Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000441

ABSTRACT

Although inhibitors targeting the PD1/PD-L1 immune checkpoint are showing comparably good outcomes, a significant percentage of head and neck squamous cell carcinoma (HNSCC) patients do not respond to treatment. Apart from using different treatment strategies, another possibility would be to target other immune checkpoints operating in these non-responding tumors. To obtain an overview of which checkpoint ligands are expressed on HNSCC tumor cells and if these ligands are affected by HGF/MET signaling, we used mRNA sequencing and antibody-based techniques for identifying checkpoint ligands in six HNSCC tumor cell lines. Furthermore, we compared our results to mRNA sequencing data. From the checkpoint ligands we investigated, VISTA was expressed the highest at the RNA level and was also the most ubiquitously expressed. PD-L2 and B7-H3 were expressed comparably lower and were not present in all cell lines to the same extent. B7-H4, however, was only detectable in the Detroit 562 cell line. Concerning the effect of HGF on the ligand levels, PD-L2 expression was enhanced with HGF stimulation, whereas other checkpoint ligand levels decreased with stimulation. B7-H4 levels in the Detroit 562 cell line drastically decreased with HGF stimulation. This is of interest because both the checkpoint ligand and the growth factor are reported to be connected to epithelial-mesenchymal transition in the literature.


Subject(s)
Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , Hepatocyte Growth Factor , Immune Checkpoint Proteins , Proto-Oncogene Proteins c-met , Signal Transduction , Squamous Cell Carcinoma of Head and Neck , Humans , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins c-met/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/immunology , Hepatocyte Growth Factor/metabolism , Hepatocyte Growth Factor/genetics , Cell Line, Tumor , Immune Checkpoint Proteins/metabolism , Immune Checkpoint Proteins/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Programmed Cell Death 1 Ligand 2 Protein/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , B7 Antigens/metabolism , B7 Antigens/genetics
2.
Parasit Vectors ; 17(1): 317, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044218

ABSTRACT

BACKGROUND: The primary pathogenic mechanism of schistosomiasis-associated liver fibrosis involves the deposition of schistosome eggs, leading to the formation of liver egg granulomas and subsequent liver fibrosis. Hepatic stellate cells are abnormally activated, resulting in excessive collagen deposition and fibrosis development. While specific long non-coding RNAs (lncRNAs) have been associated with fibrotic processes, their roles in schistosomiasis-associated liver fibrosis remain unclear. METHODS: Our previous research indicated that downregulating the ICOSL/ICOS could partially alleviate liver fibrosis. In this study, we established a schistosomiasis infection model in C57BL/6 and ICOSL knockout (KO) mice, and the liver pathology changes were observed at various weeks postinfection (wpi) using hematoxylin and eosin and Masson's trichrome staining. Within the first 4 wpi, no significant liver abnormalities were observed. However, mice exhibited evident egg granulomas and fibrosis in their livers at 7 wpi. Notably, ICOSL-KO mice had significantly smaller pathological variations compared with simultaneously infected C57BL/6 mice. To investigate the impact of lncRNAs on schistosomiasis-associated liver fibrosis, quantitative real-time polymerase chain reaction (RT-qPCR) was used to monitor the dynamic changes of lncRNAs in hepatic stellate cells of infected mice. RESULTS: The results demonstrated that lncRNA-H19, -MALAT1, -PVT1, -P21 and -GAS5 all participated in liver fibrosis formation after schistosome infection. In addition, ICOSL-KO mice exhibited significantly inhibited expression of lncRNA-H19, -MALAT1 and -PVT1 after 7 wpi. In contrast, they showed enhanced expression of lncRNA-P21 and -GAS5 compared with C57BL/6 mice, influencing liver fibrosis development. Furthermore, small interfering RNA transfection (siRNA) in JS-1 cells in vitro confirmed that lncRNA-H19, -MALAT1, and -PVT1 promoted liver fibrosis, whereas lncRNA-P21 and -GAS5 had the opposite effect on key fibrotic molecules, including α- smooth muscle actin and collagen I expression. CONCLUSIONS: This study uncovers that ICOSL/ICOS may play a role in activating hepatic stellate cells and promoting liver fibrosis in mice infected with Schistosoma japonicum by dynamically regulating the expression of specific lncRNAs. These findings offer potential therapeutic targets for schistosomiasis-associated liver fibrosis.


