Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.859
Filter
1.
Exp Physiol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980930

ABSTRACT

Prematurity has physical consequences, such as lower birth weight, decreased muscle mass and increased risk of adult-onset metabolic disease. Insulin-like growth factor 1 (IGF-1) has therapeutic potential to improve the growth and quality of muscle and tendon in premature births, and thus attenuate some of these sequalae. We investigated the effect of IGF-1 on extensor carpi radialis muscle and biceps brachii tendon of preterm piglets. The preterm group consisted of 19-day-old preterm (10 days early) piglets, treated with either IGF-1 or vehicle. Term controls consisted of groups of 9-day-old piglets (D9) and 19-day-old piglets (D19). Muscle samples were analysed by immunofluorescence to determine the cross-sectional area (CSA) of muscle fibres, fibre type composition, satellite cell content and central nuclei-containing fibres in the muscle. Tendon samples were analysed for CSA, collagen content and maturation, and vascularization. Gene expression of the tendon was measured by RT-qPCR. Across all endpoints, we found no significant effect of IGF-1 treatment on preterm piglets. Preterm piglets had smaller muscle fibre CSA compared to D9 and D19 control group. Satellite cell content was similar across all groups. For tendon, we found an effect of age on tendon CSA, and mRNA levels of COL1A1, tenomodulin and scleraxis. Immunoreactivity for elastin and CD31, and several markers of tendon maturation, were increased in D9 compared to the preterm piglets. Collagen content was similar across groups. IGF-1 treatment of preterm-born piglets does not influence the growth and maturation of skeletal muscle and tendon.

2.
Article in English | MEDLINE | ID: mdl-38986012

ABSTRACT

PURPOSE: Long-term GH/IGF-1 excess could increase risk of cancer in acromegaly, but individual levels of these hormones do not relate to this risk. Therefore, we newly investigated longitudinally-measured IGF-1 levels as a potential predictor of cancer in a large NYC acromegaly cohort. METHODS: We conducted a prospective, longitudinal study of 598 acromegaly (309 men, 289 women) and 292 clinically nonfunctioning pituitary adenoma (CNFPA)(140 women, 152 men) patients from the same underlying population. GH and IGF-1 levels were measured longitudinally and outcomes were observed during long-term follow-up. Cumulative exposure to IGF-1 excess was tested as a predictor of cancer. We compared cancer prevalence in acromegaly and CNFPA cohorts and incidence in each to that expected from SEER data. RESULTS: Cancer prevalence by last follow up was 22.6% in acromegaly and 12.7% in CNFPAs (OR = 1.99 (95% CI, 1.34, 2.97)(P=0.0005). Overall SIR for cancer was 1.78 (1.51, 1.81) in the acromegaly and 1.26 (0.89, 1.70) in the CNFPA cohorts. Cumulative exposure to IGF-1 excess, OR=1.278 (1.060, 1.541)(P = 0.01), years from acromegaly diagnosis to cancer or last follow up, OR= 1.03 (1.004, 1.057)(P=0.024), and age at follow up, OR =1.064 (1.047, 1.082)(P<0.001), were predictors of cancer. CONCLUSIONS: Cancer risk is increased in acromegaly, but not in CNFPA patients. Cumulative exposure to IGF-1 excess is a predictor of cancer in acromegaly. Our data suggest that cancer risk in acromegaly relates to the degree and duration of IGF-1 excess and that full appreciation of this risk requires long-term follow up.

