Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 791
Filter
1.
Sci Rep ; 14(1): 15309, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961197

ABSTRACT

Axillary bud is an important aspect of plant morphology, contributing to the final tobacco yield. However, the mechanisms of axillary bud development in tobacco remain largely unknown. To investigate this aspect of tobacco biology, the metabolome and proteome of the axillary buds before and after topping were compared. A total of 569 metabolites were differentially abundant before and 1, 3, and 5 days after topping. KEGG analyses further revealed that the axillary bud was characterized by a striking enrichment of metabolites involved in flavonoid metabolism, suggesting a strong flavonoid biosynthesis activity in the tobacco axillary bud after topping. Additionally, 9035 differentially expressed proteins (DEPs) were identified before and 1, 3, and 5 days after topping. Subsequent GO and KEGG analyses revealed that the DEPs in the axillary bud were enriched in oxidative stress, hormone signal transduction, MAPK signaling pathway, and starch and sucrose metabolism. The integrated proteome and metabolome analysis revealed that the indole-3-acetic acid (IAA) alteration in buds control dormancy release and sustained growth of axillary bud by regulating proteins involved in carbohydrate metabolism, amino acid metabolism, and lipid metabolism. Notably, the proteins related to reactive oxygen species (ROS) scavenging and flavonoid biosynthesis were strongly negatively correlated with IAA content. These findings shed light on a critical role of IAA alteration in regulating axillary bud outgrowth, and implied a potential crosstalk among IAA alteration, ROS homeostasis, and flavonoid biosynthesis in tobacco axillary bud under topping stress, which could improve our understanding of the IAA alteration in axillary bud as an important regulator of axillary bud development.


Subject(s)
Indoleacetic Acids , Metabolome , Nicotiana , Plant Proteins , Proteome , Indoleacetic Acids/metabolism , Nicotiana/metabolism , Nicotiana/growth & development , Proteome/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Flavonoids/metabolism , Flowers/metabolism , Flowers/growth & development , Plant Growth Regulators/metabolism
2.
Front Plant Sci ; 15: 1378079, 2024.
Article in English | MEDLINE | ID: mdl-38947947

ABSTRACT

Introduction: The Salkowski reagent method is a colorimetric technique used to determine auxin production, specifically as indole-3-acetic acid (IAA). It was developed to determine indoles rapidly; however, it does not follow Beer's law at high concentrations of IAA. Thus, there could be an overestimation of IAA with the Salkowski technique due to the detection of other indole compounds. Methods: This study aims to compare the Salkowski colorimetric method versus a chromatographic method to evidence the imprecision or overestimation obtained when auxins, such as indole-acetic acid (IAA), are determined as traits from promoting growth plant bacteria (PGPB), using ten different strains from three different isolation sources. The analysis used the same bacterial culture to compare the Salkowski colorimetric and chromatographic results. Each bacterium was cultivated in the modified TSA without or with tryptophan for 96 h. The same supernatant culture was used in both methods: Salkowski reagent and ultra-performance liquid chromatography coupled with a Mass Spectrometer (LC-MS/MS). Results: The first method indicated 5.4 to 27.4 mg L-1 without tryptophan in ten evaluated strains. When tryptophan was used as an inductor of auxin production, an increase was observed with an interval from 4.4 to 160 mg L-1. The principal auxin produced by all strains was IAA from that evaluated by the LC-MS/MS method, with significantly higher concentration with tryptophan addition than without. Strains belonging to the Kocuria genus were highlighted by high IAA production. The indole-3-propionic acid (IPA) was detected in all the bacterial cultures without tryptophan and only in K. turfanensis As05 with tryptophan, while it was not detected in other strains. In addition, indole-3-butyric acid (IBA) was detected at trace levels (13-16 µg L-1). Conclusions: The Salkowski reagent overestimates the IAA concentration with an interval of 41-1042 folds without tryptophan and 7-16330 folds with tryptophan as inductor. In future works, it will be necessary to determine IAA or other auxins using more suitable sensitive techniques and methodologies.

