Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 263
Filter
1.
Adv Protein Chem Struct Biol ; 141: 223-253, 2024.
Article in English | MEDLINE | ID: mdl-38960475

ABSTRACT

Recent advances in genome-wide studies have revealed numerous epigenetic regulations brought about by genes involved in cellular metabolism. Isocitrate dehydrogenase (IDH), an essential enzyme, that converts isocitrate into -ketoglutarate (KG) predominantly in the tricarboxylic acid (TCA) cycle, has gained particular importance due to its cardinal role in the metabolic pathway in cells. IDH1, IDH2, and IDH3 are the three isomeric IDH enzymes that have been shown to regulate cellular metabolism. Of particular importance, IDH2 genes are associated with several cancers, including gliomas, oligodendroglioma, and astrocytomas. These mutations lead to the production of oncometabolite D-2-hydroxyglutarate (D-2-HG), which accumulates in cells promoting tumor growth. The enhanced levels of D-2-HG competitively inhibit α-KG dependent enzymes, inhibiting cell TCA cycle, upregulating the cell growth and survival relevant HIF-1α pathway, promoting DNA hypermethylation related epigenetic activity, all of which synergistically contribute to carcinogenesis. The present review discusses epigenetic mechanisms inIDH2 regulation in cells and further its clinical implications.


Subject(s)
Epigenesis, Genetic , Isocitrate Dehydrogenase , Neoplasms , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Humans , Neoplasms/genetics , Neoplasms/metabolism , DNA Methylation
2.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928223

ABSTRACT

Mutations affecting codon 172 of the isocitrate dehydrogenase 2 (IDH2) gene define a subgroup of sinonasal undifferentiated carcinomas (SNUCs) with a relatively favorable prognosis and a globally hypermethylated phenotype. They are also recurrent (along with IDH1 mutations) in gliomas, acute myeloid leukemia, and intrahepatic cholangiocarcinoma. Commonly reported mutations, all associated with aberrant IDH2 enzymatic activity, include R172K, R172S, R172T, R172G, and R172M. We present a case of SNUC with a never-before-described IDH2 mutation, R172A. Our report compares the methylation pattern of our sample to other cases from the Gene Expression Omnibus database. Hierarchical clustering suggests a strong association between our sample and other IDH-mutant SNUCs and a clear distinction between sinonasal normal tissues and tumors. Principal component analysis (PCA), using 100 principal components explaining 94.5% of the variance, showed the position of our sample to be within 1.02 standard deviation of the other IDH-mutant SNUCs. A molecular modeling analysis of the IDH2 R172A versus other R172 variants provides a structural explanation to how they affect the protein active site. Our findings thus suggest that the R172A mutation in IDH2 confers a gain of function similar to other R172 mutations in IDH2, resulting in a similar hypermethylated profile.


Subject(s)
Carcinoma , DNA Methylation , Isocitrate Dehydrogenase , Maxillary Sinus Neoplasms , Mutation , Humans , Isocitrate Dehydrogenase/genetics , DNA Methylation/genetics , Carcinoma/genetics , Carcinoma/pathology , Maxillary Sinus Neoplasms/genetics , Maxillary Sinus Neoplasms/pathology , Male , Middle Aged , Female , Aged
3.
Cancers (Basel) ; 16(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38893249

