Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.183
Filter
1.
FASEB J ; 38(13): e23802, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38979944

ABSTRACT

Intercellular adhesion molecule 1 (ICAM1) is a cell surface adhesion glycoprotein in the immunoglobulin supergene family. It is associated with several epithelial tumorigenesis processes, as well as with inflammation. However, the function of ICAM1 in the prognosis of tumor immunity is still unclear. This study aimed to examine the immune function of ICAM1 in 33 tumor types and to investigate the prognostic value of tumors. Using datasets from the Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), Cancer Cell Lines Encyclopedia (CCLE), Human Protein Atlas (HPA), and cBioPortal, we investigated the role of ICAM1 in tumors. We explored the potential correlation between ICAM1 expression and tumor prognosis, gene mutations, microsatellite instability, and tumor immune cell levels in various cancers. We observed that ICAM1 is highly expressed in multiple malignant tumors. Furthermore, ICAM1 is negatively or positively associated with different malignant tumor prognoses. The expression levels of ICAM1 were correlated with the tumor mutation burden (TMB) in 11 tumors and with MSI in eight tumors. ICAM1 is a gene associated with immune infiltrating cells, such as M1 macrophages and CD8+ T cells in gastric and colon cancer. Meanwhile, the expression of ICAM1 is associated with several immune-related functions and immune-regulation-related signaling pathways, such as the chemokine signaling pathway. Our study shows that ICAM1 can be used as a prognostic biomarker in many cancer types because of its function in tumorigenesis and malignant tumor immunity.


Subject(s)
Biomarkers, Tumor , Intercellular Adhesion Molecule-1 , Neoplasms , Humans , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/metabolism , Mutation , Gene Expression Regulation, Neoplastic , Microsatellite Instability , Tumor Microenvironment/immunology
2.
Neuropharmacology ; : 110054, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950691

ABSTRACT

Vasogenic brain edema, a potentially life-threatening consequence following an acute ischemic stroke, is a major clinical problem. This research aims to explore the therapeutic benefits of nimodipine, a calcium channel blocker, in mitigating vasogenic cerebral edema and preserving blood-brain barrier (BBB) function in an ischemic stroke rat model. In this research, animals underwent the induction of ischemic stroke via a 60-minute blockage of the middle cerebral artery and treated with a nonhypotensive dose of nimodipine (1 mg/kg/day) for a duration of five days. The wet/dry method was employed to identify cerebral edema, and the Evans blue dye extravasation technique was used to assess the permeability of the BBB. Furthermore, immunofluorescence staining was utilized to assess the protein expression levels of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1). The study also examined mitochondrial function by evaluating mitochondrial swelling, succinate dehydrogenase (SDH) activity, the collapse of mitochondrial membrane potential (MMP), and the generation of reactive oxygen species (ROS). Post-stroke administration of nimodipine led to a significant decrease in cerebral edema and maintained the integrity of the BBB. The protective effects observed were associated with a reduction in cell apoptosis as well as decreased expression of MMP-9 and ICAM-1. Furthermore, nimodipine was observed to reduce mitochondrial swelling and ROS levels while simultaneously restoring MMP and SDH activity. These results suggest that nimodipine may reduce cerebral edema and BBB breakdown caused by ischemia/reperfusion. This effect is potentially mediated through the reduction of MMP-9 and ICAM-1 levels and the enhancement of mitochondrial function.

