core targets with degree values. Conclusions Levosimendan may exert a therapeutic effect on hypoxia-induced pulmonary hypertension through multiple targets.

8.
Heliyon ; 9(11): e22044, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38074866

ABSTRACT

Hypoxic pulmonary hypertension (HPH) is caused by chronic persistent hypoxia, which leads to the continuous increase of pulmonary artery pressure and pulmonary vascular resistance. In recent years, there has been a substantial increase in research on HPH. To study the trends of HPH research over the last decade, we used WOSCC to search for relevant research on this topic, and dealt with the relevant information using VOSviewer, CiteSpace, and R-tool. Our results show that the number of publications on HPH has generally increased in the last decade, albeit not significantly, while the average number of citations has been declining year by year. Researchers from the USA top the list with 5498 publications, who widely cooperate with researchers from other countries, followed by those from China. Kurt R. Stenmark has an authoritative position in this field, ranking first with 635 citations. American Journal of Physiology Lung Cellular and Molecular Physiology and Pulmonary Circulation have published 151 articles on HPH in the last 10 years, but the former has higher impact factor and article quality. Circulation proved its leadership in this field with 8812 citations. Our findings reveal the trends in HPH research and should provide researchers with plenty of useful information.

9.
Respir Res ; 24(1): 310, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38093274

ABSTRACT

BACKGROUND: Hypoxic pulmonary hypertension (HPH) is a common type of pulmonary hypertension and characterized by pulmonary vascular remodeling and constriction. A large number of studies have shown that pulmonary vascular endothelial cells (PVECs) dysfunction plays an important role in the initiation and development stages of HPH, but the mechanism of PVECs dysfunction after hypoxia remains unclear. In this study, we explored the exact mechanism of PVECs dysfunction after hypoxia. METHODS: In vitro, we used primary cultured PVECs hypoxia model to mimic HPH injury. We detected the expressions of mitochondrial biogenesis markers, mitochondrial transcription factor A (TFAM) level inside mitochondria, mitochondrial quantity and function, and the components expressions of translocase of outer mitochondrial membrane (TOM) at 24 h after hypoxia. To explore the effects of Tom70 on mitochondrial biogenesis and functions of PVECs after hypoxia, Tom70 overexpression adenovirus was constructed, and the expressions of mitochondrial biogenesis markers, TFAM level inside mitochondria, mitochondrial quantity and function, and the functions of PVECs were detected. And in vivo, we used cre-dependent overexpression adenovirus of Tom70 in the Cdh5-CreERT2 mouse model of HPH to verify the role of upregulating PVECs Tom70 in improving HPH. RESULTS: Hypoxia obviously increased the expressions of mitochondrial biogenesis markers for PGC-1α, NRF-1 and TFAM, but reduced the content of TFAM in mitochondria and the quantity and functions of mitochondria. In addition, only Tom70 expression among the TOM components was significantly decreased after hypoxia, and up-regulation of Tom70 significantly increased the content of TFAM in mitochondria of PVECs by transporting TFAM into mitochondria after hypoxia, enhanced the quantity and functions of mitochondria, improved the functions of PVECs, and ultimately alleviated HPH. CONCLUSION: The findings of present study demonstrated that hypoxia induced the decreased expression of Tom70 in PVECs, reduced the mitochondrial biogenesis-associated TFAM protein transporting into mitochondria, inhibited mitochondrial biogenesis, caused PVECs injury, and prompted the formation of HPH. However, up-regulation of Tom70 abolished the hypoxia-induced injurious effects on PVECs and alleviated HPH.


Subject(s)
Hypertension, Pulmonary , Animals , Mice , Endothelial Cells/metabolism , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypoxia/complications , Lung/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Organelle Biogenesis
10.
Biomed Pharmacother ; 168: 115816, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37918254

