Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Zhonghua Xin Xue Guan Bing Za Zhi ; 48(4): 323-328, 2020 Apr 24.
Article in Chinese | MEDLINE | ID: mdl-32370484

ABSTRACT

Objective: To investigate whether inflammatory factor tumor necrosis factor-α (TNF-α) is involved in the electrical remodeling of cardiomyocytes by regulating ultra-rapid delayed rectifier K(+) current (I(kur)) and the role of Src kinase. Methods: H9c2 cells, embryonic cardiomyocytes of rat, were cultured in Dulbecco's modified Eagle's medium (DMEM) and atrium-derived HL-1 cells were cultured in Claycomb medium. Both H9c2 and HL-1 cells were cultured at 37 ℃ with 5% CO(2). Cells cultured in normal conditions without additional treatment served as control group. Experimental groups were treated with different concentration of TNF-α (25 or 50 or 100 ng/ml) for 24 hours. To study whether Src specific inhibitor PP1 could abrogate the effect of TNF-α, cells were pre-treated with 10 µmol/L PP1 for 1 hour, followed by TNF-α (100 ng/ml) for 24 hours. Western blot and the whole cell patch clamp technique were used to detect the protein expression of Kv1.5 and Src and I(kur) in each group. Results: (1) In H9c2 cells, high concentration of TNF-α treatment (100 ng/ml) significantly reduced the Kv1.5 protein expression compared with control group and TNF-α 25 ng/ml group (both P<0.05). Compared with control group, the expression of p-Src protein was higher in 25 ng/ml, 50 ng/ml, 100 ng/ml TNF-α group (all P<0.05), but there was no statistical difference in the expression of Src protein among groups (P>0.05). In addition, the current density of I(kur) was decreased in 50 ng/ml, 100 ng/ml TNF-α group (both P<0.05). Furthermore, the expression of Kv1.5 protein and the current density of I(kur) were increased in PP1+TNF-α group compared with TNF-α 100 ng/ml group (both P<0.05). There was no statistical difference in the expression of Kv1.5 protein and the current density of I(kur) between the control group and PP1+TNF-α group (both P>0.05). (2) In atrium-derived HL-1 cells, the expression of Kv1.5 protein was reduced in 100 ng/ml TNF-α group compared with control group and TNF-α 25 ng/ml group (both P<0.01). In addition, the expression of p-Src protein was increased in TNF-α 100 ng/ml group compared with control group (P<0.05), but there was no statistical difference in the protein expression of Src among groups (P>0.05). The expression of Kv1.5 protein was increased in PP1+TNF-α group compared with TNF-α 100 ng/ml group (P<0.05). Conclusion: TNF-α is involved in the pathogenesis of atrial fibrillation, probably via decreasing I(kur) current density in atrium-derived myocytes through the activation of Src kinase.


Subject(s)
Down-Regulation , Myocytes, Cardiac , Animals , Heart Atria , Rats , Tumor Necrosis Factor-alpha , src-Family Kinases
2.
Chinese Journal of Cardiology ; (12): 323-328, 2020.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-941112