3.
Exp Gerontol ; 194: 112512, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38971545

ABSTRACT

OBJECTIVE: This study investigated sex-specific pathogenesis mechanisms in Alzheimer's disease (AD) using single-nucleus RNA sequencing (snRNA-seq) data. METHODS: Data from the Gene Expression Omnibus (GEO) were searched using terms "Alzheimer's Disease", "single cell", and "Homo sapiens". Studies excluding APOE E4 and including comprehensive gender information with 10× sequencing methods were selected, resulting in GSE157827 and GSE174367 datasets from human prefrontal cortex samples. Sex-stratified analyses were conducted on these datasets, and the outcomes of the analysis for GSE157827 were compared with those of GSE174367. The findings were validated using expression profiling from the mouse dataset GSE85162. Furthermore, real-time PCR experiments in mice further confirmed these findings. The Seurat R package was used to identify cell types, and batch effects were mitigated using the Harmony R package. Cell proportions by sex were compared using the Mann-Whitney-Wilcoxon test, and gene expression variability was displayed with an empirical cumulative distribution plot. Differentially expressed genes were identified using the FindMarkers function with the MAST test. Transcription factors were analyzed using the RcisTarget R package. RESULTS: Seven cell types were identified: astrocytes, endothelial cells, excitatory neurons, inhibitory neurons, microglia, oligodendrocytes, and oligodendrocyte progenitor cells. Additionally, five distinct subpopulations of both endothelial and microglial cells were also identified, respectively. Key findings included: (1) In endothelial cells, genes involved in synapse organization, such as Insulin Like Growth Factor 1 Receptor (IGF1R) and Fms Related Receptor Tyrosine Kinase 1(FLT1), showed higher expression in females with AD. (2) In microglial cells, genes in the ribosome pathway exhibited higher expression in males without AD compared to females (with or without AD) and males with AD. (3) Chromodomain Helicase DNA Binding Protein 2 (CHD2) negatively regulated gene expression in the ribosome pathway in male microglia, suppressing AD, this finding was further validated in mice. (4) Differences between Asians and Caucasians were observed based on sex and disease status stratification. CONCLUSIONS: IGF1R and FLT1 in endothelial cells contribute to AD in females, while CHD2 negatively regulates ribosome pathway gene expression in male microglia, suppressing AD in humans and mice.

4.
J Biomed Mater Res B Appl Biomater ; 112(7): e35447, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38997799

ABSTRACT

With dental implant treatment becoming the gold standard, the need for effective bone augmentation prior to implantation has grown. This study aims to evaluate a bone augmentation strategy integrating three key growth factors: bone morphogenetic protein-2 (BMP-2), insulin-like growth factor 1 (IGF-1), and vascular endothelial growth factor (VEGF). Collagen scaffolds incorporating BMP-2, IGF-1, or VEGF were fabricated and categorized into five groups based on their content: scaffold alone; BMP-2 alone (BMP-2); BMP-2 and IGF-1 (BI); BMP-2, IGF-1, and VEGF (BIV); and BMP-2 and IGF-1 with an earlier release of VEGF (BI + V). The prepared scaffolds were surgically implanted into the calvarias of C57BL/6JJcl mice, and hard tissue formation was assessed after 10 and 28 days through histological, tomographic, and biochemical analyses. The combination of BMP-2 and IGF-1 induced a greater volume of hard tissue augmentation compared with that of BMP-2 alone, regardless of VEGF supplementation, and these groups had increased levels of cartilage compared with others. The volume of hard tissue formation was greatest in the BIV group. In contrast, the BI + V group exhibited a hard tissue volume similar to that of the BI group. While VEGF and CD31 levels were highest in the BIV group at 10 days, there was no correlation at the same time point between hard tissue formation and the quantity of M2 macrophages. In conclusion, the simultaneous release of BMP-2, IGF-1, and VEGF proved to be effective in promoting bone augmentation.


Subject(s)
Bone Morphogenetic Protein 2 , Insulin-Like Growth Factor I , Vascular Endothelial Growth Factor A , Animals , Bone Morphogenetic Protein 2/pharmacology , Mice , Insulin-Like Growth Factor I/pharmacology , Insulin-Like Growth Factor I/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Tissue Scaffolds/chemistry , Skull/metabolism , Mice, Inbred C57BL , Male
5.
J Cell Mol Med ; 28(13): e18471, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38984951

