Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Arch Virol ; 169(7): 145, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864875

ABSTRACT

Since 2020, African swine fever (ASF) has affected all pig breeds in Northeast India except Doom pigs, a unique indigenous breed from Assam and the closest relatives of Indian wild pigs. ASF outbreaks result in significant economic losses for pig farmers in the region. Based on sequencing and phylogenetic analysis of the B646L (p72) gene, it has been determined that ASFV genotype II is responsible for outbreaks in this region. Recent studies have shown that MYD88, LDHB, and IFIT1, which are important genes of the immune system, are involved in the pathogenesis of ASFV. The differential expression patterns of these genes in surviving ASFV-infected and healthy Doom breed pigs were compared to healthy controls at different stages of infection. The ability of Doom pigs to withstand common pig diseases, along with their genetic resemblance to wild pigs, make them ideal candidates for studying tolerance to ASFV infection. In the present study, we investigated the natural resistance to ASF in Doom pigs from an endemic area in Northeast India. The results of this study provide important molecular insights into the regulation of ASFV tolerance genes.


Subject(s)
African Swine Fever Virus , African Swine Fever , Disease Outbreaks , Phylogeny , Animals , African Swine Fever/virology , African Swine Fever/epidemiology , African Swine Fever/immunology , African Swine Fever Virus/genetics , African Swine Fever Virus/immunology , India/epidemiology , Swine , Disease Outbreaks/veterinary , Genotype , Myeloid Differentiation Factor 88/genetics , Disease Resistance/genetics
2.
Int Immunopharmacol ; 137: 112412, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38901242

ABSTRACT

OBJECTIVE: Non-tuberculous mycobacterial pulmonary disease (NTM-PD) is caused by an imbalance between pathogens and impaired host immune responses. Mycobacterium avium complex (MAC) and Mycobacterium abscessus (MAB) are the two major pathogens that cause NTM-PD. In this study, we sought to dissect the transcriptomes of peripheral blood immune cells at the single-cell resolution in NTM-PD patients and explore potential clinical markers for NTM-PD diagnosis and treatment. METHODS: Peripheral blood samples were collected from six NTM-PD patients, including three MAB-PD patients, three MAC-PD patients, and two healthy controls. We employed single-cell RNA sequencing (scRNA-seq) to define the transcriptomic landscape at a single-cell resolution. A comprehensive scRNA-seq analysis was performed, and flow cytometry was conducted to validate the results of scRNA-seq. RESULTS: A total of 27,898 cells were analyzed. Nine T-cells, six mononuclear phagocytes (MPs), and four neutrophil subclusters were defined. During NTM infection, naïve T-cells were reduced, and effector T-cells increased. High cytotoxic activities were shown in T-cells of NTM-PD patients. The proportion of inflammatory and activated MPs subclusters was enriched in NTM-PD patients. Among neutrophil subclusters, an IFIT1+ neutrophil subcluster was expanded in NTM-PD compared to healthy controls. This suggests that IFIT1+ neutrophil subcluster might play an important role in host defense against NTM. Functional enrichment analysis of this subcluster suggested that it is related to interferon response. Cell-cell interaction analysis revealed enhanced CXCL8-CXCR1/2 interactions between the IFIT1+ neutrophil subcluster and NK cells, NKT cells, classical mononuclear phagocytes subcluster 1 (classical Mo1), classical mononuclear phagocytes subcluster 2 (classical Mo2) in NTM-PD patients compared to healthy controls. CONCLUSIONS: Our data revealed disease-specific immune cell subclusters and provided potential new targets of NTM-PD. Specific expansion of IFIT1+ neutrophil subclusters and the CXCL8-CXCR1/2 axis may be involved in the pathogenesis of NTM-PD. These insights may have implications for the diagnosis and treatment of NTM-PD.


Subject(s)
Adaptor Proteins, Signal Transducing , Neutrophils , RNA-Binding Proteins , Single-Cell Analysis , Transcriptome , Humans , Neutrophils/immunology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , Male , Middle Aged , Female , Adaptor Proteins, Signal Transducing/genetics , Mycobacterium Infections, Nontuberculous/immunology , Mycobacterium Infections, Nontuberculous/blood , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium avium Complex/immunology , Aged , Mycobacterium abscessus/immunology , T-Lymphocytes/immunology , Adult
3.
J Transl Med ; 22(1): 580, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898490

