Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Clin Transl Oncol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090422

ABSTRACT

PURPOSE: This study aimed to investigate the relationship between the interferon-gamma (IFN-γ) pathway in different tumor microenvironments (TME) and patients' prognosis, as well as the regulatory mechanisms of this pathway in tumor cells. METHODS: Using RNA-seq data from the TCGA database, we analyzed the predictive value of the IFN-γ pathway across various tumors. We employed a univariate Cox regression model to assess the prognostic significance of IFN-γ signaling in different tumor types. Additionally, we analyzed single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database to examine the distribution characteristics of the IFN-γ pathway and explore its regulatory mechanisms, highlighting how IFN-γ influenced cellular interactions within the TME. RESULTS: Our analysis revealed a significant association between the IFN-γ pathway and adverse prognosis in pan-cancer tissues (P < 0.001). Interestingly, this correlation varied regarding positive and negative regulation across different tumor types. Through a detailed examination of scRNA-seq data, we found that the IFN-γ pathway exerted substantial regulatory effects on stromal and immune cells. In contrast, its expression and regulatory patterns in tumor cells exhibited diversity and heterogeneity. Further analysis indicated that the IFN-γ pathway not only enhanced the immunogenicity of tumor cells but also inhibited their proliferation. Cell-cell interaction analysis confirmed the pivotal role of the IFN-γ pathway within the overall regulatory network. Moreover, we identified HMGB2 (high mobility group box 2) in T cells as a potential key regulator of tumor cell proliferation. CONCLUSIONS: The IFN-γ pathway exhibited a dual function by both suppressing tumor cell proliferation and enhancing their immunogenicity, positioning it as a pivotal target for refined cancer diagnosis and cancer strategies.

2.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000607

ABSTRACT

Natural killer (NK) cells play a crucial role in innate immunity, particularly in combating infections and tumors. However, in hematological cancers, NK cells often exhibit impaired functions. Therefore, it is very important to activate its endosomal Toll-like receptors (TLRs) as a potential strategy to restore its antitumor activity. We stimulated NK cells from the peripheral blood mononuclear cells from children with acute lymphoblastic leukemia and NK cells isolated, and the NK cells were stimulated with specific TLR ligands (Poly I:C, Imiquimod, R848, and ODN2006) and we evaluated changes in IFN-γ, CD107a, NKG2D, NKp44 expression, Granzyme B secretion, cytokine/chemokine release, and cytotoxic activity. Results revealed that Poly I:C and Imiquimod enhanced the activation of both immunoregulatory and cytotoxic NK cells, increasing IFN-γ, CD107a, NKG2D, and NKp44 expression. R848 activated immunoregulatory NK cells, while ODN2006 boosted CD107a, NKp44, NKG2D, and IFN-γ secretion in cytotoxic NK cells. R848 also increased the secretion of seven cytokines/chemokines. Importantly, R848 and ODN 2006 significantly improved cytotoxicity against leukemic cells. Overall, TLR stimulation enhances NK cell activation, suggesting TLR8 (R848) and TLR9 (ODN 2006) ligands as promising candidates for antitumor immunotherapy.


Subject(s)
Imiquimod , Killer Cells, Natural , Lymphocyte Activation , Poly I-C , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Toll-Like Receptors , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Poly I-C/pharmacology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Imiquimod/pharmacology , Toll-Like Receptors/metabolism , Toll-Like Receptors/agonists , Child , Oligodeoxyribonucleotides/pharmacology , Cytokines/metabolism , Female , Interferon-gamma/metabolism , Male , Imidazoles/pharmacology , Cytotoxicity, Immunologic/drug effects , Child, Preschool , Toll-Like Receptor Agonists
3.
Biomolecules ; 14(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38927060

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are vital players in antiviral immune responses because of their high levels of IFN-α secretion. However, this attribute has also implicated them as critical factors behind the immunopathogenesis of inflammatory diseases, and no currently available therapy can efficiently inhibit pDCs' aberrant activation. Mesenchymal stromal cells (MSCs) possess stromal immunomodulatory functionality, regulating immune cell activation through several mechanisms, including the adenosinergic (CD39/CD73/adenosine) pathway. The IFN-γ preconditioning of bone marrow MSCs improves their inhibitory properties for therapy applications; however, isolating human gingival tissue-derived MSCs (hGMSCs) is more accessible. These cells have shown better immunomodulatory effects, yet the outcome of IFN-γ preconditioning and its impact on the adenosinergic pathway has not been evaluated. This study first validated the immunoregulatory properties of primary-cultured hGMSCs, and the results showed that IFN-γ preconditioning strengthens CD39/CD73 coexpression, adenosine production, and the regulatory properties of hGMSC, which were confirmed by describing for the first time their ability to reduce pDC activation and their IFN-α secretion and to increase the frequency of CD73+ pDC. In addition, when CD73's enzymatic activity was neutralized in hGMSCs, adenosine production and the IFN-γ preconditioning effect were restrained. This evidence might be applied to design hGMSCs- and adenosine-based immunotherapeutic strategies for treating inflammatory disorders that are associated with pDC overactivation.