3.
Methods Mol Biol ; 2839: 249-259, 2024.
Article in English | MEDLINE | ID: mdl-39008259

ABSTRACT

Thiol-disulfide interconversions are pivotal in the intricate chemistry of biological systems. They play a vital role in governing cellular redox potential and shielding against oxidative harm. These interconversions can also act as molecular switches within an expanding array of redox-regulated proteins, facilitating dynamic and responsive processes. Furthermore, metal-binding proteins often use thiols for coordination. Reverse thiol trapping is a valuable analytical tool to study the redox state of cysteines in biological systems. By selectively capturing and stabilizing free thiol species with an alkylating agent, reverse thiol trapping allows for their subsequent identification and quantification. Various methods can be employed to analyze the trapped thiol adducts, including electrophoresis-based methods, mass spectrometry, nuclear magnetic resonance spectroscopy, and chromatographic techniques. In this chapter, we will focus on describing a simple and sensitive method to sequentially block thiols in their cellular state with a cell-permeant agent (iodoacetamide), and following reduction and denaturation of the samples, trap the native disulfides with a second blocker that shifts the apparent molecular weight of the protein. The oxidation status of proteins for which suitable antibodies are available can then be analyzed by immunoblotting. We present examples of mitochondrial proteins that use cysteine thiols to coordinate metal factors such as iron-sulfur clusters, zinc, and copper.


Subject(s)
Mitochondrial Proteins , Oxidation-Reduction , Sulfhydryl Compounds , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/chemistry , Humans , Iodoacetamide/chemistry , Disulfides/chemistry , Disulfides/metabolism , Metals/chemistry , Metals/metabolism , Cysteine/chemistry , Cysteine/metabolism
4.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000581

ABSTRACT

The auxin/indoleacetic acid (Aux/IAA) family plays a central role in regulating gene expression during auxin signal transduction. Nonetheless, there is limited knowledge regarding this gene family in sugarcane. In this study, 92 members of the IAA family were identified in Saccharum spontaneum, distributed on 32 chromosomes, and classified into three clusters based on phylogeny and motif compositions. Segmental duplication and recombination events contributed largely to the expansion of this superfamily. Additionally, cis-acting elements in the promoters of SsIAAs involved in plant hormone regulation and stress responsiveness were predicted. Transcriptomics data revealed that most SsIAA expressions were significantly higher in stems and basal parts of leaves, and at nighttime, suggesting that these genes might be involved in sugar transport. QRT-PCR assays confirmed that cold and salt stress significantly induced four and five SsIAAs, respectively. GFP-subcellular localization showed that SsIAA23 and SsIAA12a were localized in the nucleus, consistent with the results of bioinformatics analysis. In conclusion, to a certain extent, the functional redundancy of family members caused by the expansion of the sugarcane IAA gene family is related to stress resistance and regeneration of sugarcane as a perennial crop. This study reveals the gene evolution and function of the SsIAA gene family in sugarcane, laying the foundation for further research on its mode of action.


Subject(s)
Gene Expression Regulation, Plant , Indoleacetic Acids , Multigene Family , Phylogeny , Plant Proteins , Saccharum , Saccharum/genetics , Indoleacetic Acids/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Genome, Plant , Promoter Regions, Genetic , Chromosomes, Plant/genetics , Gene Expression Profiling , Plant Growth Regulators/metabolism
5.
Plant Cell Environ ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012193

ABSTRACT

AUXIN/INDOLE-3-ACETIC ACIDs are transcriptional repressors for auxin signalling. Aux/IAAs of Arabidopsis thaliana display some functional redundancy. The IAA3/SHY2 clade (IAA1, IAA2, IAA3 and IAA4) show strong sequence similarity, but no higher-order mutants have been reported. Here, through CRISPR/Cas9 genome editing, we generated loss-of-function iaa1/2/3/4 mutants. The quadruple mutants only exhibited a weak phenotype. Thus, we additionally knocked out IAA7/AXR2 and IAA16, which are coexpressed with IAA1/2/3/4. Remarkably, under white light control conditions, the iaa1/2/3/4/7/16 mutants exhibited a shade avoidance-like phenotype with over-elongated hypocotyls and petioles and hyponastic leaves. The sextuple mutants were highly sensitive to low light intensity, and the hypocotyl cells of the mutants were excessively elongated. Transcriptome profiling and qRT-PCR analyses revealed that the sextuple mutation upregulated IAA19/MSG2 and IAA29, two shared shade/auxin signalling targets. Besides, genes encoding cell wall-remodelling proteins and shade-responsive transcription regulators were upregulated. Using dual-luciferase reporter assays, we verified that IAA2/IAA7 targeted the promoters of cell wall-remodelling genes to inhibit their transcription. Our work indicates that the IAA1/2/3/4/7/16 gene set is required for the optimal integration of auxin and shade signalling. The mutants generated here should be valuable for exploring the complex interactions among signal sensors, transcription activators and transcription repressors during hormone/environmental responses.