ABSTRACT

Objective: To investigate whether inflammatory factor tumor necrosis factor-α (TNF-α) is involved in the electrical remodeling of cardiomyocytes by regulating ultra-rapid delayed rectifier K(+) current (I(kur)) and the role of Src kinase. Methods: H9c2 cells, embryonic cardiomyocytes of rat, were cultured in Dulbecco's modified Eagle's medium (DMEM) and atrium-derived HL-1 cells were cultured in Claycomb medium. Both H9c2 and HL-1 cells were cultured at 37 ℃ with 5% CO(2). Cells cultured in normal conditions without additional treatment served as control group. Experimental groups were treated with different concentration of TNF-α (25 or 50 or 100 ng/ml) for 24 hours. To study whether Src specific inhibitor PP1 could abrogate the effect of TNF-α, cells were pre-treated with 10 μmol/L PP1 for 1 hour, followed by TNF-α (100 ng/ml) for 24 hours. Western blot and the whole cell patch clamp technique were used to detect the protein expression of Kv1.5 and Src and I(kur) in each group. Results: (1) In H9c2 cells, high concentration of TNF-α treatment (100 ng/ml) significantly reduced the Kv1.5 protein expression compared with control group and TNF-α 25 ng/ml group (both P<0.05). Compared with control group, the expression of p-Src protein was higher in 25 ng/ml, 50 ng/ml, 100 ng/ml TNF-α group (all P<0.05), but there was no statistical difference in the expression of Src protein among groups (P>0.05). In addition, the current density of I(kur) was decreased in 50 ng/ml, 100 ng/ml TNF-α group (both P<0.05). Furthermore, the expression of Kv1.5 protein and the current density of I(kur) were increased in PP1+TNF-α group compared with TNF-α 100 ng/ml group (both P<0.05). There was no statistical difference in the expression of Kv1.5 protein and the current density of I(kur) between the control group and PP1+TNF-α group (both P>0.05). (2) In atrium-derived HL-1 cells, the expression of Kv1.5 protein was reduced in 100 ng/ml TNF-α group compared with control group and TNF-α 25 ng/ml group (both P<0.01). In addition, the expression of p-Src protein was increased in TNF-α 100 ng/ml group compared with control group (P<0.05), but there was no statistical difference in the protein expression of Src among groups (P>0.05). The expression of Kv1.5 protein was increased in PP1+TNF-α group compared with TNF-α 100 ng/ml group (P<0.05). Conclusion: TNF-α is involved in the pathogenesis of atrial fibrillation, probably via decreasing I(kur) current density in atrium-derived myocytes through the activation of Src kinase.


Subject(s)
Animals , Rats , Down-Regulation , Heart Atria , Myocytes, Cardiac , Tumor Necrosis Factor-alpha , src-Family Kinases
3.
Eur J Pharmacol ; 844: 195-203, 2019 Feb 05.
Article in English | MEDLINE | ID: mdl-30552904

ABSTRACT

The human Kv1.5 channel (hKv1.5) produces the ultrarapid delayed rectifier potassium current (IKur), which is important for determining the repolarization of action potential in the cardiac atrium. However, the expression of IKur is reduced in patients with chronic atrial fibrillation. 4-Aminopyridine (4-AP) can specifically suppress IKur, suggesting that it modifies hKv1.5 as a chaperone molecule. Herein, the effects of long-term 4-AP treatment on hKv1.5 protein expression and function were investigated in HEK cells. 4-AP treatment (24 h) improved hKv1.5 protein levels, promoted hKv1.5 glycosylation, and facilitated the hKv1.5 current in a time-dependent manner. Long-term 4-AP treatment also markedly enhanced hKv1.5 localization in the cell membrane, endoplasmic reticulum, and Golgi. Importantly, the Ile508 residue located in the hKv1.5 channel pore was found to be important for 4-AP inhibitory activity. These results provide insight into developing hKv1.5 channel blocker that can functionally rescue IKur in patients with chronic atrial fibrillation.


Subject(s)
4-Aminopyridine/pharmacology , Kv1.5 Potassium Channel/physiology , Potassium Channel Blockers/pharmacology , Glycosylation , HEK293 Cells , Humans
4.
J Interv Card Electrophysiol ; 51(3): 191-197, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29460236

ABSTRACT

PURPOSE: The ultrarapid delayed rectifier current (IKur) carried by Kv1.5 channels, which are solely expressed in the atrium, is a potential target for safer treatment of paroxysmal atrial fibrillation (PAF). XEN-D0103 is a nanomolar ion channel blocker that selectively inhibits potassium ion flux through the Kv1.5 ion channel. The efficacy of XEN-D0103 in reducing AF burden was assessed in patients with DDDRp permanent pacemakers (PPMs) and PAF. METHODS: A double-blind, placebo-controlled, cross-over study was performed in patients with PAF and DDDRp PPMs with advanced atrial and ventricular Holters allowing beat-to-beat arrhythmia follow-up. All anti-arrhythmic drugs were withdrawn before randomised treatment. After baseline assessment, patients were randomly assigned to two treatment periods of placebo then XEN-D0103 50 mg bd, or XEN-D0103 50 mg bd then placebo. RESULTS: Fifty-four patients were screened and 21 patients were eligible and included in the randomised trial. All 21 patients completed both treatment periods. The primary endpoint was change in AF burden assessed by PPM. There was no significant difference in AF burden on treatment with XEN-D0103 versus placebo. There was a reduction in the mean frequency of AF episodes (relative reduction 0.72, 95% CI 0.66 to 0.77; p < 0.0001). XEN-D0103 was safe and well tolerated, and there were no serious adverse events. XEN-D0103 did not have any apparent effect on heart rate compared to placebo. CONCLUSIONS: XEN-D0103 did not reduce AF burden in patients with PAF and dual chamber pacemakers providing beat-to-beat monitoring. XEN-D0103 was well tolerated and did not have any apparent effect on heart rate. Although single-ion channel blockade with XEN-D0103 did not affect AF in this study, there might be a potential for this agent to be used in combination with other atrially specific drugs in the treatment of AF. EUDRACT TRIAL REGISTRATION NUMBER: 2013-004456-38.