3.
Front Ophthalmol (Lausanne) ; 4: 1384428, 2024.
Article in English | MEDLINE | ID: mdl-38984117

ABSTRACT

Intercellular adhesion molecule 1 (ICAM-1) is a central cell adhesion molecule for retinal transendothelial migration of the leukocytes in non-infectious posterior uveitis. Inhibiting ICAM1 gene transcription reduces induction of ICAM-1 in inflamed retinal endothelium. Based on published literature implicating transcription factor ETS-1 as an activator of ICAM1 gene transcription, we investigated the effect of ETS-1 blockade on ICAM-1 levels in cytokine-stimulated human retinal endothelial cells. We first examined ICAM1 and ETS1 transcript expression in human retinal endothelial cells exposed to tumor necrosis factor-alpha (TNF-α) or interleukin-1beta (IL-1ß). ICAM1 and ETS1 transcripts were increased in parallel in primary human retinal endothelial cell isolates (n = 5) after a 4-hour stimulation with TNF-α or IL-1ß (p ≤ 0.012 and ≤ 0.032, respectively). We then assessed the effect of ETS-1 blockade by small interfering (si)RNA on cellular ICAM1 transcript and membrane-bound ICAM-1 protein. ETS1 transcript was reduced by greater than 90% in cytokine-stimulated and non-stimulated human retinal endothelial cell monolayers following a 48-hour treatment with two ETS-1-targeted siRNA, in comparison to negative control non-targeted siRNA (p ≤ 0.0002). The ETS-1 blockade did not reduce ICAM1 transcript expression nor levels of membrane-bound ICAM-1 protein, rather it increased both for a majority of siRNA-treatment and cytokine-stimulation conditions (p ≤ 0.018 and ≤ 0.004, respectively). These unexpected findings indicate that ETS-1 blockade increases ICAM-1 transcript and protein levels in human retinal endothelial cells. Thus ETS-1-targeting would be expected to promote rather than inhibit retinal transendothelial migration of leukocytes in non-infectious posterior uveitis.

4.
Life (Basel) ; 14(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38929672

ABSTRACT

Cardiovascular disease (CVD) remains a prominent cause of global mortality, primarily driven by atherosclerosis. Diabetes mellitus, as a modifiable risk factor, significantly contributes to atherogenesis. Monocyte recruitment to the intima is a critical step in atherosclerotic plaque formation, involving chemokines and adhesion molecules such as selectins, ICAM-1, and MCP-1. Glucagon-like peptide 1 receptor agonists (GLP-1RAs) are a promising group of drugs for reducing cardiovascular risk in diabetic patients, prompting investigation into their mechanisms of action. This interventional study enrolled 50 diabetes patients with atherosclerotic plaque, administering GLP-1RA for 180 days. Serum concentrations of MCP-1, ICAM-1, and L-selectin were measured before and after treatment. Anthropometric and biochemical parameters were also assessed. GLP-1RA treatment resulted in significant improvements in anthropometric parameters, glycemic control, blood pressure, and biochemical markers of liver steatosis. Biomarker laboratory analysis revealed higher baseline levels of MCP-1, ICAM-1, and L-selectin in diabetic patients with atherosclerotic plaque compared to healthy controls. Following treatment, MCP-1 and L-selectin levels decreased significantly (p < 0.001), while ICAM-1 levels increased (p < 0.001). GLP-1RA treatment in diabetic patients with atherosclerotic plaque leads to favorable changes in serum molecule levels associated with monocyte recruitment to the endothelium. The observed reduction in MCP-1 and L-selectin suggests a potential mechanism underlying GLP-1RA-mediated cardiovascular risk reduction. Further research is warranted to elucidate the precise mechanisms and clinical implications of these findings in diabetic patients with atherosclerosis.

5.
Cell Commun Signal ; 22(1): 340, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907234

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is recognized as the most aggressive and immunologically infiltrated subtype of breast cancer. A high circulating neutrophil-to-lymphocyte ratio (NLR) is strongly linked to a poor prognosis among patients with breast cancer, emphasizing the critical role of neutrophils. Although the involvement of neutrophils in tumor metastasis is well documented, their interactions with primary tumors and tumor cells are not yet fully understood. METHODS: Clinical data were analyzed to investigate the role of neutrophils in breast cancer. In vivo mouse model and in vitro co-culture system were used for mechanism researches. Blocking experiments were further performed to identify therapeutic agents against TNBC. RESULTS: TNBC cells secreted GM-CSF to sustain the survival of mature neutrophils and upregulated CD11b expression. Through CD11b, neutrophils specifically binded to ICAM1 on TNBC cells, facilitating adhesion. Transcriptomic sequencing combined with human and murine functional experiments revealed that neutrophils, through direct CD11b-ICAM1 interactions, activated the MAPK signaling pathway in TNBC cells, thereby enhancing tumor cell invasion and migration. Atorvastatin effectively inhibited ICAM1 expression in tumor cells, and tumor cells with ICAM1 knockout or treated with atorvastatin were unresponsive to neutrophil activation. The MAPK pathway and MMP9 expression were significantly inhibited in the tumor tissues of TNBC patients treated with atorvastatin. CONCLUSIONS: Targeting CD11b-ICAM1 with atorvastatin represented a potential clinical approach to reduce the malignant characteristics of TNBC.