ABSTRACT

OBJECTIVE: Hypoxic pulmonary hypertension (HPH) is a progressive and life-threatening disease characterized by perivascular inflammation, pulmonary vascular remodeling, and occlusion. Mesenchymal stromal cell-derived exosomes (MSC-exo) have emerged as potential therapeutic agents due to their role in cell communication and the transportation of bioactive molecules. In this study, we aimed to investigate the therapeutic effects of MSC-exo against HPH and elucidate the underlying molecular mechanism. METHODS: Exosomes were isolated from conditioned media of human bone mesenchymal stromal cells using ultracentrifugation and characterized through western blotting, transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). An HPH animal model was established in male SD rats, and MSC-exo or phosphate-buffered saline (PBS) were administered via the tail vein for three weeks. Subsequently, right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), and pulmonary vascular remodeling were evaluated. Lung tissues from HPH rats and normal rats underwent high-throughput sequencing and transcriptomic analysis. Gene Ontology (GO) analysis was employed to identify upregulated differentially expressed genes. Additionally, rat pulmonary artery smooth muscle cells (PASMC) exposed to platelet-derived growth factor-BB (PDGF-BB) were used to simulate HPH-related pathological behavior. In vitro cellular models were established to examine the molecular mechanism of MSC-exo in HPH. RESULTS: MSC-exo administration protected rats from hypoxia-induced increases in RVSP, RVHI, and pulmonary vascular remodeling. Additionally, MSC-exo alleviated PDGF-BB-induced proliferation and migration of PASMC. Transcriptomic analysis revealed 267 upregulated genes in lung tissues of HPH rats compared to control rats. Gene Ontology analysis indicated significant differences in pathways associated with Yes Associated Protein 1 (YAP1), a key regulator of cell proliferation and organ size. RT-qPCR and western blot analysis confirmed significantly increased expression of YAP1 in HPH lung tissues and PASMC, which was inhibited by MSC-exo treatment. Furthermore, analysis of datasets demonstrated that Secreted Phosphoprotein 1 (SPP1), also known as Osteopontin (OPN), is a downstream binding protein of YAP1 and can be upregulated by PDGF-BB. MSC-exo treatment reduced the expression of both YAP1 and SPP1. Lentivirus-mediated knockdown of YAP1 inhibited PDGF-BB-induced PASMC proliferation, migration, and SPP1 protein levels. CONCLUSION: Our findings demonstrate that MSC-exo exert a therapeutic effect against hypoxia-induced pulmonary hypertension by modulating the YAP1/SPP1 signaling pathway. The inhibition of YAP1 and downstream SPP1 expression by MSC-exo may contribute to the attenuation of pulmonary vascular remodeling and PASMC proliferation and migration. These results suggest that MSC-exo could serve as a potential therapeutic strategy for the treatment of HPH. Further investigations are warranted to explore the clinical applicability of MSC-exo-based therapies in HPH patients.


Subject(s)
Exosomes , Hypertension, Pulmonary , Mesenchymal Stem Cells , Humans , Rats , Male , Animals , Hypertension, Pulmonary/metabolism , Osteopontin/metabolism , Exosomes/metabolism , Becaplermin/pharmacology , Vascular Remodeling , Rats, Sprague-Dawley , Hypoxia/metabolism , Signal Transduction , Pulmonary Artery/metabolism , Mesenchymal Stem Cells/metabolism , Myocytes, Smooth Muscle/metabolism , Cell Proliferation , Cells, Cultured
11.
Immunol Lett ; 263: 113-122, 2023 11.
Article in English | MEDLINE | ID: mdl-37875238

ABSTRACT

The role of inflammation in pulmonary hypertension is gradually gaining increasing research attention. However, no previous study has evaluated the characteristics of inflammation during chronic hypoxia-induced pulmonary hypertension. Therefore, the aim of this study was to investigate the characteristics of the inflammatory process involved in hypoxia-induced pulmonary hypertension in mice. The current study evaluated from day 4 to day 28 of hypoxia, the PAAT and PAAT/PET decreased, accompanied by pulmonary vascular remodeling and right ventricular hypertrophy, as well as increased numbers of CD68 macrophages. The expression of the pro-inflammatory factors IL-1ß and IL-33 increased, but decreased on day 28. The expression of IL-12 increased from day 4 to day 28, whereas that of the anti-inflammatory factor IL-10 in lung tissue decreased. Furthermore, the expression of the IL-33/ST2 signaling pathway also increased over time under hypoxic conditions. In conclusion, pulmonary artery remodeling in HPH mice worsens progressively in a time-dependent manner, with inflammatory cell infiltration predominating in the early stage and pulmonary vascular remodeling occurring in the later stage.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Mice , Animals , Hypertension, Pulmonary/complications , Hypertension, Pulmonary/metabolism , Pulmonary Arterial Hypertension/complications , Interleukin-33 , Vascular Remodeling , Inflammation/complications , Macrophages/metabolism , Hypoxia
12.
Mol Med ; 29(1): 119, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37670258