Subject(s)
Atrial Fibrillation/drug therapy , Delayed Rectifier Potassium Channels/antagonists & inhibitors , Monitoring, Physiologic/methods , Pacemaker, Artificial/statistics & numerical data , Potassium Channel Blockers/therapeutic use , Aged , Anti-Arrhythmia Agents/administration & dosage , Anti-Arrhythmia Agents/pharmacology , Atrial Fibrillation/diagnosis , Atrial Fibrillation/therapy , Combined Modality Therapy , Cross-Over Studies , Double-Blind Method , Electrocardiography/methods , Female , Humans , Male , Middle Aged , Patient Safety/statistics & numerical data , Patient Selection , Prognosis , Prospective Studies , Treatment Outcome
5.
J Hum Evol ; 107: 86-93, 2017 06.
Article in English | MEDLINE | ID: mdl-28526291

ABSTRACT

The temporal bone discovered in the 1960s from the Darra-i-Kur cave in Afghanistan is often cited as one of the very few Pleistocene human fossils from Central Asia. Here we report the first direct radiocarbon date for the specimen and the genetic analyses of DNA extracted and sequenced from two areas of the bone. The new radiocarbon determination places the find to ∼4500 cal BP (∼2500 BCE) contradicting an assumed Palaeolithic age of ∼30,000 years, as originally suggested. The DNA retrieved from the specimen originates from a male individual who carried mitochondrial DNA of the modern human type. The petrous part yielded more endogenous ancient DNA molecules than the squamous part of the same bone. Molecular dating of the Darra-i-Kur mitochondrial DNA sequence corroborates the radiocarbon date and suggests that the specimen is younger than previously thought. Taken together, the results consolidate the fact that the human bone is not associated with the Pleistocene-age deposits of Darra-i-Kur; instead it is intrusive, possibly re-deposited from upper levels dating to much later periods (Neolithic). Despite its Holocene age, the Darra-i-Kur specimen is, so far, the first and only ancient human from Afghanistan whose DNA has been sequenced.


Subject(s)
Fossils , Radiometric Dating/methods , Temporal Bone , Afghanistan , Humans , Male
6.
Card Electrophysiol Clin ; 8(2): 307-22, 2016 06.
Article in English | MEDLINE | ID: mdl-27261823

ABSTRACT

Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this article, we will review their molecular identities and biophysical properties. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia.


Subject(s)
Arrhythmias, Cardiac , Delayed Rectifier Potassium Channels , Long QT Syndrome , Delayed Rectifier Potassium Channels/antagonists & inhibitors , Delayed Rectifier Potassium Channels/genetics , Electrocardiography , Humans , Mutation , Potassium Channel Blockers
7.
Card Electrophysiol Clin ; 8(2): 411-21, 2016 06.
Article in English | MEDLINE | ID: mdl-27261831

ABSTRACT

Atrial fibrillation (AF) is associated with increased morbidity and mortality. Atrial-selective potassium (K(+)) channel blockers may represent a novel therapeutic target. The best validated atrial-specific ion currents are the acetylcholine-activated inward-rectifier K(+) current IK,ACh and ultrarapidly activating delayed-rectifier K(+) current IKur. Two-pore domain and small-conductance Ca(2+)-activated K(+) channels and Kv1.1 channels may also contribute to the atrial repolarization. We review the molecular and electrophysiologic characteristics of atrial-selective K(+) channels and their potential pathophysiologic role in AF. We summarize currently available K(+) channel blockers focusing on the most important compounds.