6.
Front Plant Sci ; 15: 1422504, 2024.
Article in English | MEDLINE | ID: mdl-39015292

ABSTRACT

Abiotic stresses, especially drought stress and salt stress in crop plants are accelerating due to climate change. The combined impact of drought and salt is anticipated to lead to the loss of up to 50% of arable land globally, resulting in diminished growth and substantial yield losses threatening food security. Addressing the challenges, agriculture through sustainable practices emerges as a potential solution to achieve Zero Hunger, one of the sustainable development goals set by the IUCN. Plants deploy a myriad of mechanisms to effectively address drought and salt stress with phytohormones playing pivotal roles as crucial signaling molecules for stress tolerance. The phytohormone auxin, particularly indole acetic acid (IAA) emerges as a paramount regulator integral to numerous aspects of plant growth and development. During both drought and salt stress conditions, auxin plays crucial roles for tolerance, but stress-induced processes lead to decreased levels of endogenous free auxin in the plant, leading to an urgent need for auxin production. With an aim to augment this auxin deficiency, several researchers have extensively investigated auxin production, particularly IAA by plant-associated microorganisms, including endophytic bacteria. These endophytic bacteria have been introduced into various crop plants subjected to drought or salt stress and potential isolates promoting plant growth have been identified. However, post-identification, essential studies on translational research to advance these potential isolates from the laboratory to the field are lacking. This review aims to offer an overview of stress tolerant auxin-producing endophytic bacterial isolates while identifying research gaps that need to be fulfilled to utilize this knowledge for the formulation of crop-specific and stress-specific endophyte bioinoculants for the plant to cope with auxin imbalance occurring during these stress conditions.

7.
J Exp Bot ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824403

ABSTRACT

Rapeseed (Brassica napus) is an important oilseed crop worldwide. Plant vascular tissues are responsible for material transport and provide mechanical support. The lateral roots (LRs) absorb sufficient water and nutrients. The genetic basis of vascular tissues and LRs development in rapeseed remains unknown. This study characterized an EMS-mutagenized rapeseed mutant, T16, which showed dwarf stature, reduced LRs, and leaf wilting. Scanning electron microscopy observations showed that the internode-cell shortened. Observations of the tissue sections revealed defects in the development of vascular bundles in the stems and petioles. Genetic analysis revealed that the phenotypes of T16 were controlled by a single semi-dominant nuclear gene. Map-based cloning and genetic complementarity confirmed that BnaA03.IAA13 is the functional gene, a G-to-A mutation in second exon changed the glycine at the 79th position to glutamic acid, disrupting the conserved degron motif VGWPP. Transcriptome analysis in roots and stems showed that auxin and cytokinin signaling pathways were disordered in T16. Evolutionary analysis showed that AUXIN/INDOLE-3-ACETIC ACID was conserved during plant evolution. The heterozygote of T16 significantly reduced the plant height while maintaining other agronomic traits. Our findings provide novel insights into the regulatory mechanisms of vascular tissues and LRs development, and provide a new germplasm resource for rapeseed breeding.

8.
Plant Cell Environ ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847345

ABSTRACT

Shoot branching from axillary bud (AB) directly determines plant architecture. However, the mechanism through which AB remains dormant or emerges to form branches as plants grow remains largely unknown. Here, the auxin-strigolactone (IAA-SL) pathway was first shown to regulate shoot branching in poplar, and we found that PagKNAT2/6b could modulate this pathway. PagKNAT2/6b was expressed mainly in the shoot apical meristem and AB and was induced by shoot apex damage. PagKNAT2/6b overexpressing poplar plants (PagKNAT2/6b OE) exhibited multiple branches that mimicked the branching phenotype of nontransgenic plants after decapitation treatment, while compared with nontransgenic controls, PagKNAT2/6b antisense transgenic poplar and Pagknat2/6b mutant lines exhibited a significantly decreased number of branches after shoot apex damage treatment. In addition, we found that PagKNAT2/6b directly inhibits the expression of the key IAA synthesis gene PagYUC6a, which is specifically expressed in the shoot apex. Moreover, overexpression of PagYUC6a in the PagKNAT2/6b OE background reduced the number of branches after shoot apex damage treatment. Overall, we conclude that PagKNAT2/6b responds to shoot apical injury and regulates shoot branching through the IAA-SL pathway. These findings may provide a theoretical basis and candidate genes for genetic engineering to create new forest tree species with different crown types.