ABSTRACT

Clinical trials with single-agent venetoclax/ABT-199 (anti-apoptotic BCL2 inhibitor) revealed that diffuse large B-cell lymphoma (DLBCL) is not solely dependent on BCL2 for survival. Gaining insight into pathways/proteins that increase venetoclax sensitivity or unique vulnerabilities in venetoclax-resistant DLBCL would provide new potential treatment avenues. Therefore, we generated acquired venetoclax-resistant DLBCL cells and evaluated these together with intrinsically venetoclax-resistant and -sensitive DLBCL lines. We identified resistance mechanisms, including alterations in BCL2 family members that differed between intrinsic and acquired venetoclax resistance and increased dependencies on specific pathways. Although combination treatments with BCL2 family member inhibitors may overcome venetoclax resistance, RNA-sequencing and drug/compound screens revealed that venetoclax-resistant DLBCL cells, including those with TP53 mutation, had a preferential dependency on oxidative phosphorylation. Mitochondrial electron transport chain complex I inhibition induced venetoclax-resistant, but not venetoclax-sensitive, DLBCL cell death. Inhibition of IDH2 (mitochondrial redox regulator) synergistically overcame venetoclax resistance. Additionally, both acquired and intrinsic venetoclax-resistant DLBCL cells were similarly sensitive to inhibitors of transcription, B-cell receptor signaling, and class I histone deacetylases. These approaches were also effective in DLBCL, follicular, and marginal zone lymphoma patient samples. Our results reveal there are multiple ways to circumvent or overcome the diverse venetoclax resistance mechanisms in DLBCL and other B-cell lymphomas and identify critical targetable pathways for future clinical investigations.

4.
Bioorg Chem ; 149: 107483, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38805913

ABSTRACT

In this study, novel substituted 1,3,5-triazine candidates (4a-d, 5a-j, and 6a-d) were designed as second-generation small molecules to act as dual IDH1 and IDH2 inhibitors according to the pharmacophoric features of both vorasidenib and enasidenib. Compounds 6a and 6b for leukemia cell lines showed from low to sub-micromolar GI50. Moreover, compounds 4c, 5f, and 6b described the frontier antitumor activity against THP1 and Kasumi Leukemia cancer cells with IC50 values of (10 and 12), (10.5 and 7), and (6.2 and 5.9) µg/mL, which were superior to those of cisplatin (25 and 28) µg/mL, respectively. Interestingly, compounds 4c, 6b, and 6d represented the best dual IDH1(R132H)/IDH2(R140Q) inhibitory potentials with IC50 values of (0.72 and 1.22), (0.12 and 0.93), and (0.50 and 1.28) µg/mL, respectively, compared to vorasidenib (0.02 and 0.08) µg/mL and enasidenib (0.33 and 1.80) µg/mL. Furthermore, the most active candidate (6b) has very promising inhibitory potentials towards HIF-1α, VEGF, and SDH, besides, a marked increase of ROS was observed as well. Besides, compound 6b induced the upregulation of P53, BAX, Caspases 3, 6, 8, and 9 proteins by 3.70, 1.99, 2.06, 1.73, 1.75, and 1.85-fold changes, respectively, and the downregulation for the BCL-2 protein by 0.55-fold change compared to the control. Besides, the in vivo behavior of compound 6b as an antitumor agent was evaluated in female mice bearing solid Ehrlich carcinoma tumors. Notably, compound 6b administration resulted in a prominent decrease in the weight and volume of the tumors, accompanied by improvements in biochemical, hematological, and histological parameters.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Isocitrate Dehydrogenase , Leukemia, Myeloid, Acute , Triazines , Triazines/chemistry , Triazines/pharmacology , Triazines/chemical synthesis , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/metabolism , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Structure-Activity Relationship , Animals , Molecular Structure , Mice , Cell Proliferation/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Cell Line, Tumor , Apoptosis/drug effects
5.
Diagn Pathol ; 19(1): 70, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796421

ABSTRACT

IDH1 and IDH2 mutational status is a critical biomarker with diagnostic, prognostic, and treatment implications in glioma. Although IDH1 p.R132H-specific immunohistochemistry is available, it is unable to identify other mutations in IDH1/2. Next-generation sequencing can accurately determine IDH1/2 mutational status but suffers from long turnaround time when urgent treatment planning and initiation is medically necessary. The Idylla assay can detect IDH1/2 mutational status from unstained formalin-fixed paraffin-embedded (FFPE) slides in as little as a few hours. In a clinical validation, we demonstrate clinical accuracy of 97% compared to next-generation sequencing. Sensitivity studies demonstrated a limit of detection of 2.5-5% variant allele frequency, even at DNA inputs below the manufacturer's recommended threshold. Overall, the assay is an effective and accurate method for rapid determination of IDH1/2 mutational status.