Subject(s)
Inducible T-Cell Co-Stimulator Ligand , Liver Cirrhosis , Mice, Inbred C57BL , Mice, Knockout , RNA, Long Noncoding , Schistosoma japonicum , Schistosomiasis japonica , Animals , RNA, Long Noncoding/genetics , Schistosomiasis japonica/parasitology , Schistosomiasis japonica/pathology , Liver Cirrhosis/parasitology , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Mice , Schistosoma japonicum/genetics , Inducible T-Cell Co-Stimulator Ligand/genetics , Hepatic Stellate Cells/parasitology , Disease Models, Animal , Liver/parasitology , Liver/pathology , Inducible T-Cell Co-Stimulator Protein/genetics , Female
3.
Int J Mol Sci ; 25(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38473756

ABSTRACT

The inducible T cell co-stimulator ligand (ICOSL), expressed by antigen presenting cells, binds to the inducible T cell co-stimulator (ICOS) on activated T cells. Improper function of the ICOS/ICOSL pathway has been implicated in several autoimmune diseases, including multiple sclerosis (MS). Previous studies showed that ICOS-knockout (KO) mice exhibit severe experimental autoimmune encephalomyelitis (EAE), the animal model of MS, but data on ICOSL deficiency are not available. In our study, we explored the impact of both ICOS and ICOSL deficiencies on MOG35-55 -induced EAE and its associated immune cell dynamics by employing ICOSL-KO and ICOS-KO mice with a C57BL/6J background. During EAE resolution, MOG-driven cytokine levels and the immunophenotype of splenocytes were evaluated by ELISA and multiparametric flow cytometry, respectively. We found that both KO mice exhibited an overlapping and more severe EAE compared to C57BL/6J mice, corroborated by a reduction in memory/regulatory T cell subsets and interleukin (IL-)17 levels. It is noteworthy that an unsupervised analysis showed that ICOSL deficiency modifies the immune response in an original way, by affecting T central and effector memory (TCM, TEM), long-lived CD4+ TEM cells, and macrophages, compared to ICOS-KO and C57BL/6J mice, suggesting a role for other binding partners to ICOSL in EAE development, which deserves further study.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Mice, Knockout , Flow Cytometry , Encephalomyelitis, Autoimmune, Experimental/metabolism , Inducible T-Cell Co-Stimulator Ligand/genetics , Ligands , Mice, Inbred C57BL , T-Lymphocytes , Inducible T-Cell Co-Stimulator Protein/metabolism
4.
Front Oncol ; 13: 1259314, 2023.
Article in English | MEDLINE | ID: mdl-38053658

ABSTRACT

Introduction: Malignant mesothelioma is a rare and aggressive form of cancer. Despite improvements in cancer treatment, there are still no curative treatment modalities for advanced stage of the malignancy. The aim of this study was to evaluate the anti-tumor efficacy of a novel combinatorial therapy combining AdV5/3-D24-ICOSL-CD40L, an oncolytic vector, with an anti-PD-1 monoclonal antibody. Methods: The efficacy of the vector was confirmed in vitro in three mesothelioma cell lines - H226, Mero-82, and MSTO-211H, and subsequently the antineoplastic properties in combination with anti-PD-1 was evaluated in xenograft H226 mesothelioma BALB/c and humanized NSG mouse models. Results and discussion: Anticancer efficacy was attributed to reduced tumour volume and increased infiltration of tumour infiltrating lymphocytes, including activated cytotoxic T-cells (GrB+CD8+). Additionally, a correlation between tumour volume and activated CD8+ tumour infiltrating lymphocytes was observed. These findings were confirmed by transcriptomic analysis carried out on resected human tumour tissue, which also revealed upregulation of CD83 and CRTAM, as well as several chemokines (CXCL3, CXCL9, CXCL11) in the tumour microenvironment. Furthermore, according to observations, the combinatorial therapy had the strongest effect on reducing mesothelin and MUC16 levels. Gene set enrichment analysis suggested that the combinatorial therapy induced changes to the expression of genes belonging to the "adaptive immune response" gene ontology category. Combinatorial therapy with oncolytic adenovirus with checkpoint inhibitors may improve anticancer efficacy and survival by targeted cancer cell destruction and triggering of immunogenic cell death. Obtained results support further assessment of the AdV5/3-D24-ICOSL-CD40L in combination with checkpoint inhibitors as a novel therapeutic perspective for mesothelioma treatment.

