Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Acta Pharm Sin B ; 12(2): 600-620, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34401226

ABSTRACT

The use of small interfering RNAs (siRNAs) has been under investigation for the treatment of several unmet medical needs, including acute lung injury/acute respiratory distress syndrome (ALI/ARDS) wherein siRNA may be implemented to modify the expression of pro-inflammatory cytokines and chemokines at the mRNA level. The properties such as clear anatomy, accessibility, and relatively low enzyme activity make the lung a good target for local siRNA therapy. However, the translation of siRNA is restricted by the inefficient delivery of siRNA therapeutics to the target cells due to the properties of naked siRNA. Thus, this review will focus on the various delivery systems that can be used and the different barriers that need to be surmounted for the development of stable inhalable siRNA formulations for human use before siRNA therapeutics for ALI/ARDS become available in the clinic.

2.
JTCVS Open ; 12: 221-233, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36590735

ABSTRACT

Objective: Neurologic complications seriously affect the survival rate and quality of life in patients with extracorporeal cardiopulmonary resuscitation (ECPR) undergoing cardiac arrest. This study aimed to repurpose selective hypothermic cerebral perfusion (SHCP) as a novel approach to protect the brains of these patients. Methods: Rats were randomly allocated to Sham, ECPR, and SHCP combined ECPR (CP-ECPR) groups. In the ECPR group, circulatory resuscitation was performed at 6 minutes after asphyxial cardiac arrest by extracorporeal membrane oxygenation. The vital signs were monitored for 3 hours, and body and brain temperatures were maintained at the normal level. In the CP-ECPR group, the right carotid artery catheterization serving as cerebral perfusion was connected with the extracorporeal membrane oxygenation device to achieve selective brain cooling (26-28 °C). Serum markers of brain injury and pathomorphologic changes in the hippocampus were evaluated. Three biological replicates further received RNA sequencing in ECPR and CP-ECPR groups. Microglia activation and inflammatory cytokines in brain tissues and serum were detected. Results: SHCP rapidly reduced the brain-targeted temperature and significantly alleviated nerve injury. This was evident from the reduced brain injury serum biomarker levels, lower pathologic scores, and more surviving neurons in the hippocampus in the CP-ECPR group. Furthermore, more differentially expressed genes for inflammatory responses were clustered functionally according to Kyoto Encyclopedia of Genes and Genomes pathway analysis. And SHCP reduced microglia activation and the release of proinflammatory mediators. Conclusions: Our preliminary data indicate that SHCP may serve as a potential therapy to attenuate brain injury via downregulation of neuroinflammation in patients with ECPR.

3.
Acta Pharm Sin B ; 11(9): 2749-2767, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34589395

ABSTRACT

Diabetic nephropathy (DN) has been recognized as a severe complication of diabetes mellitus and a dominant pathogeny of end-stage kidney disease, which causes serious health problems and great financial burden to human society worldwide. Conventional strategies, such as renin-angiotensin-aldosterone system blockade, blood glucose level control, and bodyweight reduction, may not achieve satisfactory outcomes in many clinical practices for DN management. Notably, due to the multi-target function, Chinese medicine possesses promising clinical benefits as primary or alternative therapies for DN treatment. Increasing studies have emphasized identifying bioactive compounds and molecular mechanisms of reno-protective effects of Chinese medicines. Signaling pathways involved in glucose/lipid metabolism regulation, antioxidation, anti-inflammation, anti-fibrosis, and podocyte protection have been identified as crucial mechanisms of action. Herein, we summarize the clinical efficacies of Chinese medicines and their bioactive components in treating and managing DN after reviewing the results demonstrated in clinical trials, systematic reviews, and meta-analyses, with a thorough discussion on the relative underlying mechanisms and molecular targets reported in animal and cellular experiments. We aim to provide comprehensive insights into the protective effects of Chinese medicines against DN.