ABSTRACT

The importance of the immune microenvironment in poorly cohesive carcinoma (PCC) has been highlighted due to its limited response rate to conventional therapy and emerging treatment resistance. A combination of clinical cohorts, bioinformatics analyses, and functional/molecular experiments revealed that high infiltration of Interferon Induced Protein with Tetratricopeptide Repeats 1 (IFIT1) + tumor-associated neutrophils (TANs) is a distinguishing feature of PCC patients. Upregulation of IFIT1 + TANs promote migration and invasion of gastric cancer (GC) cell lines (MKN45 and MKN74) and stimulates the growth of cell-derived xenograft models. Besides, by promoting macrophage secreted phosphoprotein 1 (SPP1) expression and facilitating cancer-associated fibroblast and endothelial cell recruitment and activation through TANs, IFIT1 promotes a mesenchymal phenotype, which is associated with a poor prognosis. Importantly, compared to non-PCC (NPCC), PCC tumors is more immunosuppressive. Mechanistically, IFIT1 can be stimulated by IFN-γ and contributes to the expression of Programmed Cell Death 1 Ligand (PDL1) in TANs. We demonstrated in mouse models that IFIT1 + PDL1 + TANs can induce acquired resistance to anti-PD-1 immunotherapy, which may be responsible for the difficulty of PCC patients to benefit from immunotherapy. This work highlights the role of IFIT1 + TANs in mediating the remodeling of the tumor immune microenvironment and immunotherapeutic resistance and introduces IFIT1 + TANs as a promising target for precision therapy of PCC.


Subject(s)
Adaptor Proteins, Signal Transducing , Neutrophils , RNA-Binding Proteins , Humans , Neutrophils/immunology , Neutrophils/metabolism , Animals , RNA-Binding Proteins/metabolism , Cell Line, Tumor , Adaptor Proteins, Signal Transducing/metabolism , Tumor Microenvironment/immunology , Female , B7-H1 Antigen/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/immunology , Male , Mice , Drug Resistance, Neoplasm , Cell Movement , Immune Tolerance , Immunosuppression Therapy , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness , Mice, Nude , Immunotherapy , Middle Aged
4.
Infect Drug Resist ; 17: 2337-2349, 2024.
Article in English | MEDLINE | ID: mdl-38882652

ABSTRACT

Background: Sepsis refers to a life-threatening organ dysfunction which can be resulted from the infection-induced dysregulated host response. A large number of inflammatory cytokines are released to act on the liver, making the liver one of the common target organs for the development of multiple organ dysfunction syndrome (MODS) in patients with sepsis. Sepsis-induced acute liver injury (SALI) can aggravate systemic disease. As a result, it is of great clinical significance to comprehend the molecular biological mechanism of SALI and to identify the markers for evaluating SALI. Interferon-induced proteins with tetratricopeptide repeats 1 and 2 (IFIT1, IFIT2) have been recognized as the anti-inflammatory factors that are widely expressed in various organs. The present study was aimed at clarifying the roles of IFIT1 and IFIT2 in the development of SALI. Methods: A two-sample Mendelian randomization (MR) analysis was employed. Summary statistics datas were obtained from GWAS for inflammatory factors [tumor necrosis factor (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6)], IFIT2, and sepsis as well as liver injury. Independent SNPs were selected as instrumental variables (IVs). Inverse variance weighted (IVW) in the MR analysis was adopted as the primary method for estimating the causal associations of inflammatory factors and IFIT2 with two diseases, and the associations of inflammatory factors with IFIT2. Additionally, weighted median method, MR-Egger and sensitivity analyses were applied in assessing the robustness of the results and ensure the result reliability. Subsequently, 119 healthy volunteers, 116 patients with sepsis and 116 SALI patients were recruited. The ELISA method was employed to quantify the expression levels of TNF-α, IL-1ß, and IL-6. Additionally, qRT-PCR was conducted to measure the expression of IFIT1 and IFIT2. Furthermore, the correlations of IFIT1 and IFIT2 with inflammatory factors, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were explored. Results: As shown by the MR analysis, the genetically predisposed sepsis was significantly associated with the risk of IL-1ß, with an odds ratio (OR) of 1.069 (95% confidence interval (CI), 1.015-1.127, p = 0.0119), and negatively associated with the risk of IL-6, with an OR of 0.880 (95% CI: 0.792-0.979, p= 0.0184). Meanwhile, there were positive causal effects of IL-6 (OR = 1.269, 95% CI: 1.032-1.561, p= 0.0238), IL-1ß (OR = 1.106, 95% CI: 1.010-1.211, p = 0.0299) and IFIT2 (OR = 1.191, 95% CI: 1.045-1.359, p = 0.0090) on liver injury. Additionally, there was a positive causal effect of IFIT2 (OR = 1.164, 95% CI: 1.035-1.309, p= 0.0110) on IL-1ß. Upon sensitivity analyses, there was weak evidence of such effects, indicating that the findings of this study were robust and reliable. Our results revealed the elevated levels of TNF-α, IL-1ß, and IL-6 in the blood samples of sepsis and SALI patients (p < 0.0001). Conversely, IFIT1 and IFIT2 demonstrated the significantly decreased levels in peripheral blood mononuclear cells (PBMCs) of SALI patients (p < 0.0001). Furthermore, the expression levels of IFIT1 and IFIT2 were both negatively correlated with ALT activity (r = -0.3426, p = 0.0002; r = -0.3069, p = 0.0008) and AST activity (r = -0.2483, p = 0.0072; r = -0.3261, p = 0.0004), respectively. Moreover, the expression of IFIT1 and IFIT2 was both negatively related to the levels of TNF-α (r = -0.5027, p < 0.0001; r = -0.4218, p < 0.0001), IL-1ß (r = -0.3349, p = 0.0002; r = -0.4070, p < 0.0001) and IL-6 (r = -0.2734, p = 0.0030; r = -0.3536, p < 0.0001), respectively. Conclusion: IFIT1 and IFIT2 can serve as the diagnostic markers for sepsis-related liver injury, and IFIT1 and IFIT2 may participate in the pathological process of sepsis-related liver injury by regulating inflammation and liver function.