5.
Animal Model Exp Med ; 6(5): 464-473, 2023 10.
Article in English | MEDLINE | ID: mdl-37850501

ABSTRACT

BACKGROUND: Immunotherapy has become the fastest-adopting treatment paradigm for lung cancer with improved survival. By binding with its ligand (inducible T-cell co-stimulator and its ligand [ICOSL]), an inducible T-cell co-stimulator (ICOS) could contribute to reversing immunosuppression and improving immune response and thus be a potential target for cancer immunotherapy. METHODS: We selected 54 formalin-fixed, paraffin-embedded tumor tissues from cases with stage I-III lung adenocarcinoma cancer. Immunohistochemical expression of ICOS and ICOSL was evaluated. The correlation with clinical parameters in Chinese patients was also compared with TCGA results. RESULTS: The positive rates of ICOS and ICOSL were 68% and 81.5%, respectively, in lung tumor tissues. Of these, 9 cases had a low expression of ICOS, and 22 cases had a high expression of ICOS; ICOSL expression was low in 20 cases and high in 24 cases. According to the International Association for the Study of Lung Cancer (8th edition), phase I lesions were detected in 21 cases, phase II lesions in 15 cases, and phase III lesions in 18 cases. The median survival time of all patients was 44.5 months, and the median disease-free survival was 32 months. Univariate analysis showed that the factors significantly associated with overall survival were tumor size, regional lymph node involvement, stage, and expression level of ICOS/ICOSL. Survival analysis using log-rank test indicated that the lower ICOS+ cell infiltration may predict poor prognosis, whereas lower ICOSL protein expression may be associated with better prognosis, but ICOSL data need further validation in larger samples due to inconsistency in TCGA mRNA prediction. CONCLUSION: ICOS/ICOSL might be associated with prognosis of lung cancer, and ICOS and its ligand may be potential therapeutic targets in non-small cell lung cancer.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Inducible T-Cell Co-Stimulator Ligand , Inducible T-Cell Co-Stimulator Protein , Humans , Adenocarcinoma of Lung/genetics , Carcinoma, Non-Small-Cell Lung/genetics , East Asian People , Inducible T-Cell Co-Stimulator Protein/genetics , Ligands , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Prognosis , Inducible T-Cell Co-Stimulator Ligand/genetics
6.
BBA Adv ; 4: 100103, 2023.
Article in English | MEDLINE | ID: mdl-37705722

ABSTRACT

Th17 cells are powerful inflammation promoters in the pathogenesis of abdominal aortic aneurysms (AAAs). Myeloid-derived suppressor cells (MDSCs) can promote the differentiation of Th17 cells in chronic inflammatory autoimmune injury. Here, we aim to examine whether MDSCs regulate the differentiation of Th17 cells to participate in the development of AAA. We demonstrated an abnormal accumulation of MDSCs in AAA patients, which was positively associated with Th17 cells. We established angiotensin II-induced apolipoprotein E knockout mice and found the impaired immunosuppressive function of M-MDSCs. After systemic injection of anti-Gr-1 antibody in AAA mice to deplete circulating MDSCs, AAA formation and the differentiation of Th17 cells were abolished, and the overexpression of inducible T-cell costimulator (ICOS) on Th17 cells was reversed accordingly. Regulating the expression of ICOS ligand (ICOSL) on MDSCs affects the differentiation of Th17 cells. The adoptive transfer of ICOSLlowMDSCs in AAA mice inhibited the differentiation of Th17 cells and the development of AAA. Meanwhile, rIL-3 promoted the survival and immunosuppressive dysfunction of MDSCs, upregulated ICOSL expression on MDSCs by inhibiting activation of the PI3K/AKT signaling pathway, and regulated MDSCs to promote the differentiation of Th17 cells via the ICOSL-ICOS axis. An increase in serum IL-3, ICOSL+MDSCs, and ICOS+Th17 cells was detected in AAA patients, and IL-3 levels were positively correlated with the proportion of ICOSL+MDSC cells. In conclusion, we uncovered a pivotal role of MDSCs in promoting the differentiation of Th17 cells through the IL-3-ICOSL-ICOS axis during AAA, providing an important theoretical basis for understanding the pathogenesis of AAA.