4.
Acta Pharm Sin B ; 11(8): 2306-2325, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34522589

ABSTRACT

Blood-brain barrier (BBB) strictly controls matter exchange between blood and brain, and severely limits brain penetration of systemically administered drugs, resulting in ineffective drug therapy of brain diseases. However, during the onset and progression of brain diseases, BBB alterations evolve inevitably. In this review, we focus on nanoscale brain-targeting drug delivery strategies designed based on BBB evolutions and related applications in various brain diseases including Alzheimer's disease, Parkinson's disease, epilepsy, stroke, traumatic brain injury and brain tumor. The advances on optimization of small molecules for BBB crossing and non-systemic administration routes (e.g., intranasal treatment) for BBB bypassing are not included in this review.

5.
Acta Pharm Sin B ; 11(7): 1767-1788, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34386320

ABSTRACT

Ischemic stroke is a cerebrovascular disease normally caused by interrupted blood supply to the brain. Ischemia would initiate the cascade reaction consisted of multiple biochemical events in the damaged areas of the brain, where the ischemic cascade eventually leads to cell death and brain infarction. Extensive researches focusing on different stages of the cascade reaction have been conducted with the aim of curing ischemic stroke. However, traditional treatment methods based on antithrombotic therapy and neuroprotective therapy are greatly limited for their poor safety and treatment efficacy. Nanomedicine provides new possibilities for treating stroke as they could improve the pharmacokinetic behavior of drugs in vivo, achieve effective drug accumulation at the target site, enhance the therapeutic effect and meanwhile reduce the side effect. In this review, we comprehensively describe the pathophysiology of stroke, traditional treatment strategies and emerging nanomedicines, summarize the barriers and methods for transporting nanomedicine to the lesions, and illustrate the latest progress of nanomedicine in treating ischemic stroke, with a view to providing a new feasible path for the treatment of cerebral ischemia.

6.
Acta Pharm Sin B ; 11(6): 1493-1512, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34221864

ABSTRACT

Macrophages are typically identified as classically activated (M1) macrophages and alternatively activated (M2) macrophages, which respectively exhibit pro- and anti-inflammatory phenotypes, and the balance between these two subtypes plays a critical role in the regulation of tissue inflammation, injury, and repair processes. Recent studies indicate that tissue cells and macrophages interact via the release of small extracellular vesicles (EVs) in processes where EVs released by stressed tissue cells can promote the activation and polarization of adjacent macrophages which can in turn release EVs and factors that can promote cell stress and tissue inflammation and injury, and vice versa. This review discusses the roles of such EVs in regulating such interactions to influence tissue inflammation and injury in a number of acute and chronic inflammatory disease conditions, and the potential applications, advantage and concerns for using EV-based therapeutic approaches to treat such conditions, including their potential role of drug carriers for the treatment of infectious diseases.

8.
AACE Clin Case Rep ; 7(4): 249-255, 2021.
Article in English | MEDLINE | ID: mdl-34307847

ABSTRACT

OBJECTIVE: Intravascular large B-cell lymphoma (IVLBCL) is a rare and aggressive type of B-cell lymphoma with large cells growing within the lumen of blood vessels. Although previous reports revealed highly variable symptoms resulting from small-vessel occlusion by neoplastic cells in a variety of organs, there are few reports of IVLBCL with pituitary involvement. METHOD: We present a case of IVLBCL with pituitary infiltration from our institution together with a literature review of similar cases to better understand this rare case of IVLBCL involving the pituitary gland. RESULTS: Our case and the pertinent literature demonstrated that IVLBCL with pituitary involvement predominantly occurred in women at a mean age of 64 years, and most of them showed panhypopituitarism that was reversible after standard therapy of rituximab-containing chemotherapy with intrathecal methotrexate. Notably, the pituitary biopsy in our case revealed that atypical large B-cells found within blood vessels and the pituitary gland were negative for intercellular adhesion molecule 1. Intercellular adhesion molecule 1-negative lymphoid cells may have contributed to panhypopituitarism by extravasation into the pituitary tissues, which do not have a blood-brain barrier and receive abundant blood flow. CONCLUSION: IVLBCL of the pituitary gland is a rare lymphoma with nonspecific manifestations and a dismal prognosis. Recognition of the clinicopathological features is necessary for early clinical diagnosis and appropriate treatment.