Subject(s)
CD11b Antigen , Cell Adhesion , Intercellular Adhesion Molecule-1 , Neutrophils , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Neutrophils/metabolism , Humans , Animals , CD11b Antigen/metabolism , CD11b Antigen/genetics , Female , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Mice , Cell Line, Tumor , Disease Progression , Cell Movement
6.
Diagn Pathol ; 19(1): 77, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858715

ABSTRACT

Although most differentiated thyroid carcinoma has a clinically favorable prognosis, some of specific types of thyroid cancer (such as anaplastic thyroid carcinoma and advanced papillary thyroid carcinoma) show fatal outcomes and require novel treatments. Immunotherapy is a promising avenue for the treatment of advanced thyroid carcinoma. B7-H3 (B7 homolog 3 protein) and ICAM-1 (intercellular adhesion molecule 1), as two important immune checkpoints (ICPs), is becoming hopeful target spots for immunotherapy. A growing amount of evidence has suggested that B7-H3 and ICAM-1 are upregulated in papillary thyroid carcinoma. However, their expression level in specific types of thyroid cancer remains largely unclear. In the present study, we explored the expression level of B7-H3 and ICAM-1 in different types of thyroid carcinoma. In the groups of the TCGA cohort, both B7-H3 and ICAM-1 mRNA were highly expressed in thyroid carcinoma. Furthermore, the patients with Stage2, 61-80y, Follicular thyroid papillary carcinoma and N0 had lower B7-H3 and ICAM-1 mRNA expression. In the groups of our cohort, PTCs and ATCs showed frequently moderate to strong expression of B7-H3 and ICAM-1 protein expression. The significant relevance of B7-H3 staining score with ICAM-1 staining score was observed in TCGA database and our cohort, which might open avenues for the combination therapy in advanced thyroid cancer.


Subject(s)
B7 Antigens , Intercellular Adhesion Molecule-1 , Thyroid Neoplasms , Humans , Thyroid Neoplasms/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/therapy , Thyroid Neoplasms/metabolism , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , B7 Antigens/metabolism , B7 Antigens/genetics , Male , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Female , Aged , Aged, 80 and over , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/therapy , Thyroid Cancer, Papillary/metabolism , Adult
7.
BMC Med ; 22(1): 242, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38867241

ABSTRACT

BACKGROUND: Understanding the enduring respiratory consequences of severe COVID-19 is crucial for comprehensive patient care. This study aims to evaluate the impact of post-COVID conditions on respiratory sequelae of severe acute respiratory distress syndrome (ARDS). METHODS: We examined 88 survivors of COVID-19-associated severe ARDS six months post-intensive care unit (ICU) discharge. Assessments included clinical and functional evaluation as well as plasma biomarkers of endothelial dysfunction, inflammation, and viral response. Additionally, an in vitro model using human umbilical vein endothelial cells (HUVECs) explored the direct impact of post-COVID plasma on endothelial function. RESULTS: Post-COVID patients with impaired gas exchange demonstrated persistent endothelial inflammation marked by elevated ICAM-1, IL-8, CCL-2, and ET-1 plasma levels. Concurrently, systemic inflammation, evidenced by NLRP3 overexpression and elevated levels of IL-6, sCD40-L, and C-reactive protein, was associated with endothelial dysfunction biomarkers and increased in post-COVID patients with impaired gas exchange. T-cell activation, reflected in CD69 expression, and persistently elevated levels of interferon-ß (IFN-ß) further contributed to sustained inflammation. The in vitro model confirmed that patient plasma, with altered levels of sCD40-L and IFN-ß proteins, has the capacity to alter endothelial function. CONCLUSIONS: Six months post-ICU discharge, survivors of COVID-19-associated ARDS exhibited sustained elevation in endothelial dysfunction biomarkers, correlating with the severity of impaired gas exchange. NLRP3 inflammasome activity and persistent T-cell activation indicate on going inflammation contributing to persistent endothelial dysfunction, potentially intensified by sustained viral immune response.


Subject(s)
COVID-19 , Inflammation , Humans , COVID-19/complications , COVID-19/blood , Male , Female , Middle Aged , Aged , SARS-CoV-2 , Biomarkers/blood , Respiratory Distress Syndrome/virology , Respiratory Distress Syndrome/physiopathology , Human Umbilical Vein Endothelial Cells , Pulmonary Gas Exchange , Endothelium, Vascular/physiopathology , NLR Family, Pyrin Domain-Containing 3 Protein , Adult
8.
Drug Resist Updat ; 76: 101112, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38924997