9.
Methods Mol Biol ; 2832: 257-279, 2024.
Article in English | MEDLINE | ID: mdl-38869802

ABSTRACT

Various bacterial species are associated with plant roots. However, symbiotic and free-living plant growth-promoting bacteria (PGPB) can only help plants to grow and develop under normal and stressful conditions. Several biochemical and in vitro assays were previously designed to differentiate between the PGPB and other plant-associated bacterial strains. This chapter describes and summarizes some of these assays and proposes a strategy to screen for PGPB. To determine the involvement of the PGPB in abiotic stress tolerance, assays for the ability to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, ammonium, gibberellic acid (GA), indole acetic acid (IAA), and microbial volatile organic compounds (mVOCs) are described in this chapter. Additionally, assays to show the capacity to solubilize micronutrients such as potassium, phosphorus, and zinc by bacteria were also summarized in this chapter. To determine the contribution of the PGPB in biotic stress tolerance in plants, Fe-siderophore, hydrogen cyanide, and antibiotic and antifungal metabolites production assays were described. Moreover, assays to investigate the growth-promotion activities of a bacterium strain on plants, using the gnotobiotic root elongation, in vitro, and pots assays, were explained. Finally, an assay for the localization of endophytic bacterium in plant tissues was also presented in this chapter. Although the assays described in this chapter can give evidence of the nature of the mechanism behind the PGPB actions, other unknown growth-promoting means are yet to decipher, and until then, new methodologies will be developed.


Subject(s)
Bacteria , Plant Development , Plant Growth Regulators , Plant Roots , Stress, Physiological , Bacteria/growth & development , Bacteria/metabolism , Plant Roots/microbiology , Plant Roots/growth & development , Plant Growth Regulators/metabolism , Indoleacetic Acids/metabolism , Symbiosis , Plants/microbiology , Plants/metabolism , Soil Microbiology , Gibberellins/metabolism , Volatile Organic Compounds/metabolism
10.
Adv Exp Med Biol ; 1441: 761-775, 2024.
Article in English | MEDLINE | ID: mdl-38884747

ABSTRACT

Lesions of the semilunar valve and the aortic arch can occur either in isolation or as part of well-described clinical syndromes. The polygenic cause of calcific aortic valve disease will be discussed including the key role of NOTCH1 mutations. In addition, the complex trait of bicuspid aortic valve disease will be outlined, both in sporadic/familial cases and in the context of associated syndromes, such as Alagille, Williams, and Kabuki syndromes. Aortic arch abnormalities particularly coarctation of the aorta and interrupted aortic arch, including their association with syndromes such as Turner and 22q11 deletion, respectively, are also discussed. Finally, the genetic basis of congenital pulmonary valve stenosis is summarized, with particular note to Ras-/mitogen-activated protein kinase (Ras/MAPK) pathway syndromes and other less common associations, such as Holt-Oram syndrome.


Subject(s)
Aorta, Thoracic , Aortic Valve , Humans , Aorta, Thoracic/abnormalities , Aorta, Thoracic/pathology , Aortic Valve/abnormalities , Aortic Valve/pathology , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Heart Defects, Congenital/genetics , Heart Defects, Congenital/pathology , Bicuspid Aortic Valve Disease/genetics , Pulmonary Valve Stenosis/genetics , Mutation , Receptor, Notch1/genetics , Aortic Valve Disease/genetics , Heart Valve Diseases/genetics , Heart Valve Diseases/pathology , Calcinosis/genetics , Calcinosis/pathology , Hematologic Diseases/genetics , Hematologic Diseases/pathology , Vestibular Diseases/genetics , Vestibular Diseases/pathology
11.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892282