5.
Cell Oncol (Dordr) ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536650

ABSTRACT

OBJECTIVES: Previously, Interferon-induced Protein with Tetratricopeptide Repeats 1 (IFIT1) has been shown to promote cancer development. Here, we aimed to explore the role of IFIT1 in the development and progression of pancreatic cancer, including the underlying mechanisms. METHODS: We explored IFIT1 expression in pancreatic cancer samples using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Cell Counting Kit-8 (CCK8), colony formation, scratch wound-healing and Transwell assays were performed to assess the proliferation, migration and invasion abilities of pancreatic cancer cells. Gene Set Enrichment Analysis (GSEA) and Western blotting were performed to assess the regulatory effect of IFIT1 on the Wnt/ß-catenin pathway. RESULTS: We found that upregulation of IFIT1 expression is common in pancreatic cancer and is negatively associated with overall patient survival. Knockdown of IFIT1 expression led to decreased proliferation, migration and invasion of pancreatic cancer cells. We also found that IFIT1 could regulate Wnt/ß-catenin signaling, and that a Wnt/ß-catenin agonist could reverse this effect. In addition, we found that IFIT1 can promote epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. CONCLUSIONS: Our data indicate that IFIT1 increases pancreatic cancer cell proliferation, migration and invasion by activating the Wnt/ß-catenin pathway. In addition, we found that EMT could be regulated by IFIT1. IFIT1 may serve as a potential therapeutic target for pancreatic cancer.

6.
Biol Direct ; 18(1): 65, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37817224

ABSTRACT

BACKGROUND: Kruppel-like factor 13 (KLF13) is a transcription factor and plays an important role in carcinogenesis. However, the significance of KLF13 in thyroid carcinoma (THCA) is underdetermined. In this study, we aimed to explore the clinical relevance and function of KLF13 in the progress of THCA. METHODS: The expression of KLF13 in thyroid carcinoma and normal tissue was investigated by qPCR and IHC assay. The expression of KLF13 and IFIT1 in cell samples was investigated with Western blot assay. Cell proliferation ability was detected with CCK8 and colony formation assay. Cell growth in vivo with or without KLF13 overexpression was evaluated on a xenograft model. Cell migration ability was measured with Transwell assay. Cell cycle was detected with flow cytometer. The downstream genes of KLF13 were screened using RNA-seq assay. Luciferase activity was employed to assess the transcriptional regulation of KLF13 on IFIT1 promoter. RESULTS: KLF13 expression was downregulated in THCA samples. KLF13 knockdown and overexpression promoted and inhibited the proliferation and migration of THCA cells, respectively. The RNA-seq, RT-qPCR and immunoblotting data showed that KLF13 knockdown significantly potentiated IFIT1 expression at both mRNA and protein levels. Luciferase assays showed that KLF13 suppressed the transcription activity of IFIT1 promoter. Besides, IFIT1 upregulation was critical for the proliferation and migration of THCA cell lines. Lastly, silencing of IFIT1 greatly reversed the proliferation and migration induced by KLF13 knockdown. CONCLUSIONS: In conclusion, KLF13 may function as an anti-tumor protein in THCA by regulating the expression of IFIT1 and offer a theoretical foundation for treating thyroid carcinoma.