ABSTRACT

AIMS: Despite aggressive treatment, the recurrence of glioma is an inevitable occurrence, leading to unsatisfactory clinical outcomes. A plausible explanation for this phenomenon is the phenotypic alterations that glioma cells undergo aggressive therapies, such as TMZ-therapy. However, the underlying mechanisms behind these changes are not well understood. METHODS: The TMZ chemotherapy resistance model was employed to assess the expression of intercellular adhesion molecule-1 (ICAM1) in both in vitro and in vivo settings. The potential role of ICAM1 in regulating TMZ chemotherapy resistance was investigated through knockout and overexpression techniques. Furthermore, the mechanism underlying ICAM1-mediated TMZ chemotherapy resistance was examined using diverse molecular biological methods, and the lipid raft protein was subsequently isolated to investigate the cellular subcomponents where ICAM1 operates. RESULTS: Acquired TMZ resistant (TMZ-R) glioma models heightened production of intercellular adhesion molecule-1 (ICAM1) in TMZ-R glioma cells. Additionally, we observed a significant suppression of TMZ-R glioma proliferation upon inhibition of ICAM1, which was attributed to the enhanced intracellular accumulation of TMZ. Our findings provide evidence supporting the role of ICAM1, a proinflammatory marker, in promoting the expression of ABCB1 on the cell membrane of TMZ-resistant cells. We have elucidated the mechanistic pathway by which ICAM1 modulates phosphorylated moesin, leading to an increase in ABCB1 expression on the membrane. Furthermore, our research has revealed that the regulation of moesin by ICAM1 was instrumental in facilitating the assembly of ABCB1 exclusively on the lipid raft of the membrane. CONCLUSIONS: Our findings suggest that ICAM1 is an important mediator in TMZ-resistant gliomas and targeting ICAM1 may provide a new strategy for enhancing the efficacy of TMZ therapy against glioma.

9.
Adv Sci (Weinh) ; : e2400203, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874532

ABSTRACT

Therapeutic benefits and underlying biomechanism(s) of antibody drug conjugates (ADC) in combination with other targeted therapeutics are largely unknown. Here, the synergy between ADC and epigenetic drug decitabine (DAC), a clinically approved DNA methylation inhibitor, in multiple preclinical models of melanoma specifically investigated. Mechanistically, the underlying biomechanisms of how DAC cooperatively worked with ICAM1 antibody conjugated DNA topoisomerase I inhibitor DXd (I1-DXd) is elucidated. DAC treatment significantly enhanced anti-tumor efficacy of I1-DXd by upregulating antigen expression, enhancing antibody internalization and potentiating tumor sensitivity by epigenetically reprogramming of melanoma. Meanwhile, I1-DXd/DAC combination also exerted regulatory effects on tumor microenvironment (TME) by enhancing tumor infiltration of innate and adaptive immune cells and improving penetration of ADCs with a boosted antitumor immunity. This study provides a rational ADC combination strategy for solid tumor treatment.

10.
Open Med (Wars) ; 19(1): 20240969, 2024.
Article in English | MEDLINE | ID: mdl-38799250

ABSTRACT

Intercellular adhesion molecule-1 (ICAM-1) is related to the occurrence and development of a variety of tumors. However, the role of ICAM-1 in the regulation of growth, metastasis, and clinical prognosis of the specific molecular subtypes of breast cancer, triple-negative breast cancer (TNBC), remains to be elucidated. This study explored the role of ICAM-1 in breast cancer and its triple-negative subtypes by systematic bioinformatics methods. The results showed that the expression of ICAM-1 in breast cancer tissues was significantly higher than that in normal tissues, especially in TNBC subtypes. In breast cancer, ICAM-1 mainly activates pathways related to apoptosis and epithelial-mesenchymal transition, while its overexpression in TNBC is associated with inflammatory response, apoptosis, and other processes. TNBC patients displaying higher ICAM-1 expression demonstrate enhanced responses to immunotherapy. High ICAM-1 expression is sensitive to drugs targeting tumor cell proliferation, apoptosis, and angiogenesis. In conclusion, breast cancer is characterized by significantly high expression of ICAM-1, with TNBC subtypes expressing ICAM-1 at much higher levels than other subtypes. The diagnosis, prognosis, development, distant metastases, and immunotherapy of TNBC are correlated with high expression of ICAM-1. This research provides available data for the further study of the diagnosis and treatment of TNBC.