ABSTRACT

Diabetes mellitus is a major cause of blindness and chronic ulcers in the working-age population worldwide. Wound healing is deeply dependent on neovascularization to restore blood flow. Former research has found that differentially expressed circular RNAs (circRNAs) are associated with hyperglycaemia-induced endothelial cell damage, and hypoxia-pretreated adipose-derived stem cells (ADSCs)-extracellular vesicle (HEV) transplants have a more therapeutic effect to enhance wound healing in diabetic mice by delivery circRNA. The current investigation employed high-throughput sequencing to identify circRNAs that are abnormally expressed between EV and HEV. The regulatory mechanism and predicted targets of one differentially expressed circRNA, circ-IGF1R, were investigated utilizing bioinformatics analyses, luciferase reporter assays, angiogenic differentiation assays, flow cytometric apoptosis analysis and RT-qPCR. Circ-IGF1R expression increased in HEV, and downregulation of circ-IGF1R suppressed and reversed the promotion effect of HEV on angiogenesis in ulcerated tissue. Bioinformatics analyses and luciferase reporter assays confirmed that miR-503-5p was the downstream target of circ-IGF1R, and inhibiting miR-503-5p restored the promotion effect of HEV on angiogenesis after circ-IGF1R silence. The study also found that miR-503-5p can interact with 3'-UTR of both HK2 and VEGFA. Overexpression of HK2 or VEGFA restored the promotion effect of HExo on angiogenesis after circ-IGF1R silence. Overexpression miR-503-5p or silence HK2/VEGFA reversed the protective effect of circ-IGF1R to MLMECs angiogenic differentiation. Overexpression of circ-IGF1R increased the protective effect of HEV on the promotion of wound healing in mice with diabetes. Circ-IGF1R promotes HIF-1α expression through miR-503-5p sponging. Our data demonstrate that circ-IGF1R overexpression EVs from ADSCs suppress high glucose-induced endothelial cell damage by regulating miR-503-5p/HK2/VEGFA axis.


Subject(s)
Extracellular Vesicles , MicroRNAs , RNA, Circular , Receptor, IGF Type 1 , Vascular Endothelial Growth Factor A , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Mice , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Humans , Stem Cells/metabolism , Male , Gene Expression Regulation , Wound Healing/genetics , Cell Hypoxia/genetics , Signal Transduction , Up-Regulation/genetics , Neovascularization, Physiologic/genetics
6.
Sci Rep ; 14(1): 15635, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972889

ABSTRACT

This study aimed to elucidate the influence of miR-483-3p on human renal tubular epithelial cells (HK-2) under high glucose conditions and to understand its mechanism. Human proximal tubular epithelial cells (HK-2) were exposed to 50 mmol/L glucose for 48 h to establish a renal tubular epithelial cell injury model, denoted as the high glucose group (HG group). Cells were also cultured for 48 h in a medium containing 5.5 mmol/L glucose, serving as the low glucose group. Transfection was performed in various groups: HK-2 + low glucose (control group), high glucose (50 mM) (HG group), high glucose + miR-483-3p mimics (HG + mimics group), high glucose +miR-483-3p inhibitor (HG + inhibitor group), and corresponding negative controls. Real-time quantitative polymerase chain reaction (qPCR) assessed the mRNA expression of miR-483-3p, bax, bcl-2, and caspase-3. Western blot determined the corresponding protein levels. Proliferation was assessed using the CCK-8 assay, and cell apoptosis was analyzed using the fluorescence TUNEL method. Western blot and Masson's staining were conducted to observe alterations in cell fibrosis post miR-483-3p transfection. Furthermore, a dual-luciferase assay investigated the targeting relationship between miR-483-3p and IGF-1. The CCK8 assay demonstrated that the HG + mimics group inhibited HK-2 cell proliferation, while the fluorescent TUNEL method revealed induced cell apoptosis in this group. Conversely, the HG + inhibitor group promoted cell proliferation and suppressed cell apoptosis. The HG + mimics group upregulated mRNA and protein expression of pro-apoptotic markers (bax and caspase-3), while downregulating anti-apoptotic marker (bcl-2) expression. In contrast, the HG + inhibitor group showed opposite effects. Collagen I and FN protein levels were significantly elevated in the HG + mimics group compared to controls (P < 0.05). Conversely, in the HG + inhibitor group, the protein expression of Collagen I and FN was notably reduced compared to the HG group (P < 0.05). The dual luciferase reporter assay confirmed that miR-483-3p could inhibit the luciferase activity of IGF-1's 3'-UTR region (P < 0.05). miR-483-3p exerts targeted regulation on IGF-1, promoting apoptosis and fibrosis in renal tubular epithelial cells induced by high glucose conditions.