Subject(s)
Brain Neoplasms , Glioma , Isocitrate Dehydrogenase , Mutation , Humans , Isocitrate Dehydrogenase/genetics , Glioma/genetics , Glioma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/enzymology , DNA Mutational Analysis/methods , Paraffin Embedding , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , High-Throughput Nucleotide Sequencing , Formaldehyde , Tissue Fixation/methods , Reproducibility of Results
6.
JIMD Rep ; 65(3): 156-162, 2024 May.
Article in English | MEDLINE | ID: mdl-38736636

ABSTRACT

Type II D-2-Hydroxyglutaric aciduria (T2D2HGA) is caused by a gain-of-function pathogenic variant in Isocitrate Dehydrogenase 2 (IDH2). Patients with T2D2HGA commonly present with developmental delay, seizures, cardiomyopathy, and arrhythmias. The recently approved IDH2-inhibitor Enasidenib targets the p.Arg140Gln pathogenic IDH2 variant and decreases production of D2HGA. We present a 7-year-old female with T2D2HGA due to the p.Arg140Gln variant. She was diagnosed at 3-years-old after presenting with global developmental delay, leukoencephalopathy, communicating hydrocephalus, seizures, and dilated cardiomyopathy. At age 3 years 11 months, 50 mg Enasidenib daily was initiated. Primary outcomes included seizure frequency, hospital admissions, development, and cardiac structure. Laboratories were monitored biweekly for common Enasidenib side effects. Our patient tolerated Enasidenib well. Urine 2-HGA decreased significantly from 244 mg/g creatinine to undetectable within 2 weeks of treatment. Inpatient admissions decreased from 8 during the 2 years preceding treatment to 1 during treatment. She has been seizure-free since Enasidenib initiation. Echocardiography showed improvement in dilated cardiomyopathy with normal left ventricular systolic function. Developmental assessment demonstrated improvements in gross motor, fine motor, language, and socialization domains. Treatment was complicated by mild elevations in alanine transaminase (118 IU/L, range 0-28) and creatine kinase (334 U/L, range 45-198) that resolved by decreasing Enasidenib dosing frequency to three times weekly. Enasidenib is a viable treatment for Type II D2HGA with benefits including developmental gains, fewer acute medical interventions, and cardiomyopathy improvement. While drug-induced hepatitis is a novel adverse effect of Enasidenib, it can be ameliorated by decreasing dose frequency.

7.
Leuk Res Rep ; 21: 100461, 2024.
Article in English | MEDLINE | ID: mdl-38736691

ABSTRACT

A 67-year-old female came to Tampa General Hospital with Philadelphia chromosome-positive (Ph+) acute myeloid leukemia (AML) featuring an intriguing combination of mutations, including NPM1 and IDH2 mutations. Novel combination therapy with azacitidine, venetoclax and ponatinib allowed her to successfully achieve a complete response (CR) and undergo an allogeneic hematopoietic stem cell transplant (HSCT). This case report provides an overview of her clinical course, emphasizing the significance of integrated therapy and the challenges associated with balancing treatment for AML. It also underscores the importance of a multidisciplinary approach and careful monitoring of patients with complex hematologic conditions.