11.
Pharmacol Res ; 205: 107244, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821149

ABSTRACT

Doxorubicin (Dox) is an anti-tumor drug with a broad spectrum, whereas the cardiotoxicity limits its further application. In clinical settings, liposome delivery vehicles are used to reduce Dox cardiotoxicity. Here, we substitute extracellular vesicles (EVs) for liposomes and deeply investigate the mechanism for EV-encapsulated Dox delivery. The results demonstrate that EVs dramatically increase import efficiency and anti-tumor effects of Dox in vitro and in vivo, and the efficiency increase benefits from its unique entry pattern. Dox-loading EVs repeat a "kiss-and-run" motion before EVs internalization. Once EVs touch the cell membrane, Dox disassociates from EVs and directly enters the cytoplasm, leading to higher and faster Dox import than single Dox. This unique entry pattern makes the adhesion between EVs and cell membrane rather than the total amount of EV internalization the key factor for regulating the Dox import. Furthermore, we recognize ICAM1 as the molecule mediating the adhesion between EVs and cell membranes. Interestingly, EV-encapsulated Dox can induce ICAM1 expression by irritating IFN-γ and TNF-α secretion in TME, thereby increasing tumor targeting of Dox-loading EVs. Altogether, EVs and EV-encapsulated Dox synergize via ICAM1, which collectively enhances the curative effects for tumor treatment.


Subject(s)
Antibiotics, Antineoplastic , Doxorubicin , Extracellular Vesicles , Intercellular Adhesion Molecule-1 , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Animals , Humans , Intercellular Adhesion Molecule-1/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/drug effects , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/administration & dosage , Cell Line, Tumor , Mice, Inbred BALB C , Mice , Female , Neoplasms/drug therapy , Neoplasms/metabolism , Cell Adhesion/drug effects , Drug Delivery Systems , Mice, Nude , Tumor Necrosis Factor-alpha/metabolism
12.
J Leukoc Biol ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713770

ABSTRACT

Polymorphonuclear neutrophil (PMN) infiltration at inflammatory site plays a critical role in inflammation. PMN reverse migration (rM) describes the phenomenon that PMNs migrate away from inflammatory site back into the vasculature, and its role within inflammatory scenarios remains to be fully determined. This study aimed to investigate the mechanism underlying PMN rM and its role in inflammation. First, we demonstrated PMN rM in a mouse model of LPS-induced acute lung inflammation. By single-cell RNA sequencing (scRNA-seq), we demonstrated that reverse migrated (rM-ed) PMNs in blood expressed high level of immuneresponsive gene 1 (Irg1), the encoding gene of cis-aconitate decarboxylase (ACOD1). Using a mouse air pouch model, which enables us to directly track rM-ed PMNs in vivo, we detected higher expression of ACOD1 in the rM-ed PMNs in circulation. Furthermore, mice with Irg1 knockout exhibited decreased PMN rM and higher levels of inflammatory cytokine in inflammatory site. Mechanistically, we found that itaconate, the product of ACOD1 catalyzation, decreased PMN ICAM-1 expression at the inflammation site. Furthermore, inflammatory site showed a high level of shed CD11a, the ligand of ICAM-1. Neutralization of either ICAM-1 or CD11a leading to increased PMN rM. These findings suggest that the binding of ICAM-1 and shed CD11a serves as a retaining force to hold PMNs in the site of inflammation, and ACOD1-decreased PMN surface expression of ICAM-1 weakens the retaining force, so promoting PMNs to leave the inflammatory site. These results indicate a regulatory role of IRG1 in PMN rM and subsequent contributions to inflammation resolution.

13.
Cell Biochem Funct ; 42(4): e4037, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38736204

ABSTRACT

Diabetes mellitus is associated with secondary complications such as diabetic retinopathy (DR), nephropathy (DN), and cardiomyopathy (DCM), all of which significantly impact patient health. Intercellular adhesion molecule-1 (ICAM-1) has been implicated in inflammatory responses and endothelial dysfunction, both crucial in the pathogenesis of these complications. The goal of this review is to investigate at potential therapy methods that target ICAM-1 pathways and to better understand the multifaceted role of ICAM-1 in secondary diabetic problems. A meticulous analysis of scholarly literature published globally was conducted to examine ICAM-1involvement in inflammatory processes, endothelial dysfunction, and oxidative stress related to diabetes and its complications. Elevated ICAM-1 levels are strongly associated with augmented leukocyte adhesion, compromised microvascular function, and heightened oxidative stress in diabetes. These pathways contribute significantly to DR, DN, and DCM pathogenesis, highlighting ICAM-1 as a key player in their progression. Understanding ICAM-1 role in secondary diabetic complications offers insights into novel therapeutic strategies. Targeting ICAM-1 pathways may mitigate inflammation, improve endothelial function, and ultimately attenuate diabetic complications, thereby enhancing patient health outcomes. Continued research in this area is crucial for developing effective targeted therapies.