Subject(s)
5'-Nucleotidase , Adenosine , Dendritic Cells , Gingiva , Interferon-gamma , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/cytology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Adenosine/metabolism , Interferon-gamma/metabolism , Gingiva/cytology , 5'-Nucleotidase/metabolism , Cells, Cultured , Apyrase/metabolism , GPI-Linked Proteins
4.
Microorganisms ; 12(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38930625

ABSTRACT

Maternal parasitemia and placental parasite load were examined in mother-newborn pairs to determine their effect on the congenital transmission of Trypanosoma cruzi. Parasitemia was qualitatively assessed in mothers and newborns by the microhematocrit test; parasite load was determined in the placental tissues of transmitting and non-transmitting mothers by the detection of T. cruzi DNA and by histology. Compared to transmitter mothers, the frequency and prevalence of parasitemia were found to be increased in non-transmitter mothers; however, the frequency and prevalence of parasite load were higher among the transmitter mothers than among their non-transmitter counterparts. Additionally, serum levels of interferon (IFN)-γ were measured by an enzyme-linked immunosorbent assay (ELISA) in peripheral, placental, and cord blood samples. Median values of IFN-γ were significantly increased in the cord blood of uninfected newborns. The median IFN-γ values of transmitter and non-transmitter mothers were not significantly different; however, non-transmitter mothers had the highest total IFN-γ production among the group of mothers. Collectively, the results of this study suggest that the anti-T. cruzi immune response occurring in the placenta and cord is under the influence of the cytokines from the mother's blood and results in the control of parasitemia in uninfected newborns.

5.
Eur J Immunol ; 54(6): e2350878, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581345

ABSTRACT

Tumor-associated macrophages (TAM) are abundant in several tumor types and usually correlate with poor prognosis. Previously, we demonstrated that anti-inflammatory macrophages (M2) inhibit NK cell effector functions. Here, we explored the impact of TAM on NK cells in the context of clear-cell renal cell carcinoma (ccRCC). Bioinformatics analysis revealed that an exhausted NK cell signature strongly correlated with an M2 signature. Analysis of TAM from human ccRCC samples confirmed that they exhibited an M2-skewed phenotype and inhibited IFN-γ production by NK cells. Moreover, human M0 macrophages cultured with conditioned media from ccRCC cell lines generated macrophages with an M2-skewed phenotype (TAM-like), which alike TAM, displayed suppressive activity on NK cells. Moreover, TAM depletion in the mouse Renca ccRCC model resulted in delayed tumor growth and reduced volume, accompanied by an increased frequency of IFN-γ-producing tumor-infiltrating NK cells that displayed heightened expression of T-bet and NKG2D and reduced expression of the exhaustion-associated co-inhibitory molecules PD-1 and TIM-3. Therefore, in ccRCC, the tumor microenvironment polarizes TAM toward an immunosuppressive profile that promotes tumor-infiltrating NK cell dysfunction, contributing to tumor progression. In addition, immunotherapy strategies targeting TAM may result in NK cell reinvigoration, thereby counteracting tumor progression.


Subject(s)
Carcinoma, Renal Cell , Interferon-gamma , Kidney Neoplasms , Killer Cells, Natural , Tumor-Associated Macrophages , Killer Cells, Natural/immunology , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Interferon-gamma/metabolism , Interferon-gamma/immunology , Humans , Animals , Mice , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Disease Progression , Cell Line, Tumor , Tumor Microenvironment/immunology , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Hepatitis A Virus Cellular Receptor 2/immunology , Programmed Cell Death 1 Receptor/metabolism
6.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38675425