8.
Leuk Res ; 140: 107497, 2024 May.
Article in English | MEDLINE | ID: mdl-38564986

ABSTRACT

Limited treatment options are available for patients with relapsed/refractory acute myeloid leukemia (R/R AML). We recently reported results from the phase 3 IDHENTIFY trial (NCT02577406) showing improved response rates and event-free survival with enasidenib monotherapy compared with conventional care regimens (CCR) in heavily pretreated, older patients with late-stage R/R AML bearing IDH2 mutations. Here we investigated the prognostic impact of mutational burden and different co-mutation patterns at study entry within the predominant IDH2 variant subclasses, IDH2-R140 and IDH2-R172. The prognostic relevance of these variants is well documented in newly diagnosed AML, but data are lacking in R/R AML. In this large R/R AML patient cohort, targeted next-generation sequencing at baseline (screening) revealed distinct co-mutation patterns and mutational burden between subgroups bearing different IDH2 variants: variant IDH2-R140 was associated with greater mutational burden and was enriched predominantly with poor-risk mutations, including FLT3, RUNX1, and NRAS, while variant IDH2-R172 was associated with lower mutational burden and was preferentially co-mutated with DNMT3A. In multivariable analyses, RAS and RTK pathway mutations were significantly associated with decreased overall survival, after adjusting for treatment arm, IDH2 variant, and mutational burden. Importantly, enasidenib-mediated survival benefit was more pronounced in patients with IDH2-R172 variants.


Subject(s)
Isocitrate Dehydrogenase , Leukemia, Myeloid, Acute , Mutation , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Aminopyridines/therapeutic use , Drug Resistance, Neoplasm/genetics , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Prognosis , Triazines/therapeutic use
9.
EBioMedicine ; 102: 105090, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38547578

ABSTRACT

BACKGROUND: Sarcomas represent an extensive group of malignant diseases affecting mesodermal tissues. Among sarcomas, the clinical management of chondrosarcomas remains a complex challenge, as high-grade tumours do not respond to current therapies. Mutations in the isocitrate dehydrogenase (IDH) 1 and 2 genes are among the most common mutations detected in chondrosarcomas and may represent a therapeutic opportunity. The presence of mutated IDH (mIDH) enzymes results in the accumulation of the oncometabolite 2-HG leading to molecular alterations that contribute to drive tumour growth. METHODS: We developed a personalized medicine strategy based on the targeted NGS/Sanger sequencing of sarcoma samples (n = 6) and the use of matched patient-derived cell lines as a drug-testing platform. The anti-tumour potential of IDH mutations found in two chondrosarcoma cases was analysed in vitro, in vivo and molecularly (transcriptomic and DNA methylation analyses). FINDINGS: We treated several chondrosarcoma models with specific mIDH1/2 inhibitors. Among these treatments, only the mIDH2 inhibitor enasidenib was able to decrease 2-HG levels and efficiently reduce the viability of mIDH2 chondrosarcoma cells. Importantly, oral administration of enasidenib in xenografted mice resulted in a complete abrogation of tumour growth. Enasidenib induced a profound remodelling of the transcriptomic landscape not associated to changes in the 5 mC methylation levels and its anti-tumour effects were associated with the repression of proliferative pathways such as those controlled by E2F factors. INTERPRETATION: Overall, this work provides preclinical evidence for the use of enasidenib to treat mIDH2 chondrosarcomas. FUNDING: Supported by the Spanish Research Agency/FEDER (grants PID2022-142020OB-I00; PID2019-106666RB-I00), the ISC III/FEDER (PI20CIII/00020; DTS18CIII/00005; CB16/12/00390; CB06/07/1009; CB19/07/00057); the GEIS group (GEIS-62); and the PCTI (Asturias)/FEDER (IDI/2021/000027).


Subject(s)
Aminopyridines , Bone Neoplasms , Chondrosarcoma , Sarcoma , Triazines , Humans , Animals , Mice , Precision Medicine , Chondrosarcoma/drug therapy , Chondrosarcoma/genetics , Isocitrate Dehydrogenase/genetics , Mutation , Bone Neoplasms/genetics
10.
Sci Rep ; 14(1): 4732, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38413708

ABSTRACT

Triple-negative breast cancer (TNBC) is currently the type of breast cancer with the worst prognosis; it lacks specific treatments, such as ER/PR antagonistic endocrine and anti-HER2 targeted therapies. Although immunotherapy with immune checkpoints has shown some efficacy in many solid tumors, clinical data in TNBC suggest significant limitations. The essence of ferroptosis is the impaired metabolism of intracellular lipid oxides, which in turn causes the activation and abnormalities of the immune system, including ROS, and not only plays an important role in liver injury and organ aging but also a large amount of data points to the close correlation between the ferroptosis process and tumor development. In this study, through the analysis of large-throughput biological data of breast tumors, combined with the characteristics of the biological process of ferroptosis, the specific gene IDH2 was found to be significantly highly expressed in TNBC and functionally correlated with ferroptosis. Through clinical specimens validated at the gene and protein levels, in vitro tumor cell line validation, and in vivo mouse models, we found that the high expression of IDH2 in TNBC has a role in inhibiting the ferroptosis process in TNBC, thus promoting the proliferation of TNBC cells and other malignant features.