Subject(s)
Apoptosis , Cell Proliferation , Epithelial Cells , Glucose , Insulin-Like Growth Factor I , Kidney Tubules , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Glucose/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Insulin-Like Growth Factor I/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Line , Kidney Tubules/metabolism , Kidney Tubules/cytology , Gene Expression Regulation/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/drug effects , Caspase 3/metabolism , Caspase 3/genetics
7.
FASEB J ; 38(13): e23797, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38963344

ABSTRACT

The role of N-glycosylation in the myogenic process remains poorly understood. Here, we evaluated the impact of N-glycosylation inhibition by Tunicamycin (TUN) or by phosphomannomutase 2 (PMM2) gene knockdown, which encodes an enzyme essential for catalyzing an early step of the N-glycosylation pathway, on C2C12 myoblast differentiation. The effect of chronic treatment with TUN on tibialis anterior (TA) and extensor digitorum longus (EDL) muscles of WT and MLC/mIgf-1 transgenic mice, which overexpress muscle Igf-1Ea mRNA isoform, was also investigated. TUN-treated and PMM2 knockdown C2C12 cells showed reduced ConA, PHA-L, and AAL lectin binding and increased ER-stress-related gene expression (Chop and Hspa5 mRNAs and s/uXbp1 ratio) compared to controls. Myogenic markers (MyoD, myogenin, and Mrf4 mRNAs and MF20 protein) and myotube formation were reduced in both TUN-treated and PMM2 knockdown C2C12 cells. Body and TA weight of WT and MLC/mIgf-1 mice were not modified by TUN treatment, while lectin binding slightly decreased in the TA muscle of WT (ConA and AAL) and MLC/mIgf-1 (ConA) mice. The ER-stress-related gene expression did not change in the TA muscle of WT and MLC/mIgf-1 mice after TUN treatment. TUN treatment decreased myogenin mRNA and increased atrogen-1 mRNA, particularly in the TA muscle of WT mice. Finally, the IGF-1 production and IGF1R signaling pathways activation were reduced due to N-glycosylation inhibition in TA and EDL muscles. Decreased IGF1R expression was found in TUN-treated C2C12 myoblasts which was associated with lower IGF-1-induced IGF1R, AKT, and ERK1/2 phosphorylation compared to CTR cells. Chronic TUN-challenge models can help to elucidate the molecular mechanisms through which diseases associated with aberrant N-glycosylation, such as Congenital Disorders of Glycosylation (CDG), affect muscle and other tissue functions.


Subject(s)
Cell Differentiation , Endoplasmic Reticulum Chaperone BiP , Muscle, Skeletal , Myoblasts , Receptor, IGF Type 1 , Signal Transduction , Tunicamycin , Animals , Mice , Glycosylation , Myoblasts/metabolism , Endoplasmic Reticulum Chaperone BiP/metabolism , Tunicamycin/pharmacology , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Muscle, Skeletal/metabolism , Muscle Development/physiology , Cell Line , Mice, Transgenic , Endoplasmic Reticulum Stress , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics
8.
bioRxiv ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39005405

ABSTRACT

Objective: Kisspeptin, encoded by the Kiss1 gene, ties puberty and fertility to energy status; however, the metabolic factors that control Kiss1-expressing cells need to be clarified. Methods: To evaluate the impact of IGF-1 on the metabolic and reproductive functions of kisspeptin producing cells, we created mice with IGF-1 receptor deletion driven by the Kiss1 promoter (IGF1RKiss1 mice). Previous studies have shown IGF-1 and insulin can bind to each other's receptor, permitting IGF-1 signaling in the absence of IGF1R. Therefore, we also generated mice with simultaneous deletion of the IGF1R and insulin receptor (IR) in Kiss1-expressing cells (IGF1R/IRKiss1 mice). Results: Loss of IGF1R in Kiss1 cells caused stunted body length. In addition, female IGF1RKiss1 mice displayed lower body weight and food intake plus higher energy expenditure and physical activity. This phenotype was linked to higher proopiomelanocortin (POMC) expression and heightened brown adipose tissue (BAT) thermogenesis. Male IGF1RKiss1 mice had mild changes in metabolic functions. Moreover, IGF1RKiss1 mice of both sexes experienced delayed puberty. Notably, male IGF1RKiss1 mice had impaired adulthood fertility accompanied by lower gonadotropin and testosterone levels. Thus, IGF1R in Kiss1-expressing cells impacts metabolism and reproduction in a sex-specific manner. IGF1R/IRKiss1 mice had higher fat mass and glucose intolerance, suggesting IGF1R and IR in Kiss1-expressing cells together regulate body composition and glucose homeostasis. Conclusions: Overall, our study shows that IGF1R and IR in Kiss1 have cooperative roles in body length, metabolism, and reproduction.