ABSTRACT

Small ubiquitin-like modifier mediated modification (SUMOylation) is a critical post-translational modification that has a broad spectrum of biological functions, including genome replication and repair, transcriptional regulation, protein stability, and cell cycle progression. Perturbation or deregulation of a SUMOylation and deSUMOylation status has emerged as a new pathophysiological feature of lung diseases. In this review, we highlighted the link between SUMO pathway and lung diseases, especially the sumoylated substrate such as C/EBPα in bronchopulmonary dysplasia (BDP), PPARγ in pneumonia, TFII-I in asthma, HDAC2 in chronic obstructive pulmonary disease (COPD), KLF15 in hypoxic pulmonary hypertension (HPH), SMAD3 in idiopathic pulmonary fibrosis (IPF), and YTHDF2 in cancer. By exploring the impact of SUMOylation in pulmonary diseases, we intend to shed light on its potential to inspire the development of innovative diagnostic and therapeutic strategies, holding promise for improving patient outcomes and overall respiratory health.


Subject(s)
Asthma , Bronchopulmonary Dysplasia , Pulmonary Disease, Chronic Obstructive , Infant, Newborn , Humans , Sumoylation , Hypoxia
13.
Front Physiol ; 14: 1239643, 2023.
Article in English | MEDLINE | ID: mdl-37645564

ABSTRACT

Mitochondria are the centrol hub for cellular energy metabolisms. They regulate fuel metabolism by oxygen levels, participate in physiological signaling pathways, and act as oxygen sensors. Once oxygen deprived, the fuel utilizations can be switched from mitochondrial oxidative phosphorylation to glycolysis for ATP production. Notably, mitochondria can also adapt to hypoxia by making various functional and phenotypes changes to meet the demanding of oxygen levels. Hypoxic pulmonary hypertension is a life-threatening disease, but its exact pathgenesis mechanism is still unclear and there is no effective treatment available until now. Ample of evidence indicated that mitochondria play key factor in the development of hypoxic pulmonary hypertension. By hypoxia-inducible factors, multiple cells sense and transmit hypoxia signals, which then control the expression of various metabolic genes. This activation of hypoxia-inducible factors considered associations with crosstalk between hypoxia and altered mitochondrial metabolism, which plays an important role in the development of hypoxic pulmonary hypertension. Here, we review the molecular mechanisms of how hypoxia affects mitochondrial function, including mitochondrial biosynthesis, reactive oxygen homeostasis, and mitochondrial dynamics, to explore the potential of improving mitochondrial function as a strategy for treating hypoxic pulmonary hypertension.

14.
Exp Cell Res ; 431(2): 113755, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37586455

ABSTRACT

Hypoxia-induced pulmonary hypertension is a subgroup of type 3 pulmonary hypertension (PH) with the recommended treatment limited to oxygen therapy and lacks potential therapeutic targets. To investigate the role of NLRC3 in hypoxia-induced PH and its potential mechanism, we first collected lung tissues of high-altitude pulmonary hypertension (HAPH) patients. Immunohistochemistry and immunofluorescence showed that NLRC3 was downregulated and was mainly co-localized with the smooth muscle cells of the pulmonary vessels in HAPH patients. Besides, we found that NLRC3 was also expressed in endothelial cells in HAPH patients for the first time. Then, wild type (WT) and NLRC3 knockout (NLRC3-/-) mice were used to construct hypoxia models and primary pulmonary arterial smooth muscle cells (PASMCs) of rats and endothelial cells were cultured for verification. Right heart catheterization and echocardiography suggested that NLRC3 knockout promoted right ventricular systolic pressure (RVSP) up-regulation, right ventricular hypertrophy and fibrosis in hypoxia-induced mice. This study first demonstrated that NLRC3 deficiency promoted hypoxia-stimulated PASMCs proliferation, Human umbilical vein endothelial cells (HUVECs) apoptosis, migration and inflammation through IKK/NF-κB p65/HIF-1α pathway in vitro and in vivo, further promoted vascular remodeling and PH progression, which provided a new target for the treatment of hypoxia-induced PH.