7.
Front Immunol ; 14: 1194088, 2023.
Article in English | MEDLINE | ID: mdl-37575240

ABSTRACT

Background: Bullous pemphigoid (BP) is an autoimmune skin-blistering disease. Systemic corticosteroids remain the first line treatment for moderate-to-severe BP with the potential for severe adverse events. Dupilumab has emerged as an alternative option for BP patients. Objective: We evaluated the efficiency and safety of dupilumab on BP treatment and explored a mode of drug action in depth. Methods and results: A multicenter retrospective cohort included 20 BP patients who received dupilumab with or without systemic corticosteroid in dupilumab group, and 20 matched BP patients who received corticosteroid alone in conventional group. Serum samples were collected from 20 patients (10 from dupilumab group and 10 from conventional group) at baseline and week 4. Compared to systemic corticosteroid alone, dupilumab with or without systemic corticosteroid was similarly efficacious in clinical remission at week4 (complete remission plus partial remission: 100%) and week24 (complete remission plus partial remission:100%), but allowing significant decreases in the cumulative doses of corticosteroids with reducing the incidence of adverse events. However, dupilumab did not decrease BP180 antibody despite an obvious clinical improvement. Comparative plasma proteomic analysis performed before and after treatment in 3 BP patients from dupilumab group revealed that drug use was associated with 30 differentially expressed proteins, including 26 down-regulated and 4 up-regulated proteins. The former consisted of immune related proteins involved in T/B cell interactions (inducible T-cell co-stimulator ligand, ICOSL) and in the activation of eosinophils (PRG2), mast cells (S100A12), and complement (CR2). TARC and ICOSL levels correlated with BP severity in patients who received either dupilumab or conventional treatment. Conclusion: Dupilumab has similar efficacy in treating BP as conventional drugs, by inhibiting the activities of many types of immune cells and complement, and regulating the interactions between T and B cells.


Subject(s)
Autoimmune Diseases , Pemphigoid, Bullous , Humans , Retrospective Studies , Proteomics , Adrenal Cortex Hormones/therapeutic use
8.
Front Immunol ; 14: 1171308, 2023.
Article in English | MEDLINE | ID: mdl-37325657

ABSTRACT

Background: Chronic rhinosinusitis (CRS), whose prevalence and pathogenesis are age-related, is characterized by nasal tissue eosinophil infiltration. CD40-CD40 ligand (CD40L) pathway involves in the eosinophil-mediated inflammation, and inducible co-stimulator (ICOS)-ICOS ligand (ICOSL) signal can strengthen CD40-CD40L interaction. Whether CD40-CD40L and ICOS-ICOSL have a role in the development of CRS remains unknown. Objectives: The aim of this study is to investigate the association of CD40-CD40L and ICOS-ICOSL expression with CRS and underlying mechanisms. Methods: Immunohistology detected the expression of CD40, CD40L, ICOS, and ICOSL. Immunofluorescence was performed to evaluate the co-localizations of CD40 or ICOSL with eosinophils. Correlations between CD40-CD40L and ICOS-ICOSL as well as clinical parameters were analyzed. Flow cytometry was used to explore the activation of eosinophils by CD69 expression and the CD40 and ICOSL expression on eosinophils. Results: Compared with the non-eCRS subset, ECRS (eosinophilic CRS) subset showed significantly increased CD40, ICOS, and ICOSL expression. The CD40, CD40L, ICOS, and ICOSL expressions were all positively correlated with eosinophil infiltration in nasal tissues. CD40 and ICOSL were mainly expressed on eosinophils. ICOS expression was significantly correlated with the expression of CD40-CD40L, whereas ICOSL expression was correlated with CD40 expression. ICOS-ICOSL expression positively correlated with blood eosinophils count and disease severity. rhCD40L and rhICOS significantly enhanced the activation of eosinophils from patients with ECRS. Tumor necrosis factor-α (TNF-α) and interleukin-5 (IL-5) obviously upregulated CD40 expression on eosinophils, which was significantly inhibited by the p38 mitogen-activated protein kinase (MAPK) inhibitor. Conclusions: Increased CD40-CD40L and ICOS-ICOSL expressions in nasal tissues are linked to eosinophils infiltration and disease severity of CRS. CD40-CD40L and ICOS-ICOSL signals enhance eosinophils activation of ECRS. TNF-α and IL-5 regulate eosinophils function by increasing CD40 expression partly via p38 MAPK activation in patients with CRS.