9.
JACC Basic Transl Sci ; 6(5): 431-443, 2021 May.
Article in English | MEDLINE | ID: mdl-34095633

ABSTRACT

Interleukin (IL)-6 is an emerging therapeutic target in myocardial infarction (MI). IL-6 has 2 distinct signaling pathways: trans-signaling, which mediates inflammation, and classic signaling, which also has anti-inflammatory effects. The novel recombinant fusion protein sgp130Fc achieves exclusive trans-signaling blockade, whereas anti-IL-6 antibodies (Abs) result in panantagonism. In a rat model of reperfused MI, sgp130Fc, but not anti-IL-6-Ab, attenuated neutrophil and macrophage infiltration into the myocardium, reduced infarct size, and preserved cardiac function 28 days after MI. These data demonstrate the efficacy of exclusive IL-6 trans-signaling blockade and support further investigation of sgp130Fc as a potential novel therapy in MI.

10.
Acta Pharm Sin B ; 11(10): 3060-3091, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33977080

ABSTRACT

Acute respiratory distress syndrome (ARDS) is characterized by the severe inflammation and destruction of the lung air-blood barrier, leading to irreversible and substantial respiratory function damage. Patients with coronavirus disease 2019 (COVID-19) have been encountered with a high risk of ARDS, underscoring the urgency for exploiting effective therapy. However, proper medications for ARDS are still lacking due to poor pharmacokinetics, non-specific side effects, inability to surmount pulmonary barrier, and inadequate management of heterogeneity. The increased lung permeability in the pathological environment of ARDS may contribute to nanoparticle-mediated passive targeting delivery. Nanomedicine has demonstrated unique advantages in solving the dilemma of ARDS drug therapy, which can address the shortcomings and limitations of traditional anti-inflammatory or antioxidant drug treatment. Through passive, active, or physicochemical targeting, nanocarriers can interact with lung epithelium/endothelium and inflammatory cells to reverse abnormal changes and restore homeostasis of the pulmonary environment, thereby showing good therapeutic activity and reduced toxicity. This article reviews the latest applications of nanomedicine in pre-clinical ARDS therapy, highlights the strategies for targeted treatment of lung inflammation, presents the innovative drug delivery systems, and provides inspiration for strengthening the therapeutic effect of nanomedicine-based treatment.

11.
JHEP Rep ; 3(4): 100303, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33997748

ABSTRACT

BACKGROUND & AIMS: Endothelial injury and dysfunction play a detrimental role in the pathogenesis of infections. Endothelium-related molecules have been reported as potential diagnostic and/or prognostic biomarkers of infection. The prognostic value of these biomarkers in patients with cirrhosis and infections remains elusive. METHODS: In this study, we investigated the performance of key soluble endothelial injury biomarkers, including intercellular adhesion molecule 1 (ICAM1), von Willebrand factor (vWF), vascular endothelial growth factor receptor 1 (VEGFR1), and angiopoietin 1 and 2 (Ang1, 2) as mortality predictors in patients with cirrhosis and severe COVID-19 or bacterial sepsis. RESULTS: A total of 66 hospitalized patients (admitted to the COVID-19 ward or liver intensive care unit [ICU]) were included. Twenty-two patients had COVID-19 alone, while 20 patients had cirrhosis plus COVID-19. Twenty-four patients had cirrhosis plus bacterial sepsis. Among patients with cirrhosis, the most common aetiology of liver disease was alcohol. ICAM1 was increased (p = 0.003) while VEGFR1 (p <0.0001) and Ang1 (p <0.0001) were reduced in patients with COVID-19 and cirrhosis, compared to patients with COVID-19 alone. Endothelial biomarker levels did not differ significantly between patients with cirrhosis and severe COVID-19 or bacterial sepsis in the ICU. In these patients, ICAM1 levels significantly and independently predicted mortality (hazard ratio 3.24; 95% CI 1.19-8.86) along with model for end-stage liver disease (MELD) score, renal and coagulation failures. The AUC for ICAM1 was 0.74, MELD was 0.60 and combined ICAM1 and MELD was 0.70. ICAM1 also positively correlated with the composite organ failure scores recorded 3-5 days post ICU admission (CLIF-OF and SOFA) in this subgroup of patients. CONCLUSION: The study indicates that in patients with cirrhosis, elevated plasma ICAM1 serves as an independent predictor of severe COVID-19- or sepsis-associated 28-day mortality. LAY SUMMARY: Bacterial sepsis and COVID-19 lead to increased mortality in patients with cirrhosis. In this study, we demonstrate that high plasma levels of ICAM1, an endothelial injury biomarker, is one of the important factors predicting mortality in critically ill cirrhotic patients with severe COVID-19 or bacterial sepsis.