Subject(s)
Ferroptosis , Isocitrate Dehydrogenase , Triple Negative Breast Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Ferroptosis/genetics , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Prognosis , Triple Negative Breast Neoplasms/pathology
11.
Pathol Res Pract ; 253: 155090, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38181579

ABSTRACT

Renal cell carcinoma (RCC) is fundamentally a metabolic disease, and RCC associated with mutation of the Krebs cycle enzyme genes include fumarate hydratase-deficient and succinate dehydrogenase-deficient RCC. Most recently, the mutation of isocitrate dehydrogenase 2 (IDH2) has been suggested as the third Krebs cycle enzyme alteration to be associated with oncometabolite-induced RCC tumorigenesis. Herein, we report the second case of RCC harboring an IDH2 (R127M) mutation identified by targeted next-generation sequencing and further confirmed by reverse transcription polymerase chain reaction and Sanger sequencing. This tumor demonstrated a distinctive biphasic morphology, characterized by mixture of a clear cells solid component and an eosinophilic papillary component. These two components were intermingled and formed variably sized nodular or nested structures. Unfavorable histologic features, including infiltration into the perirenal and renal sinus adipose tissues, high nuclei grade, rhabdoid tumor cells, and focal tumor necrosis, were observed. The patient had local lymph nodes metastases at diagnosis and developed brain metastases 3 months after the surgery. This peculiar case provides further insights into RCCs harboring IDH2 mutations.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Mutation , Cell Nucleus/pathology , Fumarate Hydratase/genetics
12.
J Exp Clin Cancer Res ; 43(1): 22, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238853

ABSTRACT

BACKGROUND: Triple-negative breast cancer is a complex breast malignancy subtype characterized by poor prognosis. The pursuit of effective therapeutic approaches for this subtype is considerably challenging. Notably, recent research has illuminated the key role of the tricarboxylic acid cycle in cancer metabolism and the complex landscape of tumor development. Concurrently, an emerging body of evidence underscores the noteworthy role that long non-coding RNAs play in the trajectory of breast cancer development. Despite this growing recognition, the exploration of whether long non-coding RNAs can influence breast cancer progression by modulating the tricarboxylic acid cycle has been limited. Moreover, the underlying mechanisms orchestrating these interactions have not been identified. METHODS: The expression levels of LINC00571 and IDH2 were determined through the analysis of the public TCGA dataset, transcriptome sequencing, qRT‒PCR, and Western blotting. The distribution of LINC00571 was assessed using RNA fluorescence in situ hybridization. Alterations in biological effects were evaluated using CCK-8, colony formation, EdU, cell cycle, and apoptosis assays and a tumor xenograft model. To elucidate the interaction between LINC00571, HNRNPK, and ILF2, RNA pull-down, mass spectrometry, coimmunoprecipitation, and RNA immunoprecipitation assays were performed. The impacts of LINC00571 and IDH2 on tricarboxylic acid cycle metabolites were investigated through measurements of the oxygen consumption rate and metabolite levels. RESULTS: This study revealed the complex interactions between a novel long non-coding RNA (LINC00571) and tricarboxylic acid cycle metabolism. We validated the tumor-promoting role of LINC00571. Mechanistically, LINC00571 facilitated the interaction between HNRNPK and ILF2, leading to reduced ubiquitination and degradation of ILF2, thereby stabilizing its expression. Furthermore, ILF2 acted as a transcription factor to enhance the expression of its downstream target gene IDH2. CONCLUSIONS: Our study revealed that the LINC00571/HNRNPK/ILF2/IDH2 axis promoted the progression of triple-negative breast cancer by regulating tricarboxylic acid cycle metabolites. This discovery provides a novel theoretical foundation and new potential targets for the clinical treatment of triple-negative breast cancer.