ABSTRACT

OBJECTIVE: This study evaluated the influence of cannabis and/or cocaine use in human immunodeficiency virus (HIV)- and cytomegalovirus (CMV)-specific T-cell responses of people with HIV (PWH). RESULTS: There was a higher percentage of IL-17-producing HIV-Gag-specific CD8+ T-cells in all drug users than that in PWH non-drug users. Stratifying the drug-user groups, increased percentages of IL-17-producing HIV-Gag-specific CD4+ and CD8+ T-cells were found in PWH cannabis plus cocaine users compared to PWH non-drug users. In response to CMV, there were higher percentage of IL-17-producing CMV-specific CD8+ T-cell in PWH cocaine users than that in PWH non-drug users. Considering all drug users together, there was a higher percentage of SEB-stimulated IL-17-producing CD4+ T-cells than that in PWH non-drug users, whereas cannabis users had higher percentages of IL-17-producing CD4+ T-cells compared to non-drug users. METHODS: Cryopreserved peripheral blood mononuclear cells from 37 PWH undergoing antiretroviral therapy (ART) using cannabis (10), cocaine (7), or cannabis plus cocaine (10) and non-drug users (10) were stimulated with HIV-1 Gag or CMV-pp65 peptide pools, or staphylococcal enterotoxin B (SEB) and evaluated for IFN-γ- and/or IL-17A-producing CD4+ and CD8+ T-cells using flow cytometry. CONCLUSIONS: Cannabis plus cocaine use increased HIV-specific IL-17 producing T-cells and cocaine use increased IL-17 CMV-specific CD8+ T-cell responses which could favor the inflammatory conditions associated with IL-17 overproduction.

7.
Curr Top Med Chem ; 24(14): 1264-1277, 2024.
Article in English | MEDLINE | ID: mdl-38523516

ABSTRACT

BACKGROUND: Inflammation is a series of complex defense-related reactions. The inflammation cascade produces various pro-inflammatory mediators. Unregulated production of these pro-inflammatory mediators can lead to a wide range of diseases, including rheumatoid arthritis, sepsis, and inflammatory bowel disease. In the literature, the anti-inflammatory action of quinoline and thiazolidinedione nuclei are well established, alone, and associated with other nuclei. The synthesis of hybrid molecules is a strategy for obtaining more efficient molecules due to the union of pharmacophoric nuclei known to be related to pharmacological activity. OBJECTIVES: Based on this, this work presents the synthesis of thiazolidinedione-quinoline molecular hybrids and their involvement in the modulation of cytokines involved in the inflammatory reaction cascade. METHODS: After synthesis and characterization, the compounds were submitted to cell viability test (MTT), ELISA IFN-γ and TNF-α, adipogenic differentiation, and molecular docking assay with PPARy and COX-2 targets. RESULTS: LPSF/ZKD2 and LPSF/ZKD7 showed a significant decrease in the concentration of IFN- γ and TNF-α, with a dose-dependent behavior. LPSF/ZKD4 at a concentration of 50 µM significantly reduced IL-6 expression. LPSF/ZKD4 demonstrates lipid accumulation with significant differences between the untreated and negative control groups, indicating a relevant agonist action on the PPARγ receptor. Molecular docking showed that all synthesized compounds have good affinity with PPARγ e COX-2, with binding energy close to -10,000 Kcal/mol. CONCLUSION: These results demonstrate that the synthesis of quinoline-thiazolidinedione hybrids may be a useful strategy for obtaining promising candidates for new anti-inflammatory agents.


Subject(s)
Molecular Docking Simulation , Quinolines , Thiazolidinediones , Quinolines/pharmacology , Quinolines/chemistry , Quinolines/chemical synthesis , Thiazolidinediones/pharmacology , Thiazolidinediones/chemical synthesis , Thiazolidinediones/chemistry , Molecular Structure , Humans , Cell Survival/drug effects , Structure-Activity Relationship , Animals , PPAR gamma/agonists , PPAR gamma/metabolism , Dose-Response Relationship, Drug , Mice , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cyclooxygenase 2/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Tumor Necrosis Factor-alpha/metabolism
8.
Sci Rep ; 14(1): 7274, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538762

ABSTRACT

Studies about thymic B cells are scarce in the literature, but it was suggested that they can exert modulatory and regulatory functions on the immune system. Thymic B cells can play some role in regulating the most frequent allergic background worldwide, the atopy induced by the mite Dermatophagoides pteronyssinus (Der p). Here, we aimed to evaluate if the polyclonal IgG repertoire produced by Der p-atopic individuals can influence the homing and cytokine profile of human thymic B derived from non-atopic children aged less than seven days. With this purpose, we produced polyclonal IgG formulations and cultivated human thymocytes in their presence. We also assessed IgG subclasses and the direct interaction of IgG with thymic B cell membranes. Our results could demonstrate that Der p-atopic IgG could not reduce the expression of α4ß7 homing molecule as observed in response to the other IgG formulations and could reduce the frequency of IFN-γ- and IL-9-producing thymic B cells compared to the mock condition. Der p-atopic IgG could also induce thymic IL-10-producing B cells compared to control conditions. The IgG derived from Der p-atopic individuals failed to diminish the population of IL-13-producing thymic B cells, unlike the reduction observed with other IgG formulations when compared to the mock condition. All IgG formulations had similar levels of IgG subclasses and directly interacted with thymic B cell membranes. Finally, we performed experiments using peripheral non-atopic B cells where IgG effects were not observed. In conclusion, our observation demonstrates that IgG induced in allergic individuals can modulate non-atopic thymic B cells, potentially generating thymic B cells prone to allergy development, which seems to not occur in mature B cells.