ABSTRACT

The rhizobacterial strain BJ3 showed 16S rDNA sequence similarity to species within the Burkholderia genus. Its complete genome sequence revealed a 97% match with Burkholderia contaminans and uncovered gene clusters essential for plant-growth-promoting traits (PGPTs). These clusters include genes responsible for producing indole acetic acid (IAA), osmolytes, non-ribosomal peptides (NRPS), volatile organic compounds (VOCs), siderophores, lipopolysaccharides, hydrolytic enzymes, and spermidine. Additionally, the genome contains genes for nitrogen fixation and phosphate solubilization, as well as a gene encoding 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The treatment with BJ3 enhanced root architecture, boosted vegetative growth, and accelerated early flowering in Arabidopsis. Treated seedlings also showed increased lignin production and antioxidant capabilities, as well as notably increased tolerance to water deficit and high salinity. An RNA-seq transcriptome analysis indicated that BJ3 treatment significantly activated genes related to immunity induction, hormone signaling, and vegetative growth. It specifically activated genes involved in the production of auxin, ethylene, and salicylic acid (SA), as well as genes involved in the synthesis of defense compounds like glucosinolates, camalexin, and terpenoids. The expression of AP2/ERF transcription factors was markedly increased. These findings highlight BJ3's potential to produce various bioactive metabolites and its ability to activate auxin, ethylene, and SA signaling in Arabidopsis, positioning it as a new Burkholderia strain that could significantly improve plant growth, stress resilience, and immune function.


Subject(s)
Arabidopsis , Burkholderia , Stress, Physiological , Burkholderia/genetics , Burkholderia/metabolism , Burkholderia/growth & development , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/microbiology , Stress, Physiological/genetics , Plant Development/genetics , Indoleacetic Acids/metabolism , Gene Expression Regulation, Plant , Genomics/methods , Plant Growth Regulators/metabolism , Plant Roots/microbiology , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Ethylenes/metabolism
12.
BMC Genomics ; 25(1): 567, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840073

ABSTRACT

BACKGROUND: The auxin/indole-3-acetic acid (Aux/IAA) gene family is a crucial element of the auxin signaling pathway, significantly influencing plant growth and development. Hence, we conducted a comprehensive investigation of Aux/IAAs gene family using the Sp75 and Monoe-Viroflay genomes in spinach. RESULTS: A total of 24 definitive Aux/IAA genes were identified, exhibiting diverse attributes in terms of amino acid length, molecular weight, and isoelectric points. This diversity underscores potential specific roles within the family, such as growth regulation and stress response. Structural analysis revealed significant variations in gene length and molecular weight. These variations indicate distinct roles within the Aux/IAA gene family. Chromosomal distribution analysis exhibited a dispersed pattern, with chromosomes 4 and 1 hosting the highest and lowest numbers of Aux/IAA genes, respectively. Phylogenetic analysis grouped the identified genes into distinct clades, revealing potential evolutionary relationships. Notably, the phylogenetic tree highlighted specific gene clusters suggesting shared genetic ancestry and potential functional synergies within spinach. Expression analysis under NAA treatment unveiled gene-specific and time-dependent responses, with certain genes exhibiting distinct temporal expression patterns. Specifically, SpoIAA5 displayed a substantial increase at 2 h post-NAA treatment, while SpoIAA7 and SpoIAA9 demonstrated continuous rises, peaking at the 4-hour time point. CONCLUSIONS: These observations indicate a complex interplay of gene-specific and temporal regulation in response to auxin. Moreover, the comparison with other plant species emphasized both shared characteristics and unique features in Aux/IAA gene numbers, providing insights into the evolutionary dynamics of this gene family. This comprehensive characterization of Aux/IAA genes in spinach not only establishes the foundation for understanding their specific functions in spinach development but also provides a valuable resource for experimental validation and further exploration of their roles in the intricate network of auxin signaling pathways.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Indoleacetic Acids , Multigene Family , Phylogeny , Spinacia oleracea , Spinacia oleracea/genetics , Spinacia oleracea/metabolism , Indoleacetic Acids/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Chromosomes, Plant/genetics , Evolution, Molecular
13.
Plant Physiol Biochem ; 213: 108823, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38905727