Subject(s)
RNA, Long Noncoding , Triple Negative Breast Neoplasms , Humans , Cell Line, Tumor , Triple Negative Breast Neoplasms/pathology , Citric Acid Cycle , In Situ Hybridization, Fluorescence , RNA/metabolism , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Nuclear Factor 45 Protein/genetics , Nuclear Factor 45 Protein/metabolism
13.
Nutr Metab (Lond) ; 21(1): 5, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167476

ABSTRACT

BACKGROUND: D-mannose, an epimer of glucose, which is abundant in some fruits, such as cranberry, has been previously reported to inhibit urinary tract infection. In recent years, the potential function of D-mannose has been broadened into the regulation of other inflammation diseases and cancer. It was reported that D-mannose can increase reactive oxygen species (ROS) production, while IDH2 is important for the generation of NADPH, the crucial reducing factor. These findings prompted us to determine whether D-mannose can regulate IDH2 and IDH2-mediated NADPH production in tumor. METHODS: The breast cancer cell line MDA-MB-231 was cultured and treated with 100mM D-mannose. IDH2 expression was detected by Western Blot and qRT-PCR. RNA-seq was conducted to identify the differentially expressed genes. BioGRID database was used to find the IDH2 interactors. Tumor cells were collected to measure the NADPH production using the NADP+/NADPH detection Kit. Colony formation assay and CCK-8 assay were conducted to evaluate the proliferation of cells. RESULTS: D-mannose can promote IDH2 protein degradation through ubiquitination-proteasome pathway. Mechanistically, D-mannose treatment upregulated the expression of an E3 ligase - RNF185, which can interact with IDH2 and promotes its proteasomal degradation. Consequently, IDH2-mediated NADPH production was inhibited by D-mannose, the proliferation of breast cancer cells was retarded, and the sensitivity to pro-oxidant of breast cancer cells was elevated. CONCLUSIONS: Our study demonstrated that D-mannose can degrade IDH2 and inhibit the production of NADPH to suppress the proliferation of breast cancer cells and render the breast cancer cells more sensitive to pro-oxidant treatment. Furthermore, we illustrated the E3 ligase RNF185 plays an important role in D-mannose-mediated proteasomal degradation of IDH2.

14.
J Chemother ; 36(3): 202-207, 2024 May.
Article in English | MEDLINE | ID: mdl-37599456

ABSTRACT

Because of lacking of head-to-head comparison between venetoclax and IDH1/IDH2 inhibitors (ivosidenib/enasidenib) for newly diagnosed unfit patients with acute myeloid leukemia (AML), the optimal option for these patients still remains undefined. We searched relevant published reports. Three RCTs with 180 IDH1 mutant and 165 IDH2 mutant patients were identified. Indirect comparison of OS using fixed effects network meta-analysis (NMA) models indicated venetoclax plus azacitidine (Ven-Aza) significantly improved survival than enasidenib plus azacitidine (Ena-Aza) (HR:0.30, p = 0.005) for those newly diagnosed patients with AML and IDH2 Mutation. And, for those IDH2 mutation patients, Ven-Aza also had the highest probability of 98.3% (OS analysis) and 84.0% (CR/CRi analysis) to be the best intervention among these first-line treatment regimens (Ven-Aza, Ena-Aza and Aza). And, there was a favorable trend towards Ven-Aza in survival analysis (HR:0.69, p = 0.42), when compared to ivosidenib plus azacitidine (Ivo-Aza) for those newly diagnosed patients with AML and IDH1 Mutation. For those IDH1 Mutation, venetoclax plus azacitidine (Ven-Aza) had the highest probability of 65.8% (OS analysis) and 73.0% (CR/CRi analysis) to be the best intervention among these first-line treatment regimens (Ven-Aza, ivosidenib plus azacitidine (Ivo-Aza) and azacitidine (Aza)). In conclusion, venetoclax plus azacitidine could be a good option for unfit newly diagnosed patients with acute myeloid leukemia and IDH1/2 mutation. Considering our limits (only trial data-based network meta-analysis et al.), future trials directly comparing these regimens are warranted.