Subject(s)
Hypersensitivity, Immediate , Hypersensitivity , Animals , Child , Humans , Interleukin-10 , Dermatophagoides pteronyssinus , Interleukin-9 , Interferon-gamma/metabolism , Immunoglobulin G , Phenotype , Antigens, Dermatophagoides , Allergens
9.
Am J Reprod Immunol ; 91(3): e13830, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38454570

ABSTRACT

PROBLEM: Endometriosis exhibits several immune dysfunctions, including deficient natural killer (NK) cell cytotoxicity. MICA (MHC class I chain-related molecule A) is induced by biological stress and soluble MICA (sMICA) negatively modulates the expression of the activating receptor, NKG2D, reducing NK cells activities. We investigated the involvement of soluble MICA in NK cell-deficient activity in endometriosis. METHODS OF STUDY: sMICA levels (serum and peritoneal fluid-PF) were evaluated by ELISA. Circulating NK cell subsets quantification and its NKG2D receptor expression, NK cell cytotoxicity and CD107a, IFN-γ and IL-10 expressions by NK cells stimulated with K562 cells were determined by flow cytometry. RESULTS: We found higher sMICA levels (serum and PF) in endometriosis, especially in advanced and deep endometriosis. Endometriosis presented lower percentages of CD56dim CD16+ cytotoxic cells and impaired NK cell responses upon stimulation, resulting in lower CD107a and IFN-γ expressions, and deficient NK cell cytotoxicity. NK cell stimulation in the MICA-blocked condition (mimicking the effect of sMICA) showed decreased cytotoxicity in initial endometriosis stages and the emergence of a negative correlation between CD107a expression and sMICA levels. CONCLUSIONS: We suggest that soluble MICA is a potential player in endometriosis pathophysiology with involvement in disease progression and severity, contributing to NK cell impaired IFN-γ response and degranulation. NK cell compartment exhibits multiple perturbations, including quantitative deficiency and impaired cytotoxicity, contributing to inadequate elimination of ectopic endometrial tissue.


Subject(s)
Endometriosis , Female , Humans , Cell Degranulation , Killer Cells, Natural , Gene Expression , Disease Progression , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Histocompatibility Antigens Class I/metabolism
10.
Mol Biol Rep ; 51(1): 64, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38170343

ABSTRACT

BACKGROUND: Glioblastoma is a brain malignant tumor grade IV, highly invasive. Alterations in several signaling pathways are involved in glioblastoma development. In this work, we evaluated the IFN-γ canonical signaling pathway in glioblastoma cells and its effect on cell viability and migration. METHODS: The levels of STAT1/pSTAT1, IRF1, and PD-L1 in LN-18 glioblastoma cells were analyzed using western blotting. Cell viability was evaluated by calcein-AM/propidium iodide assays, and a wound healing assay was used to study the migration of glioblastoma cells treated with IFN-γ. Our aim was to determine the expression of IFN-γ signaling elements in cell lines and tissue from glioblastoma samples and examine the relationship between these elements and the survival of glioblastoma patients. The following platforms were utilized for analysis: the CCLE (Cancer Cell Line Encyclopedia), UALCAN (University of Alabama at Birmingham Cancer data analysis Portal), GEPIA (Gene Expression Profiling Interactive Analysis), and GENT2 (Gene Expression patterns across Normal and Tumor tissues). RESULTS: Our results evidenced that IFN-γ signaling increases non-phosphorylated and phosphorylated STAT1 levels and promotes the upregulation of IRF1 and PD-L1 in glioblastoma cells. The activation of IFN-γ signaling increased cell migration without affecting the viability of glioblastoma cells. Furthermore, in silico analysis showed that the elements of IFN-γ signaling pathways (IFNGR1/IFNGR2/STAT1/IRF1) are upregulated in human glioblastoma samples. The upregulation of IFN-γ signaling was associated with shorter survival in glioblastoma patients. CONCLUSION: IFN-γ signaling pathway is upregulated in glioblastoma, displaying pro-tumor activity. Thus, IFN-γ signaling elements may be potential biomarkers and targets for treating glioblastoma.