Subject(s)
CD40 Ligand , Eosinophilia , Humans , Eosinophils/metabolism , Interleukin-5 , Tumor Necrosis Factor-alpha , CD40 Antigens , Eosinophilia/metabolism , Interleukin-2 , Inducible T-Cell Co-Stimulator Protein
9.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769276

ABSTRACT

Activated T cells express the inducible T-cell co-stimulator (ICOS) that, upon binding to its ubiquitously expressed ligand (ICOSL), regulates the immune response and tissue repair. We sought to determine the effect of ICOS:ICOSL interaction on human M1 and M2 macrophages. M1 and M2 macrophages were polarized from monocyte-derived macrophages, and the effect of a soluble recombinant form of ICOS (ICOS-CH3) was assessed on cytokine production and cell migration. We show that ICOS-CH3 treatment increased the secretion of CCL3 and CCL4 in resting M1 and M2 cells. In LPS-treated M1 cells, ICOS-CH3 inhibited the secretion of TNF-α, IL-6, IL-10 and CCL4, while it increased that of IL-23. In contrast, M2 cells treated with LPS + IL4 displayed enhanced secretion of IL-6, IL-10, CCL3 and CCL4. In CCL7- or osteopontin-treated M1 cells, ICOS-CH3 boosted the migration rate of M1 cells while it decreased that of M2 cells. Finally, ß-Pix expression was upregulated in M1 cells and downregulated in M2 cells by treatment with ICOS-CH3. These findings suggest that ICOSL activation modulates the activity of human M1 and M2 cells, thereby eliciting an overall anti-inflammatory effect consistent with its role in promoting tissue repair.


Subject(s)
Interleukin-10 , Interleukin-6 , Humans , Inducible T-Cell Co-Stimulator Protein , Lipopolysaccharides/pharmacology , Macrophages
10.
Front Immunol ; 13: 1015831, 2022.
Article in English | MEDLINE | ID: mdl-36405702

ABSTRACT

Inducible costimulator (ICOS) and its ligand (ICOSL) are critical to regulate the immune response in autoimmune diseases. The participation of B lymphocytes exhibits pathogenic potential in the disease process of rheumatoid arthritis (RA). However, the precise role of ICOSL in RA remains unclear. In this study, we aimed to explore the regulatory effects of CD19+ICOSL+ B cells in the pathogenesis of RA. We demonstrated the increased expression of ICOS and ICOSL in patients with RA and collagen-induced arthritis (CIA) mice. The population of CD19+ICOSL+ B-cell subset was significantly correlated with clinicopathological characteristics of RA patients and CIA mice. Adoptive transfer of CD19+ICOSL+ B cells aggravated arthritic progression in CIA mice. Moreover, microarray analysis revealed that CD19+ICOSL+ cells could exert pivotal effect in pathological process of RA. Further blocking of ICOSL significantly inhibited proinflammatory responses and ameliorated arthritic progression. Therefore, CD19+ICOSL+ B-cell subset could be defined as a specific pathogenic cell subpopulation involved in immunopathological damage of RA. Blockade of ICOSL is promising to be a potential new approach for RA therapy.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Mice , Animals , Ligands , Inducible T-Cell Co-Stimulator Ligand , B-Lymphocytes , Antigens, CD19 , Adaptor Proteins, Signal Transducing
11.
Am J Cancer Res ; 12(9): 4177-4195, 2022.
Article in English | MEDLINE | ID: mdl-36225638