Subject(s)
Intercellular Adhesion Molecule-1 , Humans , Intercellular Adhesion Molecule-1/metabolism , Diabetes Complications/metabolism , Oxidative Stress , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Inflammation/metabolism , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Diabetic Retinopathy/etiology
14.
Clin Nutr ESPEN ; 61: 151-157, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777428

ABSTRACT

BACKGROUND: Elevated levels of ICAM-1 and VCAM-1 are significant risk factors for cardiovascular diseases. Conversely, the regulatory roles of physical activity and omega-3 supplementation in these factors have been reported. The primary aim of the present research was to investigate the impact of an eight-week combined (resistance-endurance) accompanied by omega-3 supplementation on ICAM-1 and VCAM-1 levels in elderly women. METHODS: Forty elderly women, averaging 66.7 ± 4.13 years, were randomly assigned to four groups: placebo, omega-3 supplement, training, and training + omega-3. The combined exercise training program was implemented for eight weeks, three sessions per week. Aerobic training included 20 min of running at 60-70% of the reserve heart rate, while resistance training involved exercises at 70% of 1RM with 10 repetitions per exercise for two sets. The omega-3 and training + omega-3 groups consumed 2000 mg of omega-3 daily. Blood samples were collected 48 h after the last combined exercise training or omega-3 consumption, and the measured variables were analyzed using analysis of covariance test and SPSS-24 software. RESULTS: ICAM-1 and VCAM-1 levels significantly decreased in the training and training + omega-3 groups (p < 0.001). The decrease in ICAM-1 within the training + omega-3 group was also significant compared to the training group (p = 0.024). Additionally, a significant reduction in insulin resistance and body fat percentage was observed in both the training and training + omega-3 groups (p < 0.001). CONCLUSION: The present study's results indicate that omega-3 supplementation can enhance the effectiveness of combined training in regulating cardiovascular risk factors.


Subject(s)
Dietary Supplements , Fatty Acids, Omega-3 , Intercellular Adhesion Molecule-1 , Resistance Training , Vascular Cell Adhesion Molecule-1 , Humans , Female , Intercellular Adhesion Molecule-1/blood , Vascular Cell Adhesion Molecule-1/blood , Aged , Fatty Acids, Omega-3/administration & dosage , Middle Aged , Cardiovascular Diseases/prevention & control , Exercise/physiology , Double-Blind Method
15.
Phytomedicine ; 130: 155764, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38797030

ABSTRACT

BACKGROUND: Tanreqing injection (TRQ) has been employed in clinical practice as a treatment for dengue fever (DF). Nevertheless, the precise pharmacological mechanism underlying its efficacy remains elusive. METHOD: Network pharmacology, molecular docking, transcriptome sequencing, and experimental evaluation were employed to analyze and study the inhibitory potential of TRQ against dengue virus (DENV). RESULT: We found that TRQ inhibited the replication of DENV in human umbilical vein endothelial cells, Huh-7 cells, and Hep3B cells. In addition, TRQ prolonged the survival duration of AG129 mice infected with DF, decreased the viral load in serum and organs, and alleviated organ damage. Subsequently, ultra-high-performance liquid chromatography-tandem mass spectrometry analysis of TRQ was performed to identify 314 targets associated with 36 active compounds present in TRQ. Integration of multiple databases yielded 47 DF-related genes. Then, 15 hub targets of TRQ in DF were determined by calculating the network topology parameters (Degree). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these pathways were primarily enriched in the processes of cytokine activation and leukocyte cross-endothelial migration, with significant enrichment of cell adhesion molecules. Molecular docking revealed favorable binding affinity between TRQ's key active compounds and the predicted hub targets. Transcriptome sequencing results showed TRQ's ability to restore the expression of vascular cell adhesion molecule-1 (VCAM-1) post-DENV infection. Finally, TRQ was found to modulate the immune status by regulating the nuclear factor kappa-B (NF-κB)- intercellular cell adhesion molecule-1 (ICAM-1)/VCAM-1 axis, as well as reduce immune cell alterations, inflammatory factor secretion, vascular permeability, and bleeding tendencies induced by DENV infection. CONCLUSION: Our research suggests that TRQ exerts therapeutic effects on DF by regulating the NF-κB-ICAM-1/VCAM-1 axis.