9.
Article in English | MEDLINE | ID: mdl-39017987

ABSTRACT

SOFT syndrome (Short stature-Onychodysplasia-Facial dysmorphism-hypoTrichosis) is a rare primordial dwarfism syndrome caused by biallelic variants in POC1A encoding a centriolar protein. To refine the phenotypic spectrum of SOFT syndrome, recently shown to include metabolic features, we conducted a systematic review of all published cases (19 studies, including 42 patients). The SOFT tetrad affected only 24 patients (57%), while all cases presented with short stature from birth (median height: -5.5SDS([-8.5]-[-2.8])/adult height: 132.5 cm(103.5-148)), which was most often disproportionate (90.5%), with relative macrocephaly. Bone involvement resulted in short hands and feet (100%), brachydactyly (92.5%), metaphyseal (92%) or epiphyseal (84%) anomalies, and/or sacrum/pelvis hypoplasia (58%). Serum IGF-I was increased (median IGF-I level: + 2 SDS ([-0.5]-[+ 3])). Recombinant human growth hormone (rhGH) therapy was stopped for absence/poor growth response (7/9 patients, 78%) and/or hyperglycemia (4/9 patients, 45%). Among 11 patients evaluated, 10 (91%) presented with central distribution of fat (73%), clinical (64%) and/or biological insulin resistance (IR) (100%, median HOMA-IR: 18), dyslipidemia (80%), and hepatic steatosis (100%). Glucose tolerance abnormalities affected 58% of patients aged over 10 years. Patients harbored biallelic missense (52.4%) or truncating (45.2%) POC1A variants. Biallelic null variants, affecting 36% of patients, were less frequently associated with the SOFT tetrad (33% vs 70% respectively, p = 0.027) as compared to other variants, without difference in the prevalence of metabolic abnormalities. POC1A should be sequenced in children with short stature, altered glucose/insulin homeostasis and/or centripetal fat distribution. In patients with SOFT syndrome, rhGH treatment is not indicated, and IR-related complications should be regularly screened and monitored.PROSPERO registration: CRD42023460876.

10.
Front Endocrinol (Lausanne) ; 15: 1393865, 2024.
Article in English | MEDLINE | ID: mdl-38978629

ABSTRACT

Background: A common complication of thalassemia is secondary osteoporosis. This study aimed to assess the prevalence and factors associated with low BMD in thalassemic patients. Method: This is a cross-sectional study. Eligible patients were males aged within 18-49 years or premenopausal women diagnosed with thalassemia in Chiang Mai University Hospital between July 2021 and July 2022. The diagnosis of low BMD by dual-energy x-ray absorptiometry (DXA) was defined as a Z-score of -2.0 SD or lower in either the lumbar spine or femoral neck. Clinical factors associated with low BMD were analyzed using a logistic regression model. Results: Prevalence of low BMD was 62.4% from 210 patients with a mean age of 29.7 ± 7.6 years. The predominant clinical characteristics of low BMD thalassemia patients were being female, transfusion-dependent (TDT) and a history of splenectomy. From multivariable analysis, the independent variables associated with low BMD were transfusion dependency (odds ratio, OR 2.36; 95%CI 1.28 to 4.38; p=0.006) and body mass index (BMI) (OR 0.71; 95%CI 0.61 to 0.82; p<0.001). Among patients with low BMD, we observed a correlation between a Z-score with low IGF-1 levels (ß=-0.42; 95% CI -0.83 to -0.01; p=0.040), serum phosphate levels (ß=0.40; 95% CI 0.07 to 0.73; p=0.016) and hypogonadism (ß=-0.48, 95% CI -0.91 to -0.04, p=0.031). Conclusion: This study found a prevalence of low BMD in 62.4% of subjects. Factors associated with low BMD were TDT and BMI. Within the low BMD subgroup, hypogonadism, serum phosphate and low serum IGF-1 levels were associated with a lower Z-score.


Subject(s)
Bone Density , Thalassemia , Humans , Male , Female , Adult , Cross-Sectional Studies , Thalassemia/epidemiology , Thalassemia/complications , Thalassemia/blood , Prevalence , Risk Factors , Young Adult , Adolescent , Middle Aged , Osteoporosis/epidemiology , Osteoporosis/etiology , Absorptiometry, Photon
11.
Hormones (Athens) ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970757