Subject(s)
Glioblastoma , Interferon-gamma , Humans , Interferon-gamma/metabolism , Glioblastoma/genetics , B7-H1 Antigen/metabolism , Up-Regulation , Signal Transduction , Cell Line, Tumor
11.
Biomed Rep ; 19(6): 95, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37901873

ABSTRACT

Lower levels of peripheral mucosal-associated invariant T (MAIT) cells have been observed in the peripheral blood of patients with severe coronavirus disease 2019 (COVID-19). Following on from previous research into the effect of the IgG repertoire on human lymphocytes, the present study aimed to evaluate if immunoglobulin G (IgG) antibodies obtained from patients with mild or severe COVID-19 contribute to these effects on MAIT cells. Culture experiments were performed using healthy human peripheral blood mononuclear cells (PBMCs) and different repertoires of IgG obtained from patients with COVID-19 as a mild or severe disease and compared with mock, healthy control or therapeutic IgG conditions. The results indicate that the IgG repertoire induced during the development of mild and severe COVID-19 has, per se, the in vitro potential to reduce the frequency of MAIT cells and the production of IFN-γ by the MAIT cell population in PBMCs from healthy individuals. In conclusion, the results of the present study indicate that IgG in patients with severe COVID-19 may participate in the reduction of peripheral MAIT cell frequency and hinder the antiviral activity of these cells.

12.
Microb Pathog ; 184: 106378, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37802158

ABSTRACT

In the last 20 years, various research groups have endeavored to develop recombinant vaccines against leptospirosis to overcome the limitations of commercially available bacterins. Numerous antigens and vaccine formulations have been tested thus far. However, the analysis of cellular response in these vaccine formulations is not commonly conducted, primarily due to the scarcity of supplies and kits for the hamster animal model. Our research group has already tested the Q1 antigen, a chimeric protein combining the immunogenic regions of LipL32, LemA, and LigANI, in recombinant subunit and BCG-vectored vaccines. In both strategies, 100 % of the hamsters were protected against clinical signs of leptospirosis. However, only the recombinant BCG-vectored vaccine provided protection against renal colonization. Thus, the objective of this study is to characterize the cellular immune response in hamsters immunized with different vaccine formulations based on the Q1 antigen through transcriptional analysis of cytokines. The hamsters were allocated into groups and vaccinated as follows: recombinant subunit (rQ1), recombinant BCG (rBCG:Q1), and saline and BCG Pasteur control vaccines. To assess the cellular response induced by the vaccines, we cultured and stimulated splenocytes, followed by RNA extraction from the cells and analysis of cytokines using real-time PCR. The results revealed that the recombinant subunit vaccine elicited a Th2-type response, characterized by the expression of cytokines IL-10, IL-1α, and TNF-α. This pattern closely resembles the cytokines expressed in severe cases of leptospirosis. On the other hand, the rBCG-vectored vaccine induced a Th1-type response with significant up-regulation of IFN-γ. These findings suggest the involvement of the cellular response and the IFN-γ mediated inflammatory response in the sterilizing immunity mediated by rBCG. Therefore, this study may assist future investigations in characterizing the cellular response in hamsters, aiming to elucidate the mechanisms of efficacy and establish potential correlates of protection.


Subject(s)
BCG Vaccine , Leptospirosis , Cricetinae , Animals , Antigens, Bacterial/genetics , Leptospirosis/prevention & control , Recombinant Proteins/genetics , Vaccines, Synthetic/genetics , Cytokines/metabolism , Immunity, Cellular , Recombinant Fusion Proteins/genetics
13.
Front Med (Lausanne) ; 10: 1239706, 2023.
Article in English | MEDLINE | ID: mdl-37711742