Subject(s)
Hypertension, Pulmonary , Animals , Humans , Mice , Rats , Cell Proliferation , Cells, Cultured , Endothelial Cells/metabolism , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypoxia/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Myocytes, Smooth Muscle/metabolism , NF-kappa B/metabolism , Pulmonary Artery/metabolism , Vascular Remodeling/genetics
15.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166794, 2023 10.
Article in English | MEDLINE | ID: mdl-37356737

ABSTRACT

N-myc downstream regulated gene 1 (NDRG1) has recently drawn increasing attention because of its involvement in angiogenesis, cell proliferation, and differentiation. We used in vitro [human pulmonary artery smooth muscle cells (hPASMCs)] and in vivo (rat) models under hypoxic conditions and found a vital role of NDRG1 in reducing apoptosis and increasing proliferation and migration by overexpressing and knocking down NDRG1. We also proved that hypoxia induced the protein expression of dynamin-related protein 1 (DRP1) and stimulated The phosphatidylinositol-3-kinase (PI3K)/ Protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathways, and these effects were reversed by NDRG1 knockdown. The relationship between NDRG1 and DRP1 and the PI3K/Akt/mTOR pathway was further evaluated by adding mdivi-1 (DRP1 inhibitor) or LY294002 (PI3K inhibitor). NDRG1 was found to regulate the proliferation, apoptosis, and migration of hypoxia-treated hPASMCs via DRP1 and PI3K/Akt/mTOR signaling pathways. We explored the upstream regulators of NDRG1 using in vivo and in vitro hypoxia models. Hypoxia was found to upregulate and downregulate KLF transcription factor 4 (KLF4) protein expression in the cytoplasm and nucleus, respectively. Further, we showed that KLF4 regulated the proliferation and migration of hypoxia-treated hPASMCs via NDRG1. These results indicated a link between KLF4, NDRG1, and DRP1 for the first time, providing new ideas for treating hypoxic pulmonary hypertension.


Subject(s)
Hypertension, Pulmonary , Animals , Humans , Rats , Cell Hypoxia/physiology , Dynamins/metabolism , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypoxia/complications , Hypoxia/genetics , Mammals/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
16.
Mol Biol Rep ; 50(7): 5585-5596, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37162681

ABSTRACT

BACKGROUND: Hypoxic pulmonary hypertension (HPH) is a complication of lung diseases with pulmonary vascular remodeling, although the underlying molecular mechanisms have not been fully elucidated. This study investigated the underlying molecular events by using a rat HPH model and primary pulmonary microvascular endothelial cells (PMVECs). METHODS AND RESULTS: This study first established a rat HPH model and cultured PMVECs for transmission electron microscopic analysis and manipulation of 3-phosphoinositide-dependent protein kinase 1 (PDK1) or phosphatase and tensin homolog-induced kinase 1 (PINK1) expression in vitro. After that, the cell viability was assessed and the expression of different proteins was assayed using cell viability and western blot assays, respectively. Reactive oxygen species production, apoptosis, NLR family pyrin domain containing 3 (NLRP3) expression, and the levels of interleukin (IL)-1ß, IL-6, and IL-8 were also assessed, while the interaction of PDK1 and PINK1 was determined using co-immunoprecipitation/western blot assays. Hypoxia induced mitophagy in the PMVECs and upregulated PINK1/Parkin expression, whereas knockdown of PINK1 expression under hypoxic conditions inhibited cell proliferation but induced endothelial cell apoptosis in vitro, decreased reactive oxygen species production and NLRP3 expression, and reduced the levels of inflammatory factors in PMVECs. However, hypoxia induced PDK1 expression, whereas knockdown of PDK1 downregulated PINK1 expression. Furthermore, treatment of the model rats with the PDK1 inhibitor dichloroacetate (DCA) was able to decrease PINK1 expression. In addition, the PDK1 and PINK1 proteins could interact with each other in the mitochondria of PMVECs to regulate the cell viability. CONCLUSIONS: This study revealed that PDK1 induced PMVEC proliferation but inhibited their apoptosis to participate in pulmonary vascular remodeling, ultimately leading to HPH through regulation of PINK1-mediated mitophagy signaling. Therefore, PINK1 is a novel therapeutic target for the control of HPH.