ABSTRACT

Cadmium (Cd) is a widely distributed heavy metal pollutant that is detrimental to growth and development of plants. The secretion of indole-3-acetic acid is one of the defense mechanisms when plants inflict heavy metal stress. This study aimed to explore how 4-phenoxyphenylboronic acid, an effective IAA inhibitor, induces changes in IAA level, Cadmium accumulation, and activation of defense responses in rice seedling roots under different Cadmium concentrations. Our research results show that: 1) root growth was promoted with PPBa addition under mild Cadmium treatment. 2) the root IAA level improved with increasing Cadmium concentration, and PPBa had a significant inhibitory effect on IAA level. 3) PPBa had no effect on the Cadmium accumulation in rice seedling roots. 4) PPBa had a significant inhibitory effect on the generation of H2O2 under mild and moderate Cadmium treatment. 5) PPBa exacerbated the imbalance of osmotic substances in rice seedling roots under severe Cadmium treatment. This study helps us understand the tolerance and endogenous regulation of plants to heavy metal stress.


Subject(s)
Cadmium , Hydrogen Peroxide , Indoleacetic Acids , Oryza , Plant Roots , Seedlings , Oryza/drug effects , Oryza/metabolism , Oryza/growth & development , Indoleacetic Acids/metabolism , Cadmium/toxicity , Cadmium/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Seedlings/drug effects , Seedlings/metabolism , Seedlings/growth & development , Hydrogen Peroxide/metabolism , Stress, Physiological/drug effects , Boronic Acids/pharmacology
14.
Free Radic Biol Med ; 222: 371-385, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901500

ABSTRACT

Increasing the seed germination potential and seedling growth rates play a pivotal role in increasing overall crop productivity. Seed germination and early vegetative (seedling) growth are critical developmental stages in plants. High-power microwave (HPM) technology has facilitated both the emergence of novel applications and improvements to existing in agriculture. The implications of pulsed HPM on agriculture remain unexplored. In this study, we have investigated the effects of pulsed HPM exposure on barley germination and seedling growth, elucidating the plausible underlying mechanisms. Barley seeds underwent direct HPM irradiation, with 60 pulses by 2.04 mJ/pulse, across three distinct irradiation settings: dry, submerged in deionized (DI) water, and submerged in DI water one day before exposure. Seed germination significantly increased in all HPM-treated groups, where the HPM-dry group exhibited a notable increase, with a 2.48-fold rise at day 2 and a 1.9-fold increment at day 3. Similarly, all HPM-treated groups displayed significant enhancements in water uptake, and seedling growth (weight and length), as well as elevated levels of chlorophyll, carotenoids, and total soluble protein content. The obtained results indicate that when comparing three irradiation setting, HPM-dry showed the most promising effects. Condition HPM seed treatment increases the level of reactive species within the barley seedlings, thereby modulating plant biochemistry, physiology, and different cellular signaling cascades via induced enzymatic activities. Notably, the markers associated with plant growth are upregulated and growth inhibitory markers are downregulated post-HPM exposure. Under optimal HPM-dry treatment, auxin (IAA) levels increased threefold, while ABA levels decreased by up to 65 %. These molecular findings illuminate the intricate regulatory mechanisms governing phenotypic changes in barley seedlings subjected to HPM treatment. The results of this study might play a key role to understand molecular mechanisms after pulsed-HPM irradiation of seeds, contributing significantly to address the global need of sustainable crop yield.

15.
Plants (Basel) ; 13(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891316

ABSTRACT

Nymphoides coronata is an endangered aquatic plant species with significant medicinal and ecological importance. To preserve N. coronata from going extinct, we need to provide seedlings and efficient multiplication techniques so that it can be extensively studied. This study aimed to identify the most suitable sterilization treatment, growth medium, and substrate for the cultivation and propagation of N. coronata. Ethanol sterilization, fungicide treatment, and sterile water washing were the most important sterilization steps. A combination of 6-benzylaminopurine (6-BA) and indoleacetic acid (IAA) was the most suitable medium for bud induction and shoot proliferation. The use of α-naphthaleneacetic acid (NAA) increased the rooting rate and rooting time compared to indole-3-butyric acid (IBA). Increasing the concentration of NAA from 0.5 to 1.0 mg/L increased the rooting rate from 78 to 100% and reduced the rooting time from 7 to 5 days. The survival rate of N. coronata seedlings was 100% in a mixture of red soil and sand (1:1, w/w). As a result, the procedure mentioned above could potentially be used to safely propagate this rare species on a large scale. These findings provide valuable insights into the optimal conditions for the successful cultivation and propagation of N. coronata, which can contribute to the conservation and sustainable use of this important rare plant species.