Subject(s)
Heart Atria , Potassium Channel Blockers , Potassium Channels , Animals , Atrial Fibrillation , Heart Atria/chemistry , Heart Atria/cytology , Heart Atria/drug effects , Heart Atria/metabolism , Humans , Mice , Models, Molecular , Myocytes, Cardiac/chemistry , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism
8.
Heart Rhythm ; 13(2): 555-64, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26455450

ABSTRACT

BACKGROUND: Selective inhibitors of Kv1.5 channels are being developed for the treatment of atrial fibrillation (AF). OBJECTIVES: The purpose of this study was to investigate the effects of the highly selective Kv1.5 inhibitor XEN-D0103 on human atrial action potentials (APs) at high excitation rates and to assess safety. METHODS: Intracellular APs (stimulation rates 1-5 Hz) were measured in right atrial trabeculae from patients in sinus rhythm (SR), chronic AF (cAF; AF of >6 months duration), and paroxysmal AF (pAF). The safety and tolerability of XEN-D0103 were tested in a double-blind, randomized, placebo-controlled phase 1 study. RESULTS: Depending on its concentration, XEN-D0103 elevated the plateau potential. At 1 Hz, XEN-D0103 (3 µM) shortened action potential duration at 90% repolarization (APD90) and effective refractory period (ERP) in SR preparations, but prolonged these parameters in cAF preparations. In SR and pAF preparations, the shortening effects on APD90 and ERP turned into prolongation at high rates. In cAF trabeculae, XEN-D0103 prolonged APD90 and ERP at 2 and 3 Hz. At high rates, more SR and pAF preparations failed to capture excitation in the presence of the drug than in its absence. XEN-D0103 (10 µM) did not significantly affect human ventricular APs. Even with plasma concentrations reaching 7000 ng/mL, XEN-D0103 did not increase ∆∆QTcF (QT interval corrected by the Fridericia formula) in the analysis of electrocardiograms of healthy volunteers, and no subjects receiving an active treatment had a QT or QTcF interval >450 ms, or increase in QTcF from baseline >30 ms. CONCLUSION: APD prolongation and suppression of APs by XEN-D0103 at high stimulation rates in SR and pAF tissue, but not cAF, could be of therapeutic benefit for reducing AF burden. This concept needs to be confirmed in clinical trials.


Subject(s)
Action Potentials/drug effects , Anti-Arrhythmia Agents , Atrial Fibrillation , Delayed Rectifier Potassium Channels/antagonists & inhibitors , Refractory Period, Electrophysiological/drug effects , Adult , Anti-Arrhythmia Agents/administration & dosage , Anti-Arrhythmia Agents/adverse effects , Anti-Arrhythmia Agents/pharmacokinetics , Atrial Fibrillation/diagnosis , Atrial Fibrillation/drug therapy , Atrial Fibrillation/physiopathology , Electrocardiography/methods , Electrophysiologic Techniques, Cardiac/methods , Healthy Volunteers , Heart Atria/drug effects , Heart Atria/physiopathology , Humans , Male , Treatment Outcome
9.
Bioorg Med Chem Lett ; 25(21): 4983-4986, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-25801931

ABSTRACT

Phenethyl aminoheterocycles like compound 1 were known to be potent I(Kur) blockers although they lacked potency in vivo. Modification of the heterocycle led to the design and synthesis of pseudosaccharin amines. Compounds such as 14, 17d and 21c were found to be potent K(V)1.5 blockers and selective over other cardiac ion channels. These compounds had potent pharmacodynamic activity, however, they also showed off-target activities such as hemodynamic effects.