Subject(s)
Hypertension, Pulmonary , Mitophagy , Animals , Rats , Endothelial Cells/metabolism , Hypoxia , NLR Family, Pyrin Domain-Containing 3 Protein , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Ubiquitin-Protein Ligases/metabolism , Vascular Remodeling
17.
BMC Pulm Med ; 23(1): 116, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37055764

ABSTRACT

BACKGROUND: Hypoxic pulmonary hypertension (HPH) is a syndrome of abnormally elevated pulmonary artery pressure, and it is mostly caused by vasoconstriction and remodeling of the pulmonary artery induced by long-term chronic hypoxia. There is a high incidence of HPH, a short survival time of the patients, but currently no effective treatments. METHODS: In this study, HPH-related single cell sequencing (scRNA-seq) and bulk RNA sequencing (RNA-seq) data were downloaded from the public database of Gene Expression Omnibus (GEO) for bioinformatics analysis in order to find out genes with important regulatory roles in the development of HPH. 523 key genes were identified through cell subpopulation identification and trajectory analysis of the downloaded scRNA-seq data, and 41 key genes were identified through weighted correlation network analysis (WGCNA) of the bulk RNA-seq data. Three key genes: Hpgd, Npr3 and Fbln2 were identified by taking intersection of the key genes obtained above, and Hpgd was finally selected for subsequent verification. The human pulmonary artery endothelial cells (hPAECs) were treated with hypoxia for different periods of time, and it was found that the expression of Hpgd decreased in hypoxia-treated hPAECs in a time-dependent manner. In order to further confirm whether Hpgd affects the occurrence and development of HPH, Hpgd was overexpressed in hPAECs. RESULTS: Hpgd was confirmed to regulate the proliferation activity, apoptosis level, adhesiveness and angiogenesis ability of hypoxia-treated hPAECs through multiple experiments. CONCLUSIONS: Downregulation of Hpgd can improve the proliferation activity, reduce apoptosis, and enhance adhesion and angiogenesis in endothelial cells (ECs), thus promoting the occurrence and development of HPH.


Subject(s)
Hypertension, Pulmonary , Vascular Remodeling , Humans , Vascular Remodeling/genetics , Hypertension, Pulmonary/etiology , Endothelial Cells/metabolism , Hypoxia/complications , Pulmonary Artery , Cell Proliferation/genetics
18.
ACS Nano ; 17(9): 8204-8222, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37071566

ABSTRACT

Hypoxic pulmonary hypertension (HPH) is characterized by pulmonary vascular sustained constriction and progressive remodeling, which are initiated by hypoxia then with hypoxia-induced additive factors including pulmonary vascular endothelium injury, intrapulmonary angiotension system imbalance, and inflammation. Now HPH is still an intractable disease lacking effective treatments. Gene therapy has a massive potential for HPH but is hindered by a lack of efficient targeted delivery and hypoxia-responsive regulation systems for transgenes. Herein, we constructed the hypoxia-responsive plasmid of angiotensin-converting enzyme 2 (ACE2) with endothelial-specific promoter Tie2 and a hypoxia response element and next prepared its biomimetic nanoparticle delivery system, named ACE2-CS-PRT@PM, by encapsulating the plasmid of ACE2 with protamine and chondroitin sulfate as the core then coated it with a platelet membrane as a shell for targeting the injured pulmonary vascular endothelium. ACE2-CS-PRT@PM has a 194.3 nm diameter with a platelet membrane-coating core-shell structure and a negatively charged surface, and it exhibits higher delivery efficiency targeting to pulmonary vascular endothelium and hypoxia-responsive overexpression of ACE2 in endothelial cells in a hypoxia environment. In vitro, ACE2-CS-PRT@PM significantly inhibited the hypoxia-induced proliferation of pulmonary smooth muscle cells. In vivo, ACE2-CS-PRT@PM potently ameliorated the hemodynamic dysfunction and morphological abnormality and largely reversed HPH via inhibiting the hypoxic proliferation of pulmonary artery smooth muscle cells, reducing pulmonary vascular remodeling, restoring balance to the intrapulmonary angiotension system, and improving the inflammatory microenvironment without any detectable toxicity. Therefore, ACE2-CS-PRT@PM is promising for the targeted gene therapy of HPH.