ABSTRACT

Inducible costimulator ligand (ICOSL) expressed on cancer cells has immunoregulatory functions in various malignancies. However, the role of ICOSL in triple-negative breast cancer (TNBC) remains unclear. In this study, the role and expression of ICOSL in TNBC were analyzed using the cBioPortal and GEPIA databases. Then the role of ICOSL in Foxp3+ Treg cell differentiation, reversal of p38 pathway activation and cell proliferation, migration and apoptosis was determined in vitro. Finally, the effect of ICOSL expression on TNBC progression was verified in a nude mouse model of TNBC. We here observed that ICOSL expression in TNBC was found to be related to relapse-free survival, and Treg abundance was positively correlated with ICOSL expression, as demonstrated by database analyses. In vitro experiments showed that ICOSL overexpression (OE) in MDA-MB-231 cells induced cocultured T cells to differentiate into Foxp3+ Treg cells and promoted secretion of the tumor-promoting factors IL-10 and IL-4. Furthermore, in vitro experiments showed that ICOSL reversed p38 phosphorylation and promoted the proliferation, invasion, and metastasis of MDA-MB-231 ICOSL-OE cells. Finally, tumor progression was found to be promoted by ICOSL expression in a TNBC nude mouse model. Together, ICOSL expression can enhance tumor cell growth by inducing Foxp3+ Treg cell differentiation and reversing p38 pathway activation in TNBC.

12.
Int J Mol Sci ; 23(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35806368

ABSTRACT

BACKGROUND: ICOS and its ligand ICOSL are immune receptors whose interaction triggers bidirectional signals that modulate the immune response and tissue repair. AIM: The aim of this study was to assess the in vivo effects of ICOSL triggering by ICOS-Fc, a recombinant soluble form of ICOS, on skin wound healing. METHODS: The effect of human ICOS-Fc on wound healing was assessed, in vitro, and, in vivo, by skin wound healing assay using ICOS-/- and ICOSL-/- knockout (KO) mice and NOD-SCID-IL2R null (NSG) mice. RESULTS: We show that, in wild type mice, treatment with ICOS-Fc improves wound healing, promotes angiogenesis, preceded by upregulation of IL-6 and VEGF expression; increases the number of fibroblasts and T cells, whereas it reduces that of neutrophils; and increases the number of M2 vs. M1 macrophages. Fittingly, ICOS-Fc enhanced M2 macrophage migration, while it hampered that of M1 macrophages. ICOS-/- and ICOSL-/- KO, and NSG mice showed delayed wound healing, and treatment with ICOS-Fc improved wound closure in ICOS-/- and NSG mice. CONCLUSION: These data show that the ICOS/ICOSL network cooperates in tissue repair, and that triggering of ICOSL by ICOS-Fc improves cutaneous wound healing by increasing angiogenesis and recruitment of reparative macrophages.


Subject(s)
Immunoglobulin Fc Fragments , Inducible T-Cell Co-Stimulator Ligand , Inducible T-Cell Co-Stimulator Protein , Wound Healing , Animals , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/pharmacology , Inducible T-Cell Co-Stimulator Ligand/genetics , Inducible T-Cell Co-Stimulator Ligand/immunology , Inducible T-Cell Co-Stimulator Ligand/metabolism , Inducible T-Cell Co-Stimulator Protein/genetics , Inducible T-Cell Co-Stimulator Protein/immunology , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Recombinant Proteins/pharmacology , Wound Healing/drug effects
13.
Biomolecules ; 12(7)2022 07 08.
Article in English | MEDLINE | ID: mdl-35883511

ABSTRACT

A key aspect of the inflammatory phenomenon is the involvement of costimulatory molecules expressed by antigen-presenting cells (APCs) and their ability to secrete cytokines to set instructions for an adaptive immune response and to generate tolerance or inflammation. In a novel integrative approach, we aimed to evaluate the kinetic expression of the membrane and soluble B7 costimulatory molecules CD86, ICOS-L, PDL1, PDL2, the transcription factor Interferon Regulatory Factor 4 (IRF4), and the cytokines produced by monocyte-derived dendritic cells (Mo-DCs) after challenging them with different concentrations of stimulation with E. coli lipopolysaccharide (LPS) for different lengths of time. Our results showed that the stimuli concentration and time of exposure to an antigen are key factors in modulating the dynamic expression pattern of membrane and soluble B7 molecules and cytokines.