12.
Biochem Biophys Rep ; 26: 100977, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33732908

ABSTRACT

Irisin, a myokine released from skeletal muscle, has recently been found to act as a ligand for the integrins αVß5, αVß1, and α5ß1 expressed on mesenchymal cells, thereby playing an important role in the metabolic remodeling of the bone, skeletal muscle and adipose tissues. Although the immune-modulatory effects of irisin in chronic inflammation have been documented, its interactions with lymphocytic integrins have yet to be elucidated. Here, we show that irisin supports the cell adhesion of human and mouse lymphocytes. Cell adhesion assays using a panel of inhibitory antibodies to integrins have shown that irisin-mediated lymphocyte adhesion involves multiple integrins including not only α4ß1 and α5ß1, but also leukocyte-specific αLß2 and α4ß7. Importantly, mouse lymphocytic TK-1 cells that lack the expression of ß1 integrins have exhibited αLß2- and α4ß7-mediated cell adhesion to irisin. Irisin has also been demonstrated to bind to purified recombinant integrin αLß2 and α4ß7 proteins. Thus, irisin represents a novel ligand for integrin αLß2 and α4ß7, capable of supporting lymphocyte cell adhesion independently of ß1 integrins. These results suggest that irisin may play an important role in regulating lymphocyte adhesion and migration in the inflamed vasculature.

13.
J Bone Oncol ; 26: 100337, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33240786

ABSTRACT

Breast cancer (BC) is the most frequent malignancy and the first cause of cancer-related death in women. The majority of patients with advanced BC develop skeletal metastases which may ultimately lead to serious complications, termed skeletal-related events, that often dramatically impact on quality of life and survival. Therefore, the identification of biomarkers able to stratify BC patient risk to develop bone metastases (BM) is fundamental to define personalized diagnostic and therapeutic strategies, possibly at the earliest stages of the disease. In this regard, the advent of "omics" sciences boosted the investigation of several putative biomarkers of BC osteotropism, including deregulated genes, proteins and microRNAs. The present review revisits the current knowledge on BM development in BC and the most recent studies exploring potential BM-predicting biomarkers, based on the application of omics sciences to the study of primary breast malignancies.