Subject(s)
Amines/pharmacology , Kv1.5 Potassium Channel/antagonists & inhibitors , Potassium Channel Blockers/pharmacology , Amines/chemical synthesis , Amines/chemistry , Animals , Blood Pressure/drug effects , Cyclohexanes/chemistry , Cyclohexanes/pharmacology , Dose-Response Relationship, Drug , Humans , Kv1.5 Potassium Channel/metabolism , Mice , Molecular Structure , Potassium Channel Blockers/chemical synthesis , Potassium Channel Blockers/chemistry , Rabbits , Rats , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Structure-Activity Relationship
10.
Bioorg Med Chem Lett ; 24(14): 3018-22, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24881565

ABSTRACT

Phenethylaminoheterocycles have been prepared and assayed for inhibition of the Kv1.5 potassium ion channel as a potential approach to the treatment of atrial fibrillation. A diverse set of heterocycles were identified as potent Kv1.5 inhibitors and were advanced to pharmacodynamic evaluation based on selectivity and pharmacokinetic profile. Heterocycle optimization and template modification lead to the identification of compound 24 which demonstrated increased atrial effective refractory period in the rabbit pharmacodynamic model with mild effects on blood pressure and heart rate.


Subject(s)
Carbamates/pharmacology , Drug Design , Indazoles/pharmacology , Kv1.5 Potassium Channel/antagonists & inhibitors , Potassium Channel Blockers/pharmacology , Animals , Carbamates/chemical synthesis , Carbamates/chemistry , Dose-Response Relationship, Drug , Heart Atria/drug effects , Heart Rate/drug effects , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , Models, Molecular , Molecular Structure , Potassium Channel Blockers/chemical synthesis , Potassium Channel Blockers/chemistry , Rabbits , Rats , Structure-Activity Relationship
11.
J Mol Cell Cardiol ; 67: 12-25, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24370890

ABSTRACT

The ability of human pluripotent stem cells (hPSCs) to differentiate into any cell type of the three germ layers makes them a very promising cell source for multiple purposes, including regenerative medicine, drug discovery, and as a model to study disease mechanisms and progression. One of the first specialized cell types to be generated from hPSC was cardiomyocytes (CM), and differentiation protocols have evolved over the years and now allow for robust and large-scale production of hPSC-CM. Still, scientists are struggling to achieve the same, mainly ventricular, phenotype of the hPSC-CM in vitro as their adult counterpart in vivo. In vitro generated cardiomyocytes are generally described as fetal-like rather than adult. In this review, we compare the in vivo development of cardiomyocytes to the in vitro differentiation of hPSC into CM with focus on electrophysiology, structure and contractility. Furthermore, known epigenetic changes underlying the differences between adult human CM and CM differentiated from pluripotent stem cells are described. This should provide the reader with an extensive overview of the current status of human stem cell-derived cardiomyocyte phenotype and function. Additionally, the reader will gain insight into the underlying signaling pathways and mechanisms responsible for cardiomyocyte development.


Subject(s)
Cell Differentiation , Electrophysiological Phenomena , Myocytes, Cardiac/cytology , Culture Techniques , Epigenomics , Heart/embryology , Heart/growth & development , Humans , Pluripotent Stem Cells/cytology , Signal Transduction
12.
J Mol Cell Cardiol ; 64: 90-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24051368

ABSTRACT

Protein phosphorylation is a major control mechanism of a wide range of physiological processes and plays an important role in cardiac pathophysiology. Serine/threonine protein phosphatases control the dephosphorylation of a variety of cardiac proteins, thereby fine-tuning cardiac electrophysiology and function. Specificity of protein phosphatases type-1 and type-2A is achieved by multiprotein complexes that target the catalytic subunits to specific subcellular domains. Here, we describe the composition, regulation and target substrates of serine/threonine phosphatases in the heart. In addition, we provide an overview of pharmacological tools and genetic models to study the role of cardiac phosphatases. Finally, we review the role of protein phosphatases in the diseased heart, particularly in ventricular arrhythmias and atrial fibrillation and discuss their role as potential therapeutic targets.


Subject(s)
Heart Diseases/metabolism , Heart Diseases/physiopathology , Heart/physiology , Phosphoprotein Phosphatases/metabolism , Animals , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Enzyme Activation , Gene Expression Regulation , Heart Diseases/drug therapy , Heart Diseases/genetics , Humans , Myocardial Contraction/physiology , Phosphoprotein Phosphatases/antagonists & inhibitors , Phosphoprotein Phosphatases/genetics , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...