Subject(s)
B7-1 Antigen , Lipopolysaccharides , B7 Antigens/metabolism , B7-1 Antigen/metabolism , Cytokines/metabolism , Dendritic Cells , Escherichia coli/metabolism , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology
14.
Diagnostics (Basel) ; 12(3)2022 Mar 13.
Article in English | MEDLINE | ID: mdl-35328257

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is a life-threatening complication of connective tissue diseases (CTD); in this study, we aimed at investigating the potential role of inducible co-stimulator (ICOS) and its ligand (ICOS-L) as biomarkers of PH in CTD. MATERIALS AND METHODS: We recruited 109 patients: 84 CTD patients, 13 patients with CTD complicated by pulmonary arterial hypertension (PAH), and 12 subjects with PAH alone. All recruited patients underwent a complete clinical and instrumental assessment along with quantitative measurement of serum ICOS and ICOS-L. RESULTS: Independently of the underlying cause, patients with PAH were older and had a lower glomerular filtration rate. Interestingly, patients with both CTD-related and CTD-unrelated PAH had higher ICOS and ICOS-L serum concentrations than CTD patients (0.0001 for both). When compared to CTD patients, those affected by CTD-PAH showed higher ICOS (440 (240-600) vs. 170 (105-275) pg/mL, p = 0.0001) and ICOS-L serum concentrations (6000 (4300-7000) vs. 2450 (1500-4100) pg/mL; p = 0.0001). In a logistic regression, ICOS and ICOS-L were associated with a diagnosis of PAH, independently from age, gender, and renal function. The corresponding receiver operating characteristic (ROC) curves demonstrated a good diagnostic performance for both ICOS and ICOS-L. CONCLUSIONS: ICOS and ICOS-L are increased in patients with PAH, irrespectively from the underlying cause, and represent promising candidate biomarkers for the diagnostic screening for PAH among CTDs patients.

16.
Immunol Cell Biol ; 100(3): 205-217, 2022 03.
Article in English | MEDLINE | ID: mdl-34962663

ABSTRACT

Negative selection of developing T cells plays a significant role in T-cell tolerance to self-antigen. This process relies on thymic antigen-presenting cells which express both self-antigens and cosignaling molecules. Inducible T-cell costimulator (ICOS) belongs to the CD28 family of cosignaling molecules and binds to ICOS ligand (ICOSL). The ICOS signaling pathway plays important roles in shaping the immune response to infections, but its role in central tolerance is less well understood. Here we show that ICOSL is expressed by subsets of thymic dendritic cells and medullary thymic epithelial cells as well as thymic B cells. ICOS expression is upregulated as T cells mature in the thymus and correlates with T-cell receptor signal strength during thymic selection. We also provide evidence of a role for ICOS signaling in mediating negative selection. Our findings suggest that ICOS may fine-tune T-cell receptor signals during thymic selection contributing to the generation of a tolerant T-cell population.


Subject(s)
Antigen-Presenting Cells , T-Lymphocytes , Antigen-Presenting Cells/metabolism , B-Lymphocytes/metabolism , CD28 Antigens/metabolism , Inducible T-Cell Co-Stimulator Ligand/metabolism
17.
Int Immunopharmacol ; 103: 108394, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34922247

ABSTRACT

With the rapid increase in the incidence of allergic diseases, the mechanisms underlying the development of these diseases have received a great deal of attention, and this is particularly true in regard to the role of ICOS in allergic diseases. Current studies have revealed that ICOS affects the functional activity of multiple immune cells that modulate the adaptive immune system. Additionally, ICOS also plays a crucial role in mediating cellular immunity and coordinating the response of the entire immune system, and thus, it plays a role in allergic reactions. However, the ICOS/ICOS-ligand (ICOS-L) axis functions in a dual role during the development of multiple allergic diseases. In this review, we explore the role of ICOS/ICOSL in the context of different immune cells that function in allergic diseases, and we summarize recent advances in their contribution to these diseases.


Subject(s)
Inducible T-Cell Co-Stimulator Ligand/immunology , Animals , Humans , Hypersensitivity , Immunity, Cellular , Inducible T-Cell Co-Stimulator Protein
18.
Br J Haematol ; 196(6): 1369-1380, 2022 03.
Article in English | MEDLINE | ID: mdl-34954822