Subject(s)
Gene Expression Regulation , Thyroid Neoplasms , Humans , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Line , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Luciferases/genetics , Luciferases/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology
7.
Transl Pediatr ; 12(8): 1517-1526, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37692541

ABSTRACT

Background: The interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) gene is strongly associated with disease activity index of childhood systemic lupus erythematosus (SLE). However, whether IFIT1-regulated gene expression is the molecular basis of the pathogenesis of SLE has not been fully investigated. Methods: Dataset GSE11909 was used to analyze the expression profiles of IFIT1 gene in 103 SLE cases and 12 healthy individuals. Differentially expressed genes (DEGs)-affected by IFIT1 gene were screened between the case group and control group, followed by gene function analysis. The clinical diagnostic potential of the least absolute shrinkage and selection operator (LASSO) model, established based on the expression profiles of IFIT1 and IFIFT1-affected DEGs, was evaluated. Analysis of association between IFIFT1-affected DEGs and immune infiltration was performed. Results: IFIT1 was highly expressed in childhood SLE patients. IFIT1 and IFIT1-affected DEGs showed the potential to serve as a diagnostic marker for childhood SLE with area under the curve (AUC) value of 0.947. Childhood SLE patients showed 826 upregulated DEGs and 4,111 downregulated DEGs compared to the control group. Among them, 208 upregulated DEGs and 214 downregulated DEGs were identified in the IFIT1-high group compared to the IFIT1-low group. The LASSO model for the diagnosis of childhood SLE involved 7 marker genes that were related to immune checkpoint and tertiary lymphoid structure in SLE. Conclusions: Our results confirmed the clinical diagnostic potential of IFIT1 and IFIT1-affected genes in childhood SLE. Moreover, this study elucidated that IFIT1-induced changes in the transcriptome are involved in immune checkpoint and tertiary lymphoid structure in childhood.

8.
Virus Res ; 336: 199211, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37634741

ABSTRACT

Coronaviruses (CoVs) have been the source of multiple epidemics and a global pandemic since the start of century, and there is an urgent need to understand CoV biology and develop better therapeutics. Here, we review the role of NSP16 in CoV replication, specifically its importance to 2'-O-methylation and CoV RNA capping. We describe the attenuation phenotypes of NSP16-mutant CoVs, the roles of MDA5 and IFITs in sensing and antagonizing viral RNA lacking 2'O methylation, and the dependence on 2'-O-methylation in other virus families. We also detail the growing body of research into targeting 2'-O-methylation for therapeutics or as a platform for live attenuated vaccines. Beyond its role in RNA capping, NSP16 may have yet uncharacterized importance to CoV replication, highlighting the need for continued studies into NSP16 functions. Understanding the full contribution of NSP16 to the replicative fitness of CoVs will better inform the development of treatments against future CoV outbreaks.

9.
J Virol ; 97(2): e0153222, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36722972

ABSTRACT

Understanding the molecular basis of innate immune evasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important consideration for designing the next wave of therapeutics. Here, we investigate the role of the nonstructural protein 16 (NSP16) of SARS-CoV-2 in infection and pathogenesis. NSP16, a ribonucleoside 2'-O-methyltransferase (MTase), catalyzes the transfer of a methyl group to mRNA as part of the capping process. Based on observations with other CoVs, we hypothesized that NSP16 2'-O-MTase function protects SARS-CoV-2 from cap-sensing host restriction. Therefore, we engineered SARS-CoV-2 with a mutation that disrupts a conserved residue in the active site of NSP16. We subsequently show that this mutant is attenuated both in vitro and in vivo, using a hamster model of SARS-CoV-2 infection. Mechanistically, we confirm that the NSP16 mutant is more sensitive than wild-type SARS-CoV-2 to type I interferon (IFN-I) in vitro. Furthermore, silencing IFIT1 or IFIT3, IFN-stimulated genes that sense a lack of 2'-O-methylation, partially restores fitness to the NSP16 mutant. Finally, we demonstrate that sinefungin, an MTase inhibitor that binds the catalytic site of NSP16, sensitizes wild-type SARS-CoV-2 to IFN-I treatment and attenuates viral replication. Overall, our findings highlight the importance of SARS-CoV-2 NSP16 in evading host innate immunity and suggest a target for future antiviral therapies. IMPORTANCE Similar to other coronaviruses, disruption of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) NSP16 function attenuates viral replication in a type I interferon-dependent manner. In vivo, our results show reduced disease and viral replication at late times in the hamster lung, but an earlier titer deficit for the NSP16 mutant (dNSP16) in the upper airway. In addition, our results confirm a role for IFIT1 but also demonstrate the necessity of IFIT3 in mediating dNSP16 attenuation. Finally, we show that targeting NSP16 activity with a 2'-O-methyltransferase inhibitor in combination with type I interferon offers a novel avenue for antiviral development.