16.
Int J Phytoremediation ; : 1-11, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38932483

ABSTRACT

Urease-producing bacteria (UPB) are widely present in soil and play an important role in soil ecosystems. In this study, 65 UPB strains were isolated from cadmium (Cd)-polluted soil around a lead-zinc mine in Yunnan Province, China. The Cd tolerance, removal of Cd from aqueous solution, production of indoleacetic acid (IAA) and plant growth-promoting effects of these materials were investigated. The results indicate that among the 65 UPB strains, four strains with IAA-producing ability were screened and identified as Bacillus thuringiensis W6-11, B. cereus C7-4, Serratia marcescens W11-10, and S. marcescens C5-6. Among the four strains, B. cereus C7-4 had the highest Cd tolerance, median effect concentration (EC50) of 59.94 mg/L. Under Cd 5 mg/L, S. marcescens C5-6 had the highest Cd removal from aqueous solution, up to 69.83%. Under Cd 25 mg/kg, inoculation with B. cereus C7-4 significantly promoted maize growth in a sand pot by increasing the root volume, root surface area, and number of root branches by 22%, 29%, and 20%, respectively, and plant height and biomass by 16% and 36%, respectively, and significantly increasing Cd uptake in the maize roots. Therefore, UPB is a potential resource for enhancing plant adaptability to Cd stress in plants with Cd-polluted habitats.


This study utilized urease-producing bacteria screened from the soil of lead zinc mining areas in Yunnan, China as the research object, enriching the microbial resources in Yunnan. In addition, this article verified the IAA production ability and cadmium removal ability of urease-producing bacteria, and screened out bifunctional urease-producing bacteria that have potential in cadmium pollution control and plant growth promotion.

17.
Molecules ; 29(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893338

ABSTRACT

Acting as a growth regulator, Indole-3-acetic acid (IAA) is an important phytohormone that can be produced by several Bacillus species. However, few studies have been published on the comprehensive evaluation of the strains for practical applications and the effects of selenium species on their IAA-producing ability. The present study showed the selenite reduction strain Bacillus altitudinis LH18, which is capable of producing selenium nanoparticles (SeNPs) at a high yield in a cost-effective manner. Bio-SeNPs were systematically characterized by using DLS, zeta potential, SEM, and FTIR. The results showed that these bio-SeNPs were small in particle size, homogeneously dispersed, and highly stable. Significantly, the IAA-producing ability of strain was differently affected under different selenium species. The addition of SeNPs and sodium selenite resulted in IAA contents of 221.7 µg/mL and 91.01 µg/mL, respectively, which were 3.23 and 1.33 times higher than that of the control. This study is the first to examine the influence of various selenium species on the IAA-producing capacity of Bacillus spp., providing a theoretical foundation for the enhancement of the IAA-production potential of microorganisms.


Subject(s)
Bacillus , Indoleacetic Acids , Selenium , Indoleacetic Acids/metabolism , Bacillus/metabolism , Bacillus/drug effects , Selenium/chemistry , Selenium/pharmacology , Selenium/metabolism , Nanoparticles/chemistry , Particle Size
18.
Front Plant Sci ; 15: 1398818, 2024.
Article in English | MEDLINE | ID: mdl-38903418

ABSTRACT

Abiotic and biotic stresses globally constrain plant growth and impede the optimization of crop productivity. The phytohormone auxin is involved in nearly every aspect of plant development. Auxin acts as a chemical messenger that influences gene expression through a short nuclear pathway, mediated by a family of specific DNA-binding transcription factors known as Auxin Response Factors (ARFs). ARFs thus act as effectors of auxin response and translate chemical signals into the regulation of auxin responsive genes. Since the initial discovery of the first ARF in Arabidopsis, advancements in genetics, biochemistry, genomics, and structural biology have facilitated the development of models elucidating ARF action and their contributions to generating specific auxin responses. Yet, significant gaps persist in our understanding of ARF transcription factors despite these endeavors. Unraveling the functional roles of ARFs in regulating stress response, alongside elucidating their genetic and molecular mechanisms, is still in its nascent phase. Here, we review recent research outcomes on ARFs, detailing their involvement in regulating leaf, flower, and root organogenesis and development, as well as stress responses and their corresponding regulatory mechanisms: including gene expression patterns, functional characterization, transcriptional, post-transcriptional and post- translational regulation across diverse stress conditions. Furthermore, we delineate unresolved questions and forthcoming challenges in ARF research.