ABSTRACT

The inducible T-cell co-stimulator (ICOS) is a T-cell receptor that, once bound to ICOS ligand (ICOSL) expressed on several cell types including the B-cell lineage, plays a decisive role in adaptive immunity by regulating the interplay between B and T cells. In addition to its immunomodulatory functions, we have shown that ICOS/ICOSL signalling can inhibit the activity of osteoclasts, unveiling a novel mechanism of lymphocyte-bone cells interactions. ICOS and ICOSL can also be found as soluble forms, namely sICOS and sICOSL. Here we show that: (i) levels of sICOS and sICOSL are increased in multiple myeloma (MM) compared to monoclonal gammopathy of undetermined significance and smouldering MM; (ii) levels of sICOS and sICOSL variably correlate with several markers of tumour burden; and (iii) sICOS levels tend to be higher in Durie-Salmon stage II/III versus stage I MM and correlate with overall survival as an independent variable. Moreover, surface ICOS and ICOSL are expressed in both myeloma cells and normal plasma cells, where they probably regulate different functional stages. Finally, ICOSL triggering inhibits the migration of myeloma cell lines in vitro and the growth of ICOSL+ MOPC-21 myeloma cells in vivo. These results suggest that ICOS and ICOSL represent novel markers and therapeutic targets for MM.


Subject(s)
Multiple Myeloma , Humans , Inducible T-Cell Co-Stimulator Ligand/metabolism , Inducible T-Cell Co-Stimulator Protein/metabolism , Ligands , Multiple Myeloma/metabolism , T-Lymphocytes , Tumor Microenvironment
19.
Front Immunol ; 13: 1056397, 2022.
Article in English | MEDLINE | ID: mdl-36618349

ABSTRACT

ICOS/ICOSL and CD28/B7-1/B7-2 are T cell co-stimulators and CTLA-4 is an immune checkpoint inhibitor that play critical roles in the pathogenesis of neoplasia. Chitinase 3-like-1 (CHI3L1) is induced in many cancers where it portends a poor prognosis and contributes to tumor metastasis. Here we demonstrate that CHI3L1 inhibits the expression of ICOS, ICOSL and CD28 while stimulating CTLA-4 and the B7 moieties in melanoma lung metastasis. We also demonstrate that RIG-like helicase innate immune activation augments T cell co-stimulation, inhibits CTLA-4 and suppresses pulmonary metastasis. At least additive antitumor responses were seen in melanoma lung metastasis treated with anti-CTLA-4 and anti-CHI3L1 antibodies in combination. Synergistic cytotoxic T cell-induced tumor cell death and the heightened induction of the tumor suppressor PTEN were seen in co-cultures of T and tumor cells treated with bispecific antibodies that target both CHI3L1 and CTLA-4. Thus, CHI3L1 contributes to pulmonary metastasis by inhibiting T cell co-stimulation and stimulating CTLA-4. The simultaneous targeting of CHI3L1 and the CTLA-4 axis with individual and, more powerfully with bispecific antibodies, represent promising therapeutic strategies for pulmonary metastasis.


Subject(s)
Antibodies, Bispecific , Lung Neoplasms , Melanoma , Humans , CD28 Antigens , Antigens, CD , Melanoma/metabolism , Chitinase-3-Like Protein 1
20.
Immunobiology ; 226(6): 152147, 2021 11.
Article in English | MEDLINE | ID: mdl-34710738

ABSTRACT

Autoimmune regulator (Aire) is a transcription factor that plays a pivotal role in the maintenance of immune tolerance. However, little is known about its roles in peripheral immune tolerance. Aire is predominantly expressed in dendritic cells (DCs) in the periphery. DCs with higher inducible costimulatory ligand (ICOSL) expression and interleukin (IL)-27 production have been reported highly suggesting its roles in inducing follicular helper T cells (TFH). Here we use Aire-overexpressing DC2.4 cells in a coculture system composed of naïve CD4+ T cells to test whether Aire in DCs affects TFH cell differentiation. We found that the frequency of TFH cells and its specific cytokine IL-21 were decreased in CD4+ T lymphocytes after cocultured with Aire overexpressed DC2.4 cells. In activated DCs, ICOSL expression and IL-27 production were significantly suppressed by Aire. Furthermore, addition of recombinant ICOSL or IL-27 in the coculture system enhanced TFH cell differentiation and IL-21 expression. These results revealed that Aire plays an indispensable role in the repression of dendritic cells on the differentiation and function of TFH cells by inhibiting ICOSL and IL-27 expression.


Subject(s)
Cell Differentiation/genetics , Dendritic Cells/immunology , Dendritic Cells/metabolism , Interleukin-27/genetics , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Transcription Factors/genetics , Animals , Biomarkers , Cell Differentiation/immunology , Cells, Cultured , Female , Gene Expression , Interleukin-27/metabolism , Mice , Models, Biological , AIRE Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...