Subject(s)
Adaptor Proteins, Signal Transducing , Intracellular Signaling Peptides and Proteins , SARS-CoV-2 , Viral Nonstructural Proteins , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , COVID-19/virology , Interferon Type I/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Methyltransferases/metabolism , RNA-Binding Proteins/genetics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Viral Nonstructural Proteins/metabolism , Animals , Cricetinae
10.
Int Immunopharmacol ; 114: 109485, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36446235

ABSTRACT

Acute lung injury (ALI) is featured by intensive inflammatory responses causing significant morbidity and mortality. Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), induced by interferon (IFN), has been discovered to modulate viral infection and cell apoptosis and inhibit the production of pro-inflammatory cytokines. However, it's role and mechanism in ALI remain unclear and need to be explored furtherly. Here, we discovered that IFIT1 decreased the expression of TNF-α, IL-1ß and IL-6 in mouse-derived macrophage cells (MH-S) and alleviated apoptosis of murine lung epithelial cells (MLE-12) induced by MH-S cell supernatant, contributing to anti-inflammatory and antiapoptotic effects in vitro and in vivo. Moreover, RNA sequencing analysis (RNA-seq) showed that inflammatory chemokine CC motif chemokine ligand 5 (CCL5) partially eliminated the protective effects of IFIT1 and promoted the expression of inflammatory cytokines TNF-α, IL-1ß and IL-6 by CCL5-p65NF-κB signaling pathway. This study demonstrated that IFIT1 attenuated ALI-associated inflammation and cell apoptosis by regulating the CCL5-p65NF-κB signaling pathway. These findings are of great significance for the treatment of lung injury.


Subject(s)
Acute Lung Injury , Pneumonia , Mice , Animals , Lipopolysaccharides/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Ligands , Acute Lung Injury/metabolism , Lung , Cytokines/metabolism , Pneumonia/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Interferons/metabolism , NF-kappa B/metabolism
11.
Neoplasia ; 35: 100850, 2023 01.
Article in English | MEDLINE | ID: mdl-36371909

ABSTRACT

Fusobacterium nucleatum (F. nucleatum) is enriched in colorectal cancer (CRC) tissues and a high amount of F. nucleatum was associated with an immunosuppressive tumor environment. PD-L1 is an important immune checkpoint expressed on tumor cells and promotes tumor immune escape. Whether PD-L1 is regulated by F. nucleatum is still unclear. We demonstrated that F. nucleatum promoted CRC progression and upregulated PD-L1 protein expression in CRC cell lines. Combined m6A-seq and RNA-seq identified m6A-modified IFIT1 mediating F. nucleatum induced PD-L1 upregulation. IFIT1 mRNA was modified with m6A modifications in 3'UTR and the m6A levels were altered by F. nucleatum treatment. Our results also indicated that IFIT1 served as a potential oncogene in CRC and regulated PD-L1 protein levels through altering PD-L1 ubiquitination. Clinical CRC data confirmed the correlation among F. nucleatum abundance, IFIT1 and PD-L1 expressions. Our work highlighted the function of F. nucleatum in stimulating PD-L1 expression through m6A-modified IFIT1 and provided new aspects for understanding F. nucleatum mediated immune escape.


Subject(s)
Colorectal Neoplasms , Fusobacterium Infections , Humans , Fusobacterium nucleatum/genetics , Fusobacterium Infections/complications , Fusobacterium Infections/microbiology , B7-H1 Antigen/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Cell Proliferation/genetics , RNA-Binding Proteins/genetics , Adaptor Proteins, Signal Transducing
12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013870

ABSTRACT

IFIT1 is a highly inducible member of the interferon stimulating gene family (ISGs) with tetrapeptide repeats. It mainly exists in the cytoplasm and is regulated by interferon, a variety of antiviral role through a variety of mechanisms and pathways, and many viruses have evolved unique mechanisms to evade the limiting effects of IFIT1 and thus counter the body' s antiviral immunity, the unique anti-inflammatory effect of IFIT1 has been extensively studied in inflammatory diseases, Therefore, we mainly review the anti-inflammatory and antiviral effects of IFIT1 and the related mechanisms, so as to provide new therapeutic targets and ideas for the treatment of related diseases.