ABSTRACT

INTRODUCTION: Excess growth hormone (GH) secretion in acromegaly has a major impact on mineral balance and serum phosphate levels. However, the clinical utilization of serum phosphate levels as a marker for long-term disease outcomes in acromegaly has not been evaluated. METHODS: This is a retrospective study of patients with acromegaly who were followed in a tertiary center. Data were retrieved on patient characteristics, endocrine and biochemical evaluation, and tumor parameters. Comparisons were performed by measuring baseline phosphate levels and conducting correlation analysis and multivariable logistic regression. RESULTS: Sixty-one patients were followed for 4.5 years (range 1-21). Patients with hyperphosphatemia (> 4.5 mg/dl) at baseline had larger adenomas (15.0 mm [8.0, 47.0] vs. 10.0 mm [3.0, 24.0], p = 0.001), a rate chance of invasive adenoma (16 [80.0%] vs. 14 [46.7%], p = 0.02), and lower serum cortisol levels (226.0 nmol/l [27.6, 516.0] vs. 294.0 nmol/l [32.0, 610.0], p = 0.02). Baseline serum phosphate levels positively correlated with IGF-1 levels (r = 0.43, p = 0.003) and negatively correlated with morning plasma cortisol levels (r = -0.46, p = 0.002). Regarding long-term impact, baseline phosphate levels correlated with the number of pituitary axes involved 6 months after diagnosis (r-0.34, p = 0.01). In multivariable analysis, baseline plasma phosphate levels were independently associated with risk for disease progression/recurrence (odds ratio [OR] 9.66, 95% confidence interval [CI] 1.5, 105.9, p = 0.03) and for invasive adenoma (OR 6.21, 95% CI 1.6, 28.7, p = 0.01). CONCLUSION: Elevated pretreatment serum phosphate levels are associated with a greater risk of disease persistence and recurrence and with altered pituitary function in patients with acromegaly.

12.
Exp Cell Res ; : 114152, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971518

ABSTRACT

At present, the function of SOCS1 in Kashin-Beck disease (KBD) has not been reported. This study aims to explore the expression and mechanism of SOCS1 in KBD, and provide theoretical basis for the prevention and treatment of KBD. The expression of SOCS1 were measured by qRT-PCR and Western blot. ELISA was used to detect the content of SOCS1 in serum and synovial fluid. CCK-8 kits were selected to measure the cell viability. Methylation Specific PCR (MSP) assay is used to detect the methylation level of SOCS1 in chondrocytes. Flow cytometry was used to analyze the apoptosis rate of chondrocytes in different groups. The expression of apoptosis related proteins (caspase-3 and caspase-9) and Cytochrome c were detected using Western blot. The mitochondrial ROS, ATP and the activity of mitochondrial respiratory chain complexes were detected using commercial kits. The results showed that the expression of SOCS1 significantly increases in KBD patients and T-2 induced chondrocytes. Further research has found that the methylation levels of SOCS1 were significantly reduced in KBD patients and T-2 induced chondrocytes. Functional studies have found that SOCS1 silencing inhibited chondrocyte apoptosis and mitochondrial dysfunction. More importantly, SOCS1 regulated mitochondrial mediated chondrocyte apoptosis through the IGF-1/IGF-1R/FAK/Drp1 pathway. In conclusion, SOCS1 expression is increased and methylation levels are decreased in KBD, and is involved in regulating mitochondrial mediated apoptosis in T-2 induced chondrocytes through IGF-1/IGF-1R/FAK/Drp1 signaling. This study provides new theoretical basis for the treatment and prevention of KBD in clinical practice.

13.
Biochem Biophys Res Commun ; 729: 150347, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38976945

ABSTRACT

The mutations in Caenorhabditis elegans (C. elegans) that extend lifespan slow down aging by interfering with several signaling pathways, including the insulin/IGF-1 signaling (IIS) pathway, AMP-activated protein kinase (AMPK), and mechanistic target of rapamycin (mTOR). The tumor suppressor pRb (retinoblastoma protein) is believed to be involved in almost all human cancers. Lin-35, the C. elegans orthologue of the tumor suppressor pRb, was included in the study to explore the effects of insulin and IGF-1 because it has been linked to cancer-related pRb function in mammals and exhibits a tumor suppressor effect by inhibiting mTOR or IIS signaling. According to our results, IGF-1 or insulin increased the lifespan of lin-35 worms compared to N2 worms by increasing fertilization efficiency, also causing a significant increase in body size. It was concluded that the expression of daf-2 and rsks-1 decreased after insulin or IGF-1 administration, thus extending the lifespan of C. elegans lin-35 worms through both IIS and mTOR-dependent mechanisms. This suggests that it was mediated by the combined effect of the TOR and IIS pathways. These results, especially obtained in cancer-associated mutant lin-35 worms, will be useful in elucidating the C. elegans cancer model in the future.