Subject(s)
Dengue Virus , Dengue , Drugs, Chinese Herbal , Human Umbilical Vein Endothelial Cells , Intercellular Adhesion Molecule-1 , Molecular Docking Simulation , NF-kappa B , Vascular Cell Adhesion Molecule-1 , Animals , Drugs, Chinese Herbal/pharmacology , NF-kappa B/metabolism , Humans , Dengue Virus/drug effects , Mice , Vascular Cell Adhesion Molecule-1/metabolism , Dengue/drug therapy , Intercellular Adhesion Molecule-1/metabolism , Virus Replication/drug effects , Antiviral Agents/pharmacology , Network Pharmacology
16.
Geburtshilfe Frauenheilkd ; 84(4): 370-377, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38618575

ABSTRACT

Background: Cervical cancer is a significant global health burden, and individualized treatment approaches are necessary due to its heterogeneity. Radiotherapy is a common treatment modality; however, the response varies among patients. The identification of reliable biomarkers to predict radiotherapy sensitivity is crucial. Methods: A cohort of 189 patients with stage IB2-IVA cervical cancer, treated with radiotherapy alone or concurrent chemoradiotherapy, was included. Serum samples were collected before treatment, and intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) concentrations were determined. Patients were categorized into radiotherapy-sensitive (RS) and radiotherapy-resistant (RR) groups based on treatment response. Clinicopathological characteristics and survival rates were analyzed. Results: The analysis of clinicopathological characteristics showed that age, family history of cervical cancer and post-menopausal status did not significantly differ between RS and RR groups. Tumor size demonstrated a borderline significant association with radiotherapy response, while differentiation degree was significantly associated. Serum ICAM-1 and VCAM-1 concentrations were significantly higher in the RR group compared to the RS group. Combined detection of ICAM-1 and VCAM-1 improved the predictive ability for radiotherapy sensitivity. Higher serum ICAM-1 and VCAM-1 levels were observed in patients with lower tumor differentiation. Five-year overall survival rates differed significantly between patients with high and low ICAM-1 and VCAM-1 levels. Conclusion: Serum ICAM-1 and VCAM-1 levels show potential as predictive biomarkers for radiotherapy sensitivity in cervical cancer.

17.
Elife ; 122024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597186

ABSTRACT

Epithelial intercellular adhesion molecule (ICAM)-1 is apically polarized, interacts with, and guides leukocytes across epithelial barriers. Polarized hepatic epithelia organize their apical membrane domain into bile canaliculi and ducts, which are not accessible to circulating immune cells but that nevertheless confine most of ICAM-1. Here, by analyzing ICAM-1_KO human hepatic cells, liver organoids from ICAM-1_KO mice and rescue-of-function experiments, we show that ICAM-1 regulates epithelial apicobasal polarity in a leukocyte adhesion-independent manner. ICAM-1 signals to an actomyosin network at the base of canalicular microvilli, thereby controlling the dynamics and size of bile canalicular-like structures. We identified the scaffolding protein EBP50/NHERF1/SLC9A3R1, which connects membrane proteins with the underlying actin cytoskeleton, in the proximity interactome of ICAM-1. EBP50 and ICAM-1 form nano-scale domains that overlap in microvilli, from which ICAM-1 regulates EBP50 nano-organization. Indeed, EBP50 expression is required for ICAM-1-mediated control of BC morphogenesis and actomyosin. Our findings indicate that ICAM-1 regulates the dynamics of epithelial apical membrane domains beyond its role as a heterotypic cell-cell adhesion molecule and reveal potential therapeutic strategies for preserving epithelial architecture during inflammatory stress.


Subject(s)
Actomyosin , Intercellular Adhesion Molecule-1 , Animals , Mice , Humans , Actomyosin/metabolism , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Epithelial Cells/metabolism , Hepatocytes/metabolism , Liver/metabolism , Actin Cytoskeleton/metabolism , Leukocytes/metabolism , Cell Polarity
18.
J Clin Med ; 13(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38610892