13.
EMBO Rep ; 23(12): e55648, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36285486

ABSTRACT

Methylation of the mRNA 5' cap by cellular methyltransferases enables efficient translation and avoids recognition by innate immune factors. Coronaviruses encode viral 2'-O-methyltransferases to shield their RNA from host factors. Here, we generate recombinant SARS-CoV-2 harboring a catalytically inactive 2'-O-methyltransferase Nsp16, Nsp16mut, and analyze viral replication in human lung epithelial cells. Although replication is only slightly attenuated, we find SARS-CoV-2 Nsp16mut to be highly immunogenic, resulting in a strongly enhanced release of type I interferon upon infection. The elevated immunogenicity of Nsp16mut is absent in cells lacking the RNA sensor MDA5. In addition, we report that Nsp16mut is highly sensitive to type I IFN treatment and demonstrate that this strong antiviral effect of type I IFN is mediated by the restriction factor IFIT1. Together, we describe a dual role for the 2'-O-methyltransferase Nsp16 during SARS-CoV-2 replication in avoiding efficient recognition by MDA5 and in shielding its RNA from interferon-induced antiviral responses, thereby identifying Nsp16 as a promising target for generating attenuated and highly immunogenic SARS-CoV-2 strains and as a potential candidate for therapeutic intervention.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA , Methyltransferases/genetics , RNA-Binding Proteins/genetics , Adaptor Proteins, Signal Transducing/genetics
14.
Cell Mol Biol Lett ; 27(1): 80, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36138395

ABSTRACT

Extensive inflammation of endothelial cells (ECs) facilitates atherosclerotic lesion formation. Circular RNA (circRNA) participates in atherosclerosis (AS)-related inflammation responses; however, whether and how circ_0086296 regulates atherosclerotic inflammation and lesions have not been investigated. Microarray analysis, quantitative real-time polymerase chain reaction, and fluorescence in situ hybridization assay were performed to detect the expression and location of hsa_circ_0086296 in human carotid artery plaques, aorta of atherosclerotic mice, and human umbilical vein endothelial cells (HUVECs). Sanger sequencing was used to verify the loop structure of circ_0086296. The relationship among circ_0086296, miR-576-3p, IFIT1, STAT1, and EIF4A3 was validated using bioinformatics, luciferase assay, RNA pull-down assay, and RNA immunoprecipitation. The atherosclerosis mouse model was used to evaluate the function of circ_0086296 in vivo. circ_0086296 expression was significantly upregulated in human carotid artery plaques, oxidized low-density lipoprotein (ox-LDL)-treated HUVECs, and the aorta of atherosclerotic mice. Functional analysis indicated that circ_0086296 promotes ECs injury in vitro and atherosclerosis progression in vivo. The mechanism analysis indicated that circ_0086296 sponged miR-576-3p to promote IFIT1-STAT1 expression. Moreover, STAT1 upregulated circ_0086296 expression, forming the circ_0086296/miR-576-3p/IFIT1/STAT1 feedback loop. Notably, inhibition of the circ_0086296/miR-576-3p/IFIT1 axis could block atherosclerotic lesion formation both in vivo and in vitro. Finally, circ_0086296 was overexpressed in exosomes of patients with atherosclerosis and exosomes of ox-LDL-treated ECs. Therefore, the circ_0086296/miR-576-3p/IFIT1/STAT1 feedback loop participates in atherosclerosis progression and contributes to the high circ_0086296 expression observed in the exosomes of serum of patients with atherosclerosis. This study sought to provide a deep understanding of the mechanisms underlying the aberrant EC phenotype in AS.


Subject(s)
Atherosclerosis , Carotid Stenosis , MicroRNAs , RNA, Circular , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis , Atherosclerosis/metabolism , Cell Proliferation/genetics , Feedback , Human Umbilical Vein Endothelial Cells/metabolism , Humans , In Situ Hybridization, Fluorescence , Inflammation , Lipoproteins, LDL , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA-Binding Proteins/genetics , STAT1 Transcription Factor
15.
Comput Struct Biotechnol J ; 20: 2759-2777, 2022.
Article in English | MEDLINE | ID: mdl-35685361

ABSTRACT

Tick-borne encephalitis virus (TBEV), the most medically relevant tick-transmitted flavivirus in Eurasia, targets the host central nervous system and frequently causes severe encephalitis. The severity of TBEV-induced neuropathogenesis is highly cell-type specific and the exact mechanism responsible for such differences has not been fully described yet. Thus, we performed a comprehensive analysis of alterations in host poly-(A)/miRNA/lncRNA expression upon TBEV infection in vitro in human primary neurons (high cytopathic effect) and astrocytes (low cytopathic effect). Infection with severe but not mild TBEV strain resulted in a high neuronal death rate. In comparison, infection with either of TBEV strains in human astrocytes did not. Differential expression and splicing analyses with an in silico prediction of miRNA/mRNA/lncRNA/vd-sRNA networks found significant changes in inflammatory and immune response pathways, nervous system development and regulation of mitosis in TBEV Hypr-infected neurons. Candidate mechanisms responsible for the aforementioned phenomena include specific regulation of host mRNA levels via differentially expressed miRNAs/lncRNAs or vd-sRNAs mimicking endogenous miRNAs and virus-driven modulation of host pre-mRNA splicing. We suggest that these factors are responsible for the observed differences in the virulence manifestation of both TBEV strains in different cell lines. This work brings the first complex overview of alterations in the transcriptome of human astrocytes and neurons during the infection by two TBEV strains of different virulence. The resulting data could serve as a starting point for further studies dealing with the mechanism of TBEV-host interactions and the related processes of TBEV pathogenesis.