14.
J Adv Res ; 26: 123-135, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33133688

ABSTRACT

INTRODUCTION: In atherosclerotic lesions, extensive inflammation of the vessel wall contributes to plaque instability. Long noncoding RNAs (lncRNAs) play important roles in diverse biological processes in atherosclerosis. OBJECTIVES: Here, we aim to identify the functional role and regulatory mechanisms of lncRNA hypoxia-inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2) in atherosclerotic inflammation. METHODS: An atherosclerotic mouse model was induced in ApoE-/- mice by high fat diet (HFD). Endothelial cells (ECs), human aortic smooth muscle cells (SMCs) or human coronary artery endothelial cells (HCAECs) were exposed to ox-LDL to develop the in vitro model. The effects of lncRNA HIF1A-AS2 on inflammation were evaluated by determining levels of inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) and levels of adhesion molecules vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and macrophage cationic peptide 1 (MCP-1). RESULTS: It was established that lncRNA HIF1A-AS2 and ATF2 were highly expressed in atherosclerotic ApoE-/- mice. Downregulating lncRNA HIF1A-AS2 in ox-LDL-exposed ECs, SMCs and HCAECs inhibited inflammation by reducing levels of pro-inflammatory factors and adhesion molecules. LncRNA HIF1A-AS2 bound to the transcription factor USF1 to elevate ATF2 expression. USF1 overexpression counteracted the suppressive effect of lncRNA HIF1A-AS2 silencing on ox-LDL-induced inflammation. Knockdown of lncRNA HIF1A-AS2 or ATF2 could also attenuate inflammation in atherosclerotic mice. Collectively, the present study demonstrates that downregulation of lncRNA HIF1A-AS2 represses the binding of USF1 to the ATF2 promoter region and then inhibits ATF2 expression, thereby suppressing atherosclerotic inflammation. CONCLUSION: This study suggests lncRNA HIF1A-AS2 as an promising therapeutic target for atherosclerosis.

15.
J Tradit Complement Med ; 10(6): 570-576, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33134133

ABSTRACT

BACKGROUND AND AIM: Renal ischemia-reperfusion is associated with inflammation and oxidative stress. As a major compound in black pepper, piperine has anti-inflammatory and anti-oxidative properties. In present study, the protective effects of oral administration of piperine in renal ischemia-reperfusion (IR) induced acute kidney injuries (AKI) were investigated. EXPERIMENTAL PROCEDURE: Male Wistar rats received piperine (10 or 20 mg/kg.bw) or vehicle for 10 days. The artery and vein of both kidneys were then clamped for 30 min, followed by a 24-h reperfusion period. Concentrations of creatinine and urea-nitrogen in descending aorta blood were measured, and malondialdehyde (MDA) and ferric reducing/antioxidant power (FRAP) levels were measured in kidney tissue to evaluate the oxidative stress. Inflammation was evaluated by measuring the TNF-α and ICAM-1 mRNA expression levels in renal cortical tissue using Real Time PCR method and counting leukocytes infiltration to interstitium. Further measured were tissue damages in H & E stained sections. RESULTS: Renal IR reduced FRAP, while increasing the plasma concentrations of creatinine and urea-nitrogen, tissue MDA level, TNF-α and ICAM-1 mRNA expressions, leukocyte infiltration and histopathologic injuries. Piperine administration significantly reduced the plasma concentrations of creatinine and urea-nitrogen, expression of pro-inflammatory factors, oxidative stress and renal histopathologic injuries. It is to be noted that 20 mg/kg dose was more effective. CONCLUSION: Our results suggest piperine protects the kidney against ischemia-reperfusion induced acute kidney injuries by its anti-inflammatory and anti-oxidative properties.

16.
eNeurologicalSci ; 20: 100252, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32642566

ABSTRACT

BACKGROUND AND OBJECTIVE: In sub-Saharan Africa, data on prevalence, risk factors and pathobiology of carotid atherosclerosis are scarce. We aimed to investigate the relationship between biomarkers of endothelial dysfunction and carotid atherosclerosis. METHODS: Carotid ultrasound was performed in 66 patients. Plasma concentration of ICAM-1, PAI-1, VEGF, and soluble thrombomodulin were measured by ELISA. A univariable logistic regression analysis was performed to study the relationship between carotid atherosclerosis, biomarkers of endothelial dysfunction, and various demographic and clinical parameters of the participants. RESULTS: The mean age of the participants was 58.7 years (95% CI: 54.4-63.1). Carotid atherosclerosis was diagnosed in 39.4% (95% CI: 27.6-52.2). In the univariable logistic regression, the following factors were associated with carotid atherosclerosis: age > 45 years (OR = 12.0, 95% CI: 1.4-98.8, p = .02), hypertension (OR = 3.8, 95% CI: 1.2-12.1, p = .02), and high-level of soluble thrombomodulin (OR = 3.4, 95% CI: 1.2-10.0, p = .02). CONCLUSIONS: There is an association between high levels of soluble thrombomodulin and carotid atherosclerosis in Malawian adults. Further studies with a larger sample size are needed to confirm our findings in other African populations.