ABSTRACT

Human T-lymphotropic virus 1 (HTLV-1) infected individuals remain as asymptomatic carriers (ACs) or can develop the chronic neurological disorder HTLV-1-associated myelopathy/Tropical Spastic Paraparesis (HAM/TSP) or the adult T-cell leukemia/lymphoma (ATLL), and the immunological mechanisms involved in this pathologies need to be elucidated. Recently, it has been demonstrated that induced or naturally developed IgG repertoires obtained from different groups of donors, grouped by immune status, can modulate human T and B cell functions. Here we aimed to evaluate if the IgG obtained from HTLV-1-infected ACs, HAM/TSP, and ATLL patients can differentially modulate the production of cytokines by human T and B cells. With this purpose, we cultured PBMCs with IgG purified from ACs, HAM/TSP, or ATLL donors and evaluated the frequency and intracellular cytokine production by flow cytometry. Our results indicate that IgG from HAM/TSP patients could induce an augment of IL-17-producing CD4+ T cells, reduce the frequency of IL-4-producing CD4+ T cells, increase IFN-γ-producing CD8+ T cells, and reduce IL-4-producing CD8+ T cells. IgG from ATLL could reduce the frequency of IL-4-producing CD4+ T cells, similarly to IgG from HAM/TSP /TSP, and could reduce the frequency of IFN-γ-producing γδT cells without influence on IL-17- and IL4-producing γδT and could reduce the frequency of IL-10- producing B cells. Finally, IgG from both HAM/TSP and ATLL patients could reduce the frequency of IFN-γ producing B cells. In conclusion, these results suggest that these preparations are active, partly overlapping in their effects, and able to elicit distinct effects on target populations.

14.
Int J Mol Sci ; 24(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37628731

ABSTRACT

Malaria is the most lethal parasitic disease worldwide; the severity of symptoms and mortality are higher in men than in women, exhibiting an evident sexual dimorphism in the immune response; therefore, the contribution of 17ß-estradiol and testosterone to this phenomenon has been studied. Both hormones differentially affect several aspects of innate and adaptive immunity. Dehydroepiandrosterone (DHEA) is the precursor of both hormones and is the sexual steroid in higher concentrations in humans, with immunomodulatory properties in different parasitic diseases; however, the involvement of DHEA in this sexual dimorphism has not been studied. In the case of malaria, the only information is that higher levels of DHEA are associated with reduced Plasmodium falciparum parasitemia. Therefore, this work aims to analyze the DHEA contribution to the sexual dimorphism of the immune response in malaria. We assessed the effect of modifying the concentration of DHEA on parasitemia, the number of immune cells in the spleen, cytokines, and antibody levels in plasma of CBA/Ca mice infected with Plasmodium berghei ANKA (P. berghei ANKA). DHEA differentially affected the immune response in males and females: it decreased IFN-γ, IL-2 and IL-4 concentrations only in females, whereas in gonadectomized males, it increased IgG2a and IgG3 antibodies. The results presented here show that DHEA modulates the immune response against Plasmodium differently in each sex, which helps to explain the sexual dimorphism present in malaria.


Subject(s)
Cytokines , Plasmodium berghei , Male , Humans , Mice , Female , Animals , Mice, Inbred CBA , Parasitemia , Dehydroepiandrosterone
15.
Microbes Infect ; 25(8): 105179, 2023.
Article in English | MEDLINE | ID: mdl-37394112

ABSTRACT

TNF and IFN-γ trigger cell damage during SARS CoV-2 infection; these cytokines can induce senescence and a cell death process called PANoptosis. This study included 138 vaccine-naïve COVID-19 patients, who were divided into four groups (Gp) according to the plasma level of TNF and IFN-γ (High [Hi] or Normal-Low [No-Low]), Gp 1: TNFHi/IFNγHi; Gp 2: TNFHi/IFNγNo-Low; Gp 3: TNFNo-Low/IFNγHi; and Gp 4: TNFNo-Low/IFNγNo-Low. Thirty-five apoptosis-related proteins and molecules related to cell death and senescence were evaluated. Our results showed that groups did not display differences in age and comorbidities. However, 81% of the Gp 1 patients had severe COVID-19, and 44% died. Notably, the p21/CDKN1A was increased in Gp 2 and Gp 3. Moreover, Gp 1 showed higher TNFR1, MLKL, RIPK1, NLRP3, Caspase 1, and HMGB-1 levels, suggesting elevated TNF and IFN-γ levels simultaneously activate diverse cell death pathways because it is not observed when only one of these cytokines is increased. Thus, high TNF/IFN-γ levels are predominant in severe COVID-19 status, and patients display cell alterations associated with the activation of diverse cell death pathways, including a possible senescent phenotype.