Subject(s)
Aminopyridines , Bridged Bicyclo Compounds, Heterocyclic , Glycine/analogs & derivatives , Leukemia, Myeloid, Acute , Pyridines , Sulfonamides , Triazines , Humans , Network Meta-Analysis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Azacitidine/therapeutic use , Mutation , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Isocitrate Dehydrogenase/genetics
15.
J Biomol Struct Dyn ; 42(7): 3764-3789, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37227789

ABSTRACT

Glioblastoma (GBM) is an aggressive malignant type of brain tumor. Targeting one single intracellular pathway might not alleviate the disease, rather it activates the other molecular pathways that lead to the worsening of the disease condition. Therefore, in this study, we attempted to target both isocitrate dehydrogenase 1 (IDH1) and IDH2, which are one of the most commonly mutated proteins in GBM and other cancer types. Here, standard precision and extra precision docking, IFD, MM-GBSA, QikProp, and molecular dynamics (MD) simulation were performed to identify the potential dual inhibitor for IDH1 and IDH2 from the enamine database containing 59,161 ligands. Upon docking the ligands with IDH1 (PDB: 6VEI) and IDH2 (PDB: 6VFZ), the top eight ligands were selected, based on the XP Glide score. These ligands produced favourable MMGBSA scores and ADME characteristics. Finally, the top four ligands 12953, 44825, 51295, and 53210 were subjected to MD analysis. Interestingly, 53210 showed maximum interaction with Gln 277 for 99% in IDH1 and Gln 316 for 100% in IDH2, which are the crucial amino acids for the inhibitory function of IDH1 and IDH2 to target GBM. Therefore, the present study attempts to identify the novel molecules which could possess a pan-inhibitory action on both IDH1 and IDH that could be crucial in the management of GBM. Yet further evaluation involving in vitro and in vivo studies is warranted to support the data in our current study.Communicated by Ramaswamy H. Sarma.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Mutation , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Brain Neoplasms/drug therapy
16.
Br J Haematol ; 204(4): 1238-1242, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38073116

ABSTRACT

Data regarding the use of FMS-like tyrosine kinase 3 (FLT3) and isocitrate dehydrogenase 1/2 (IDH1/2) inhibitors in acute lymphoblastic leukaemia (ALL) are lacking. We identified 14 patients with FLT3- or IDH1/2-mutated ALL. Three early T-cell precursor-ALL patients received FLT3 or IDH2 inhibitors. Patient 1 maintains a complete remission (CR) with enasidenib after intolerance to chemotherapy. Patient 2 maintained a CR for 27 months after treatment with enasidenib for relapsed disease. Patient 3 was treated with venetoclax and gilteritinib at the time of relapse and maintained a CR with gilteritinib for 8 months. These cases suggest that FLT3 and IDH inhibitors could represent a viable therapeutic option for ALL patients with these mutations.


Subject(s)
Aminopyridines , Aniline Compounds , Leukemia, Myeloid, Acute , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Pyrazines , Triazines , Humans , fms-Like Tyrosine Kinase 3/genetics , Neoplasm Recurrence, Local , Enzyme Inhibitors/therapeutic use , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Leukemia, Myeloid, Acute/genetics
17.
Acta Neuropathol Commun ; 11(1): 186, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38012788