19.
Genes (Basel) ; 15(6)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38927696

ABSTRACT

Small auxin-upregulated RNAs (SAURs), as the largest family of early auxin-responsive genes, play important roles in plant growth and development processes, such as auxin signaling and transport, hypocotyl development, and tolerance to environmental stresses. However, the functions of few SAUR genes are known in the root development of sweet potatoes. In this study, an IbSAUR36 gene was cloned and functionally analyzed. The IbSAUR36 protein was localized to the nucleus and plasma membrane. The transcriptional level of this gene was significantly higher in the pencil root and leaf.This gene was strongly induced by indole-3-acetic acid (IAA), but it was downregulated under methyl-jasmonate(MeJA) treatment. The promoter of IbSAUR36 contained the core cis-elements for phytohormone responsiveness. Promoter ß-glucuronidase (GUS) analysis in Arabidopsis showed that IbSAUR36 is highly expressed in the young tissues of plants, such as young leaves, roots, and buds. IbSAUR36-overexpressing sweet potato roots were obtained by an efficient Agrobacterium rhizogenes-mediated root transgenic system. We demonstrated that overexpression of IbSAUR36 promoted the accumulation of IAA, upregulated the genes encoding IAA synthesis and its signaling pathways, and downregulated the genes encoding lignin synthesis and JA signaling pathways. Taken together, these results show that IbSAUR36 plays an important role in adventitious root (AR) development by regulating IAA signaling, lignin synthesis, and JA signaling pathways in transgenic sweet potatoes.


Subject(s)
Gene Expression Regulation, Plant , Indoleacetic Acids , Ipomoea batatas , Plant Proteins , Plant Roots , Plants, Genetically Modified , Ipomoea batatas/genetics , Ipomoea batatas/growth & development , Ipomoea batatas/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Plant Growth Regulators/genetics , Promoter Regions, Genetic , Cyclopentanes/pharmacology , Cyclopentanes/metabolism
20.
Int Microbiol ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38730211

ABSTRACT

The study explores the potential of an indigenous halo-tolerant microbe identified as Bacillus spp. SSAU-2 in enhancing soil fertility and promoting plant growth for sustainable agricultural practices under the influence of multiple abiotic stresses such as Cr(VI), high salinity, and artificial drought condition. The study investigated various factors influencing IAA synthesis by SSAU-2, such as pH (5 to 11), salinity (10 to 50 g/L), tryptophan concentration (0.5 to 1%), carbon (mannitol mand lactose), and nitrogen sources (peptone and tryptone). The highest IAA concentration was observed at pH 10 (1.695 mg/ml) and pH 11 (0.782 mg/ml). IAA synthesis was optimized at a salinity level of 30 g/l, with lower and higher salinity levels resulting in decreased IAA concentrations. Notably, the presence of mannitol and lactose significantly augmented IAA synthesis, while glucose and sucrose had inhibitory effects. Furthermore, peptone and tryptone played a pivotal role in enhancing IAA synthesis, while ammonium chloride exerted an inhibitory influence. SSAU-2 showed a diverse array of capabilities, including the synthesis of gibberellins, extracellular polymeric substances, siderophores, and hydrogen cyanide along with nitrogen fixation and ammonia production. The microbe could efficiently tolerate 45% PEG-6000 concentration and effectively produce IAA in 15% PEG concentration. It could also tolerate high concentration of Cr(VI) and synthesize IAA even in 50 ppm Cr(VI). The findings of this study provide valuable insights into harnessing the potential of indigenous microorganisms to promote plant growth, enhance soil fertility, and establish sustainable agricultural practices essential for restoring the health of ecosystems.

SELECTION OF CITATIONS
SEARCH DETAIL
...