Subject(s)
Hypertension, Pulmonary , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/therapy , Angiotensin-Converting Enzyme 2/genetics , Endothelial Cells , Biomimetics , Hypoxia , Cell Proliferation
19.
Acta Pharmaceutica Sinica ; (12): 928-937, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-978750

ABSTRACT

Dayuanyin (DYY) has been shown to reduce lung inflammation in both coronavirus disease 2019 (COVID-19) and lung injury. This experiment was designed to investigate the efficacy and mechanism of action of DYY against hypoxic pulmonary hypertension (HPH) and to evaluate the effect of DYY on the protection of lung function. Animal welfare and experimental procedures are approved and in accordance with the provision of the Animal Ethics Committee of the Institute of Materia Medica, Chinese Academy of Medical Science. Male C57/BL6J mice were randomly divided into 4 groups: control group, model group, DYY group (800 mg·kg-1), and positive control sildenafil group (100 mg·kg-1). The animals were given control solvents or drugs by gavage three days in advance. On day 4, the animals in the model group, DYY group and sildenafil group were kept in a hypoxic chamber containing 10% ± 0.5% oxygen, and the animals in the control group were kept in a normal environment, and the control solvent or drugs continued to be given continuously for 14 days. The right ventricular systolic pressure, right ventricular hypertrophy index, organ indices and other metrics were measured in the experimental endpoints. Meantime, the expression levels of the inflammatory factors in mice lung tissues were measured. The potential therapeutic targets of DYY on pulmonary hypertension were predicted using network pharmacology, the expression of nuclear factor kappa B (NF-κB) signaling pathway-related proteins were measured by Western blot assay. It was found that DYY significantly reduced the right ventricular systolic pressure, attenuated lung injury and decreased the expression of inflammatory factors in mice. It can also inhibit hypoxia-induced activation of NF-κB signaling pathway. DYY has a protective effect on lung function, as demonstrated by DYY has good efficacy in HPH, and preventive administration can slow down the disease progression, and its mechanism may be related to inhibit the activation of NF-κB and signal transducer and activator of transcription 3 (STAT3) by DYY.

20.
Circulation ; 146(24): 1855-1881, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36384284

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is associated with increased expression of VEGF-A (vascular endothelial growth factor A) and its receptor, VEGFR2 (vascular endothelial growth factor 2), but whether and how activation of VEGF-A signal participates in the pathogenesis of PH is unclear. METHODS: VEGF-A/VEGFR2 signal activation and VEGFR2 Y949-dependent vascular leak were investigated in lung samples from patients with PH and mice exposed to hypoxia. To study their mechanistic roles in hypoxic PH, we examined right ventricle systolic pressure, right ventricular hypertrophy, and pulmonary vasculopathy in mutant mice carrying knock-in of phenylalanine that replaced the tyrosine at residual 949 of VEGFR2 (Vefgr2Y949F) and mice with conditional endothelial deletion of Vegfr2 after chronic hypoxia exposure. RESULTS: We show that PH leads to excessive pulmonary vascular leak in both patients and hypoxic mice, and this is because of an overactivated VEGF-A/VEGFR2 Y949 signaling axis. In the context of hypoxic PH, activation of Yes1 and c-Src and subsequent VE-cadherin phosphorylation in endothelial cells are involved in VEGFR2 Y949-induced vascular permeability. Abolishing VEGFR2 Y949 signaling by Vefgr2Y949F point mutation was sufficient to prevent pulmonary vascular permeability and inhibit macrophage infiltration and Rac1 activation in smooth muscle cells under hypoxia exposure, thereby leading to alleviated PH manifestations, including muscularization of distal pulmonary arterioles, elevated right ventricle systolic pressure, and right ventricular hypertrophy. It is important that we found that VEGFR2 Y949 signaling in myeloid cells including macrophages was trivial and dispensable for hypoxia-induced vascular abnormalities and PH. In contrast with selective blockage of VEGFR2 Y949 signaling, disruption of the entire VEGFR2 signaling by conditional endothelial deletion of Vegfr2 promotes the development of PH. CONCLUSIONS: Our results support the notion that VEGF-A/VEGFR2 Y949-dependent vascular permeability is an important determinant in the pathogenesis of PH and might serve as an attractive therapeutic target pathway for this disease.


Subject(s)
Capillary Permeability , Hypertension, Pulmonary , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-2 , Animals , Mice , Capillary Permeability/physiology , Endothelial Cells/metabolism , Hypertension, Pulmonary/complications , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/etiology , Hypoxia/complications , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...