17.
Microb Risk Anal ; 12: 27-43, 2019 Aug.
Article in English | MEDLINE | ID: mdl-32289057

ABSTRACT

Arboviruses such as West Nile virus (WNV), bluetongue virus (BTV), dengue virus (DENV) and chikungunya virus (CHIKV) infect their arthropod vectors over a range of average temperatures depending on the ambient temperature. How the transmission efficiency of an arbovirus (i.e. vector competence) varies with temperature influences not only the short term risk of arbovirus outbreaks in humans and livestock but also the long term impact of climate change on the geographical range of the virus. The strength of the interaction between viral surface (glyco)protein (GP) and the host cell receptor (Cr) on binding of virus to host cell is defined by the thermodynamic dissociation constant Kd_receptor which is assumed to equal 10-3 M (at 37 °C) for binding of a sialic acid (SA) on the arthropod midgut epithelial cell surface to a SA-binding site on the surface of BTV, for example. Here virus binding affinity is modelled with increasing number of GP/Cr contacts at temperatures from 10 °C to 35 °C taking into account the change in entropy on immobilization of the whole virus on binding (ΔSa_immob). Based on published data, three thermodynamic GP/Cr binding scenarios, namely enthalpy-driven, entropy-assisted and entropy-driven, are shown to affect the temperature sensitivity of virus binding in different ways. Thus for enthalpy-driven GP/Cr binding, viruses bind host cells much more strongly at 10 °C than 35 °C. A mechanistic model is developed for the number of arthropod midgut cells with bound virus and by building in a kinetic component for the rate of arbovirus replication and subsequent spread to the arthropod salivary glands, a model for the effect of temperature on vector competence is developed. The model separates the opposing effects of temperature on midgut cell binding affinity from the kinetic component of virogenesis. It successfully accommodates both increases in vector competence with temperature as for DENV and WNV in mosquitoes and decreases as for the CHIKV 2010-1909 strain in various populations of Aedes albopictus mosquitoes. Enhanced cell binding at lower temperatures through enthalpy-driven GP/Cr binding compensates for the lower replication rate to some degree such that some transmission can still occur at lower temperatures. In contrast, the strength of entropy-driven GP/Cr binding diminishes at low temperatures although there is no minimum temperature threshold for transmission efficiency. The magnitude of ΔSa_immob is an important data gap. It is concluded that thermodynamic and kinetic data obtained at the molecular level will prove important in modelling vector competence with temperature.

18.
Biochem Biophys Rep ; 16: 79-87, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30377672

ABSTRACT

We investigated whether mesenchymal stem cell (MSC)-based treatment could inhibit neointimal hyperplasia in a rat model of carotid arterial injury and explored potential mechanisms underlying the positive effects of MSC therapy on vascular remodeling/repair. Sprague-Dawley rats underwent balloon injury to their right carotid arteries. After 2 days, we administered cultured MSCs from bone marrow of GFP-transgenic rats (0.8 × 106 cells, n = 10) or vehicle (controls, n = 10) to adventitial sites of the injured arteries. As an additional control, some rats received a higher dose of MSCs by systemic infusion (3 × 106 cells, tail vein; n = 4). Local vascular MSC administration significantly prevented neointimal hyperplasia (intima/media ratio) and reduced the percentage of Ki67 + proliferating cells in arterial walls by 14 days after treatment, despite little evidence of long-term MSC engraftment. Notably, systemic MSC infusion did not alter neointimal formation. By immunohistochemistry, compared with neointimal cells of controls, cells in MSC-treated arteries expressed reduced levels of embryonic myosin heavy chain and RM-4, an inflammatory cell marker. In the presence of platelet-derived growth factor (PDGF-BB), conditioned medium from MSCs increased p27 protein levels and significantly attenuated VSMC proliferation in culture. Furthermore, MSC-conditioned medium suppressed the expression of inflammatory cytokines and RM-4 in PDGF-BB-treated VSMCs. Thus, perivascular administration of MSCs may improve restenosis after vascular injury through paracrine effects that modulate VSMC inflammatory phenotype.