16.
Respir Res ; 23(1): 125, 2022 May 14.
Article in English | MEDLINE | ID: mdl-35568895

ABSTRACT

BACKGROUND: Blood transcriptomics can be used for confirmation of tuberculosis diagnosis or sputumless triage, and a comparison of their practical diagnostic accuracy is needed to assess their usefulness. In this study, we investigated potential biomarkers to improve our understanding of the pathogenesis of active pulmonary tuberculosis (PTB) using bioinformatics methods. METHODS: Differentially expressed genes (DEGs) were analyzed between PTB and healthy controls (HCs) based on two microarray datasets. Pathways and functional annotation of DEGs were identified and ten hub genes were selected. They were further analyzed and selected, then verified with an independent sample set. Finally, their diagnostic power was further evaluated between PTB and HCs or other diseases. RESULTS: 62 DEGs mostly related to type I IFN pathway, IFN-γ-mediated pathway, etc. in GO term and immune process, and especially RIG-I-like receptor pathway were acquired. Among them, OAS1, IFIT1 and IFIT3 were upregulated and were the main risk factors for predicting PTB, with adjusted risk ratios of 1.36, 3.10, and 1.32, respectively. These results further verified that peripheral blood mRNA expression levels of OAS1, IFIT1 and IFIT3 were significantly higher in PTB patients than HCs (all P < 0.01). The performance of a combination of these three genes (three-gene set) had exceeded that of all pairwise combinations of them in discriminating TB from HCs, with mean AUC reaching as high as 0.975 with a sensitivity of 94.4% and a specificity of 100%. The good discernibility capacity was evaluated d via 7 independent datasets with an AUC of 0.902, as well as mean sensitivity of 87.9% and mean specificity of 90.2%. In regards to discriminating PTB from other diseases (i.e., initially considered to be possible TB, but rejected in differential diagnosis), the three-gene set equally exhibited an overall strong ability to separate PTB from other diseases with an AUC of 0.999 (sensitivity: 99.0%; specificity: 100%) in the training set, and 0.974 with a sensitivity of 96.4% and a specificity of 98.6% in the test set. CONCLUSION: The described commonalities and unique signatures in the blood profiles of PTB and the other control samples have considerable implications for PTB biosignature design and future diagnosis, and provide insights into the biological processes underlying PTB.


Subject(s)
Tuberculosis, Pulmonary , Tuberculosis , Biomarkers , Computational Biology/methods , Humans , Transcriptome/genetics , Tuberculosis/diagnosis , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/genetics
17.
Front Oncol ; 12: 707525, 2022.
Article in English | MEDLINE | ID: mdl-35280763

ABSTRACT

Activation of EGFR is a major risk factor for non-small cell lung cancer (NSCLC). Understanding the molecular events promoting EGFR activation can help us gain more insights into the progression of NSCLC. In this study, we demonstrate that collagen type VIII alpha 1 chain (COL8A1), an extracellular matrix component, was overexpressed in NSCLC. In NSCLC cells, knockdown of COL8A1 suppressed cell growth, cycle progression, and migration, and induced cell apoptosis. While COL8A1 overexpression promoted cell proliferation and inhibited cell apoptosis. In addition, we found that COL8A1 depletion reduced interferon response signaling and downregulated (IFIT1) and interferon-induced proteins with tetratricopeptide repeats 3 (IFIT3). Moreover, we indicated that COL8A1 could upregulate IFIT1 and IFIT3 mediated EGFR activation in vitro and in vivo. Lastly, there was a positive correlation among COL8A1, IFIT1, and IFIT3 expression, and EGFR activity in patients with NSCLC. Overall, our data demonstrate that COL8A1 contributes to NSCLC proliferation and invasion through EGFR activation, dependent on IFIT1 and IFIT3 expression.