Subject(s)
COVID-19 , Interferon-gamma , Humans , Cell Death , Cytokines , Interferon-gamma/metabolism , Tumor Necrosis Factor-alpha/pharmacology
16.
Pathogens ; 12(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37375508

ABSTRACT

Tuberculosis (TB) remains a public health problem worldwide and is one of the deadliest infectious diseases, only after the current COVID-19 pandemic. Despite significant advances in the TB field, there needs to be more immune response comprehension; for instance, the role played by humoral immunity is still controversial. This study aimed to identify the frequency and function of B1 and immature/transitional B cells in patients with active and latent TB (ATB and LTB, respectively). Here we show that LTB patients have an increased frequency of CD5+ B cells and decreased CD10+ B cells. Furthermore, LTB patients stimulated with mycobacteria's antigens increase the frequency of IFN-γ-producing B cells, whereas cells from ATB do not respond. Moreover, under the mycobacterial protein stimulus, LTB promotes a pro-inflammatory environment characterized by a high level of IFN-γ but also can produce IL-10. Regarding the ATB group, they cannot produce IFN-γ, and mycobacterial lipids and proteins stimulate only the IL-10 production. Finally, our data showed that in ATB, but not in LTB, B cell subsets correlate with clinical and laboratory parameters, suggesting that these CD5+ and CD10+ B cell subpopulations have the potential to be biomarkers to differentiate between LTB and ATB. In conclusion, LTB has increased CD5+ B cells, and these cells can maintain a rich microenvironment of IFN-γ, IL-10, and IL-4. In contrast, ATB only maintains an anti-inflammatory environment when stimulated with mycobacterial proteins or lipids.

17.
J Clin Exp Hepatol ; 13(1): 64-74, 2023.
Article in English | MEDLINE | ID: mdl-36647406

ABSTRACT

Background: Sepsis is a severe global health problem, with high morbidity and mortality. In sepsis, one of the main affected organs is the liver. Hepatic alterations characterize a negative prognostic. Omega-3 fatty acids (ω3), eicosapentaenoic acid, and docosahexaenoic acid, are part of the main families of polyunsaturated fatty acids. ω3 has been used in studies as sepsis treatment and as a treatment for non-alcoholic liver disease. Aim: We aimed to evaluate the effects of treatment with fish oil (FO) rich in ω3 on liver changes and damage resulting from experimental sepsis. Methodology: A model of severe sepsis in Wistar rats was used. Oxidative stress in the liver tissue was evaluated by means of tests of thiobarbituric acid reactive substances, 2,7-dihydrodichlorofluorescein diacetate , catalase, and glutathione peroxidase, in the serum TBARS, DCF, thiols and, to assess liver dysfunction, alanine aminotransferase and aspartate aminotransferase. Hepatic tissue damage was evaluated using H&E histology. Results: In assessments of oxidative stress in liver tissue, a protective effect was observed in the tests of TBARS, DCF, CAT, and GPx, when compared the sepsis versus sepsis+ω3 groups. Regarding the oxidative stress in serum, a protective effect of treatment with ω3 was observed in the TBARS, DCF, and thiols assays, in the comparison between the sepsis and sepsis+ω3 groups. ω3 had also a beneficial effect on biochemical parameters in serum in the analysis of ALT, creatinine, urea, and lactate, observed in the comparison between the sepsis and sepsis+ω3 groups. Conclusion: The results suggest ω3 as a liver protector during sepsis with an antioxidant effect, alleviating injuries and dysfunctions.

18.
Acta Trop ; 237: 106749, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36370753

ABSTRACT

The pathogenesis of Chronic Chagas Cardiomyopathy (CCC) is still not fully understood, and the persistence of the parasite in tissues seems to be essential for the onset and progression of heart disease, tissue destruction, and chronic inflammation. It is clear that the polarity found between the asymptomatic (IND) and cardiac clinical forms refers mainly to the mechanisms involved in the regulation of the host's immune response. Thus, to elucidate aspects of the susceptibility of host phagocytes to T. cruzi infection, the present study explored novel aspects of innate immune response, integrating data on susceptibility to infection and intracellular replication, using monocyte-derived macrophages from CCC patients, together with memory CD4+ T-cells (CD45RO+). The isolation of PBMC was conducted by means of in vitro infection assay with T. cruzi trypomastigotes and flow cytometry analysis of the intracytoplasmic cytokine production by CD4+T-cells. Our findings indicated that monocytes derived from individuals with CCC are more susceptible to the infection and replication of intracellular amastigotes. Moreover, the stimulation of CD4+ T-cells from CCC patients, together with T. cruzi trypomastigotes, induces a predominance of a regulatory response over a type 1 response, demonstrated by an increase in IL-10 production and a reduction in the IFN-γ and IFN-γ/IL-10. Suppression of the function of monocyte-derived macrophages, from CCC patients, to control trypomastigote infection and intracellular replication sheds light on a potential susceptibility of these cells isolated from peripheral blood, which may reflect the ineffectiveness of parasite control by phagocytes in cardiac tissues, which can subsequently result in serious heart disease.