ABSTRACT

In IDH-mutant astrocytoma, IDH2 mutation is quite rare and biological mechanisms underlying tumor progression in IDH2-mutant astrocytoma remain elusive. Here, we report a unique case of IDH2 mutant astrocytoma, CNS WHO grade 3 that developed tumor progression. We performed a comprehensive genomic and epigenomic analysis for primary and recurrent tumors and found that both tumors harbored recurrent IDH2R172K and TP53R248W mutation with CDKN2A/B hemizygous deletion. We also found amplifications of CDK4 and MDM2 with PDGFRA gain in the recurrent tumor and upregulated protein expressions of these genes. We further developed, for the first time, a xenograft mouse model of IDH2R172K and TP53R248W mutant astrocytoma from the recurrent tumor, but not from the primary tumor. Consistent with parent recurrent tumor cells, amplifications of CDK4 and MDM2 and PDGFRA gain were found, while CDKN2A/B was identified as homozygous deletion in the xenografts, qualifying for integrated diagnosis of astrocytoma, IDH2-mutant, CNS WHO grade 4. Cell viability assay found that CDK4/6 inhibitor and PDGFR inhibitor potently decreased cell viability in recurrent tumor cells, as compared to primary tumor cells. These findings suggest that gene alterations that activate retinoblastoma (RB) signaling pathways and PDGFR may drive tumor progression and xenograft formation in IDH2-mutant astrocytoma, which is equivalent to progressive IDH1-mutant astrocytoma. Also, our findings suggest that these genomic alterations may represent therapeutic targets in IDH2-mutant astrocytoma.


Subject(s)
Astrocytoma , Brain Neoplasms , Receptor, Platelet-Derived Growth Factor alpha , Retinoblastoma Protein , Animals , Humans , Mice , Astrocytoma/genetics , Astrocytoma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Homozygote , Isocitrate Dehydrogenase/genetics , Mutation , Receptor, Platelet-Derived Growth Factor alpha/genetics , Retinoblastoma Protein/genetics , Sequence Deletion , Signal Transduction
18.
Int J Lab Hematol ; 45(6): 839-844, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37867386

ABSTRACT

The blast phase of BCR::ABL1-negative myeloproliferative neoplasm (MPN-BP) represents the final stage of the disease, which is complicated by complex genomic alterations. These alterations result from sequence changes in genetic material (DNA, RNA) and can lead to either a gain or loss of function of encoded proteins, such as adaptor proteins, enzymes, components of spliceosomes, cell cycle checkpoints regulators, transcription factors, or proteins in cell signaling pathways. Interference at various levels, including transcription, translation, and post-translational modification (such as methylation, dephosphorylation, or acetylation), can contribute to these alterations. Mutated genes such as ASXL1, EZH2, IDH1, IDH2, TET2, SRSF2, U2AF1, TP53, NRAS, KRAS, PTPN11, SH2B3/LNK, and RUNX1 play active roles at different stages of genetic material expression, modification, and protein function manipulation in MPNs. These mutations are also correlated with, and can contribute to, the progression of MPN-BP. In this review, we summarize their common mutational profiles, functions, and associations with progression of MPN-BP.


Subject(s)
Blast Crisis , Myeloproliferative Disorders , Humans , Blast Crisis/genetics , Myeloproliferative Disorders/genetics , Mutation , Genomics
19.
Case Rep Oncol ; 16(1): 999-1006, 2023.
Article in English | MEDLINE | ID: mdl-37900854

ABSTRACT

Venetoclax and azacitidine combination therapy (VEN+AZA) is a promising novel therapy for elderly or unfit patients with acute myeloid leukemia (AML). Recently, VEN+AZA with subsequent allo-hematopoietic stem cell transplantation has been reported, and human leukocyte antigen-haploidentical peripheral blood stem cell transplantation using posttransplant cyclophosphamide (PTCy-haplo-PBSCT) from related donors appears to be a suitable option. Here, we report two elderly patients with refractory AML harboring an IDH2 mutation, who were successfully treated with VEN+AZA bridged to PTCy-haplo-PBSCT. This report suggests the efficacy and safety of VEN+AZA as a bridging treatment for PTCy-haplo-PBSCT in refractory AML.

SELECTION OF CITATIONS
SEARCH DETAIL
...