18.
Bioengineered ; 13(2): 2285-2295, 2022 02.
Article in English | MEDLINE | ID: mdl-35034537

ABSTRACT

Osteoclasts (OCs), the main cause of bone resorption irregularities, may ultimately cause various bone diseases, including osteoarthritis. The objective of this study was to investigate the effect of interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) on OC formation induced by receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) and to further explore its underlying mechanism. IFIT1 expression in Raw264.7 cells treated with macrophage colony-stimulating factor (M-CSF) and RANKL was determined by qRT-PCR. OC formation was detected using tartrate-resistant acid phosphatase (TRAP) staining. The effect of IFIT1 on STAT3 activation was detected using Western blotting. Additionally, Western blotting was used to measure the change in the expression of OC-specific proteins. IFIT1 was highly expressed in Raw264.7 cells after stimulation with M-CSF and RANKL. IFIT1 overexpression accelerated the formation of OCs, as evidenced by the increased number and size of multinuclear cells, and the upregulation of OC-specific proteins, and activated the STAT3 pathway, by inducing phosphorylation of JAK1 and STAT3. However, silencing of IFIT1 inhibited the formation of OCs and a STAT3 inhibitor Stattic weakened the effects of IFIT1. In conclusion, IFIT1 accelerates the formation of OCs, which is caused by RANKL by STAT3 pathway regulation. This study provides a potential basis for further research and for development of drugs for treating bone resorption-related diseases.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Osteoclasts/metabolism , RNA-Binding Proteins/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/genetics , Animals , Mice , RAW 264.7 Cells , RNA-Binding Proteins/genetics , STAT3 Transcription Factor/genetics
19.
Cell Oncol (Dordr) ; 44(6): 1425-1437, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34791638

ABSTRACT

OBJECTIVES: Previously, Interferon-induced Protein with Tetratricopeptide Repeats 1 (IFIT1) has been shown to promote cancer development. Here, we aimed to explore the role of IFIT1 in the development and progression of pancreatic cancer, including the underlying mechanisms. METHODS: We explored IFIT1 expression in pancreatic cancer samples using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Cell Counting Kit-8 (CCK8), colony formation, scratch wound-healing and Transwell assays were performed to assess the proliferation, migration and invasion abilities of pancreatic cancer cells. Gene Set Enrichment Analysis (GSEA) and Western blotting were performed to assess the regulatory effect of IFIT1 on the Wnt/ß-catenin pathway. RESULTS: We found that upregulation of IFIT1 expression is common in pancreatic cancer and is negatively associated with overall patient survival. Knockdown of IFIT1 expression led to decreased proliferation, migration and invasion of pancreatic cancer cells. We also found that IFIT1 could regulate Wnt/ß-catenin signaling, and that a Wnt/ß-catenin agonist could reverse this effect. In addition, we found that IFIT1 can promote epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. CONCLUSIONS: Our data indicate that IFIT1 increases pancreatic cancer cell proliferation, migration and invasion by activating the Wnt/ß-catenin pathway. In addition, we found that EMT could be regulated by IFIT1. IFIT1 may serve as a potential therapeutic target for pancreatic cancer.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Movement , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , RNA-Binding Proteins/metabolism , Wnt Signaling Pathway , Adaptor Proteins, Signal Transducing/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Multivariate Analysis , Neoplasm Invasiveness , Prognosis , RNA-Binding Proteins/genetics , Wnt Signaling Pathway/genetics
20.
Cell Rep ; 37(2): 109801, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34644578

ABSTRACT

Uncovering vulnerable steps in the life cycle of viruses supports the rational design of antiviral treatments. However, information on viral replication dynamics obtained from traditional bulk assays with host cell populations is inherently limited as the data represent averages over a multitude of unsynchronized replication cycles. Here, we use time-lapse imaging of virus replication in thousands of single cells, combined with computational inference, to identify rate-limiting steps for dengue virus (DENV), a widespread human pathogen. Comparing wild-type DENV with a vaccine candidate mutant, we show that the viral spread in the mutant is greatly attenuated by delayed onset of productive replication, whereas wild-type and mutant virus have identical replication rates. Single-cell analysis done after applying the broad-spectrum antiviral drug, ribavirin, at clinically relevant concentrations revealed the same mechanism of attenuating viral spread. We conclude that the initial steps of infection, rather than the rate of established replication, are quantitatively limiting DENV spread.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Ribavirin/pharmacology , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects , A549 Cells , Dengue Virus/genetics , Dengue Virus/growth & development , Dengue Virus/metabolism , Host-Pathogen Interactions , Humans , Methylation , Microscopy, Video , Mutation , RNA, Viral/genetics , RNA, Viral/metabolism , Single-Cell Analysis , Time Factors , Time-Lapse Imaging , Viral Load , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...