19.
Cell Mol Gastroenterol Hepatol ; 5(3): 399-413, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29552626

ABSTRACT

BACKGROUND & AIMS: Hepatic infiltration of neutrophils is a hallmark of steatohepatitis; however, the role of neutrophils in the progression of steatohepatitis remains unknown. METHODS: A clinically relevant mouse model of steatohepatitis induced by high-fat diet (HFD) plus binge ethanol feeding was used. Liver fibrosis was examined. In vitro cell culture was used to analyze the interaction of hepatic stellate cells (HSCs) and neutrophils. RESULTS: HFD plus one binge ethanol (HFD+1B) feeding induced significant hepatic neutrophil infiltration, liver injury, and fibrosis. HFD plus multiple binges of ethanol (HFD+mB) caused more pronounced liver fibrosis. Microarray analyses showed that the most highly activated signaling pathway in this HFD+1B model was related to liver fibrosis and HSC activation. Blockade of chemokine (C-X-C motif) ligand 1 or intercellular adhesion molecule-1 expression reduced hepatic neutrophil infiltration and ameliorated liver injury and fibrosis. Disruption of the p47phox gene (also called neutrophil cytosolic factor 1), a critical component of reactive oxygen species producing nicotinamide adenine dinucleotide phosphate-oxidase in neutrophils, diminished HFD+1B-induced liver injury and fibrosis. Co-culture of HSCs with neutrophils, but not with neutrophil apoptotic bodies, induced HSC activation and prolonged neutrophil survival. Mechanistic studies showed that activated HSCs produce granulocyte-macrophage colony-stimulating factor and interleukin-15 to prolong the survival of neutrophils, which may serve as a positive forward loop to promote liver damage and fibrosis. CONCLUSIONS: The current data from a mouse model of HFD plus binge ethanol feeding suggest that obesity and binge drinking synergize to promote liver fibrosis, which is partially mediated via the interaction of neutrophils and HSCs. Microarray data in this article have been uploaded to NCBI's Gene Expression Omnibus (GEO accession number: GSE98153).

20.
Acta Pharm Sin B ; 5(1): 8-24, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26579420

ABSTRACT

Ischemic stroke and ischemia/reperfusion (I/R) injury induced by thrombolytic therapy are conditions with high mortality and serious long-term physical and cognitive disabilities. They have a major impact on global public health. These disorders are associated with multiple insults to the cerebral microcirculation, including reactive oxygen species (ROS) overproduction, leukocyte adhesion and infiltration, brain blood barrier (BBB) disruption, and capillary hypoperfusion, ultimately resulting in tissue edema, hemorrhage, brain injury and delayed neuron damage. Traditional Chinese medicine (TCM) has been used in China, Korea, Japan and other Asian countries for treatment of a wide range of diseases. In China, the usage of compound TCM preparation to treat cerebrovascular diseases dates back to the Han Dynasty. Even thousands of years earlier, the medical formulary recorded many classical prescriptions for treating cerebral I/R-related diseases. This review summarizes current information and underlying mechanisms regarding the ameliorating effects of compound TCM preparation, Chinese materia medica, and active components on I/R-induced cerebral microcirculatory disturbances, brain injury and neuron damage.

SELECTION OF CITATIONS
SEARCH DETAIL
...