ABSTRACT

Background: Idiopathic pulmonary fibrosis (IPF) is an irreversible lung fibrotic disorder of unknown cause. It has been reported that bacterial and viral co-infections exacerbate disease pathogenesis. These pathogens use adhesion molecules such as platelet activating factor receptor (PAFR) and intercellular adhesion molecule-1 (ICAM-1) to gain cellular entry, causing infections. Methods: Immunohistochemical staining was carried out for lung resections from IPF patients (n = 11) and normal controls (n = 12). The quantification of PAFR and ICAM-1 expression is presented as a percentage in the small airway epithelium. Also, type 2 pneumocytes and alveolar macrophages were counted as cells per mm2 of the parenchymal area and presented as a percentage. All image analysis was done using Image Pro Plus 7.0 software. Results: PAFR expression significantly increased in the small airway epithelium (p < 0.0001), type 2 pneumocytes (p < 0.0001) and alveolar macrophages (p < 0.0001) compared to normal controls. Similar trend was observed for ICAM-1 expression in the small airway epithelium (p < 0.0001), type 2 pneumocytes (p < 0.0001) and alveolar macrophages (p < 0.0001) compared to normal controls. Furthermore, the proportion of positively expressed type 2 pneumocytes and alveolar macrophages was higher in IPF than in normal control. Conclusions: This is the first study to show PAFR and ICAM-1 expression in small airway epithelium, type 2 pneumocytes and alveolar macrophages in IPF. These findings could help intervene microbial impact and facilitate management of disease pathogenesis.

19.
Diagnostics (Basel) ; 14(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38611652

ABSTRACT

BACKGROUND AND OBJECTIVES: Although classical gross features are known in hypothermia victims, they lack specific diagnosis features. The aim of our study was to reveal specific brain and lung pathological features in a group of hypothermia-related fatalities. MATERIALS AND METHODS: The study group comprised 107 cases from our files associated with hypothermia. Routine hematoxylin-eosin (H&E) staining and postmortem immunohistochemistry were performed. RESULTS: The microscopic cerebral exam revealed diffuse perineuronal and perivascular edema, gliosis, mononuclear cell infiltration, acute brain injuries, focal neuronal ischemia, lacunar infarction, and variable hemorrhages. Variable alveolar edema, pulmonary emphysema, intra-alveolar and/or pleural hemorrhage, and bronchopneumonia, as well as other pre-existing lesions, were identified in lung tissue samples. Glial cells displayed S100ß expression, while neurons showed moderate Hsp70 immunopositivity. Alveolar basal membranes exhibited diffuse ICAM-1 positive expression, while ICAM-1 and AQP-1 positivity was observed in the alveolar septum vascular endothelium. Statistical analysis revealed a significant correlation between S100ß and Hps70 immunoexpression and cerebral pathological features, between ICAM-1 immunoexpression and alveolar edema and pulmonary emphysema, and between AQP-1 immunoexpression and pulmonary emphysema. CONCLUSIONS: Our results add supplementary data to brain and lung pathological findings in hypothermia-related fatalities, with potential therapeutic value in hypothermia patients.

20.
J Leukoc Biol ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626309

ABSTRACT

Intercellular cell adhesion molecule 1 (ICAM-1) is a cell surface glycoprotein with a vital role in the immune response to pathogens. The expression pattern of ICAM-1 is wide-ranging, encompassing endothelial cells, epithelial cells and neutrophils. Recent work has characterized the role of ICAM-1 in murine neutrophils, but the function of human neutrophil ICAM-1 is incompletely understood. Herein, we investigated the expression and role of ICAMs in human neutrophils in vitro and in vivo. Our findings show clear expression of ICAM-1, -3 and -4 on peripheral blood-derived neutrophils and demonstrate that the pathogen-associated molecular pattern (PAMP) lipoteichoic acid (LTA) is an inducer of ICAM-1 expression in vitro. In vivo, neutrophils obtained from the pleural cavity of patients with a parapneumonic effusion display enhanced expression of ICAM-1 compared to peripheral blood- and oral cavity-derived neutrophils. Moreover, migration of peripheral blood-derived neutrophils across endothelial cells can upregulate neutrophil ICAM-1 expression. These findings indicate that PAMPs and/or cytokines, alongside transmigration, enhance neutrophil ICAM-1 expression at sites of inflammation. Mechanistically we observed that ICAM-1high neutrophils display elevated S. aureus phagocytic capacity. However, unlike murine neutrophils, ICAM-1 intracellular signaling in human neutrophils was not essential for phagocytosis of S. aureus and reactive oxygen species (ROS) generation. Taken together, these results have important implications for the regulation of neutrophil-mediated pathogen clearance.

SELECTION OF CITATIONS
SEARCH DETAIL
...