Subject(s)
Chagas Cardiomyopathy , Chagas Disease , Trypanosoma cruzi , Humans , Interleukin-10 , Leukocytes, Mononuclear , T-Lymphocytes , Macrophages , Immunity
19.
Pathog Glob Health ; 117(2): 167-180, 2023 03.
Article in English | MEDLINE | ID: mdl-35850625

ABSTRACT

Dengue disease caused by dengue virus (DENV) infection is the most common vector-borne viral disease worldwide. Currently, no treatment is available to fight dengue symptoms. We and others have demonstrated the antiviral and immunomodulatory properties of VitD3 as a possible therapy for DENV infection. MicroRNAs (miRNAs) are small non-coding RNAs responsible for the regulation of cell processes including antiviral defense. Previous transcriptomic analysis showed that VitD3 regulates the expression of genes involved in stress and immune response by inducing specific miRNAs. Here, we focus on the effects of VitD3 supplementation in the regulation of the expression of inflammatory-liked miR-182-5p, miR-130a-3p, miR125b-5p, miR146a-5p, and miR-155-5p during DENV-2 infection of monocyte-derived macrophages (MDMs). Further, we evaluated the effects of inhibition of these miRNAs in the innate immune response. Our results showed that supplementation with VitD3 differentially regulated the expression of these inflammatory miRNAs. We also observed that inhibition of miR-182-5p, miR-130a-3p, miR-125b-5p, and miR-155-5p, led to decreased production of TNF-α and TLR9 expression, while increased the expression of SOCS-1, IFN-ß, and OAS1, without affecting DENV replication. By contrast, over-expression of miR-182-5p, miR-130a-3p, miR-125b-5p, and miR-155-5p significantly decreased DENV-2 infection rates and also DENV-2 replication in MDMs. Our results suggest that VitD3 immunomodulatory effects involve regulation of inflammation-linked miRNAs expression, which might play a key role in the inflammatory response during DENV infection.


Subject(s)
Dengue , Macrophages , MicroRNAs , Vitamin D , Humans , Dengue/immunology , Dengue Virus , Gene Expression Regulation , Macrophages/immunology , Macrophages/virology , MicroRNAs/genetics , Virus Replication , Vitamin D/pharmacology
20.
Exp Biol Med (Maywood) ; 248(22): 2062-2071, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38235691

ABSTRACT

Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, is a neglected disease affecting around 6 million people. About 30% of CD patients develop chronic Chagas disease cardiomyopathy (CCC), an inflammatory cardiomyopathy that occurs decades after the initial infection, while most infected patients (60%) remain asymptomatic in the so-called indeterminate form (IF). Death results from heart failure or arrhythmia in a subset of CCC patients. Myocardial fibrosis, inflammation, and mitochondrial dysfunction are involved in the arrhythmia substrate and triggering events. Survival in CCC is worse than in other cardiomyopathies, which may be linked to a Th1-T cell rich myocarditis with abundant interferon (IFN)-γ and tumor necrosis factor (TNF)-α, selectively lower levels of mitochondrial energy metabolism enzymes in the heart, and reduced levels of high-energy phosphate, indicating poor adenosine triphosphate (ATP) production. IFN-γ and TNF-α signaling, which are constitutively upregulated in CD patients, negatively affect mitochondrial function in cardiomyocytes, recapitulating findings in CCC heart tissue. Genetic studies such as whole-exome sequencing (WES) in nuclear families with multiple CCC/IF cases has disclosed rare heterozygous pathogenic variants in mitochondrial and inflammatory genes segregating in CCC cases. In this minireview, we summarized studies showing how IFN-γ and TNF-α affect cell energy generation, mitochondrial health, and redox homeostasis in cardiomyocytes, in addition to human CD and mitochondria. We hypothesize that cytokine-induced mitochondrial dysfunction in genetically predisposed patients may be the underlying cause of CCC severity and we believe this mechanism may have a bearing on other inflammatory cardiomyopathies.


Subject(s)
Cardiomyopathies , Chagas Cardiomyopathy , Chagas Disease , Mitochondrial Diseases , Humans , Tumor Necrosis Factor-alpha/metabolism , Chagas Cardiomyopathy/genetics , Chagas Cardiomyopathy/metabolism , Chagas Cardiomyopathy/pathology , Cardiomyopathies/etiology , Myocytes, Cardiac/metabolism , Inflammation , Arrhythmias, Cardiac , Chronic Disease
SELECTION OF CITATIONS
SEARCH DETAIL