14.
Mol Cell Endocrinol ; 592: 112325, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38968968

ABSTRACT

Polymetabolic syndrome achieved pandemic proportions and dramatically influenced public health systems functioning worldwide. Chronic vascular complications are the major contributors to increased morbidity, disability, and mortality rates in diabetes patients. Nitric oxide (NO) is among the most important vascular bed function regulators. However, NO homeostasis is significantly deranged in pathological conditions. Additionally, different hormones directly or indirectly affect NO production and activity and subsequently act on vascular physiology. In this paper, we summarize the recent literature data related to the effects of insulin, estradiol, insulin-like growth factor-1, ghrelin, angiotensin II and irisin on the NO regulation in physiological and diabetes circumstances.

15.
J Zhejiang Univ Sci B ; : 1-13, 2024 Jul 09.
Article in English, Chinese | MEDLINE | ID: mdl-38993052

ABSTRACT

Diabetes mellitus (DM) is a disease syndrome characterized by chronic hyperglycaemia. A long-term high-glucose environment leads to reactive oxygen species (ROS) production and nuclear DNA damage. Human umbilical cord mesenchymal stem cell (HUcMSC) infusion induces significant antidiabetic effects in type 2 diabetes mellitus (T2DM) rats. Insulin-like growth factor 1 (IGF1) receptor (IGF1R) is important in promoting glucose metabolism in diabetes; however, the mechanism by which HUcMSC can treat diabetes through IGF1R and DNA damage repair remains unclear. In this study, a DM rat model was induced with high-fat diet feeding and streptozotocin (STZ) administration and rats were infused four times with HUcMSC. Blood glucose, interleukin-6 (IL-6), IL-10, glomerular basement membrane, and renal function were examined. Proteins that interacted with IGF1R were determined through coimmunoprecipitation assays. The expression of IGF1R, phosphorylated checkpoint kinase 2 (p-CHK2), and phosphorylated protein 53 (p-p53) was examined using immunohistochemistry (IHC) and western blot analysis. Enzyme-linked immunosorbent assay (ELISA) was used to determine the serum levels of 8-hydroxydeoxyguanosine (8-OHdG). Flow cytometry experiments were used to detect the surface markers of HUcMSC. The identification of the morphology and phenotype of HUcMSC was performed by way of oil red "O" staining and Alizarin red staining. DM rats exhibited abnormal blood glucose and IL-6/10 levels and renal function changes in the glomerular basement membrane, increased the expression of IGF1 and IGF1R. IGF1R interacted with CHK2, and the expression of p-CHK2 was significantly decreased in IGF1R-knockdown cells. When cisplatin was used to induce DNA damage, the expression of p-CHK2 was higher than that in the IGF1R-knockdown group without cisplatin treatment. HUcMSC infusion ameliorated abnormalities and preserved kidney structure and function in DM rats. The expression of IGF1, IGF1R, p-CHK2, and p-p53, and the level of 8-OHdG in the DM group increased significantly compared with those in the control group, and decreased after HUcMSC treatment. Our results suggested that IGF1R could interact with CHK2 and mediate DNA damage. HUcMSC infusion protected against kidney injury in DM rats. The underlying mechanisms may include HUcMSC-mediated enhancement of diabetes treatment via the IGF1R-CHK2-p53 signalling pathway.

16.
BMC Womens Health ; 24(1): 396, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987734

ABSTRACT

BACKGROUND: Aging results in many changes in health status, body composition, muscle strength, and, ultimately, functional capacity. These changes coincide with significant alterations in the endocrine system, such as insulin-like growth factor-1 (IGF-1) and IGF-binding proteins (IGFBPs), and may be associated with many symptoms of aging. The objectives of this study is to investigate the potential influence of different types of exercise, such as resistance training and aerobic training, on IGF-1 and IGFBP-3 levels in postmenopausal women. METHODS: Medline, Scopus, and Google Scholar databases were systematically searched up to November 2023. The Cochrane Collaboration tool was used to assess the risk of bias and the quality of the studies. The random-effects model, weighted mean difference (WMD), and 95% confidence interval (CI) were used to estimate the overall effect. Between-study heterogeneity was assessed using the chi-squared and I2 tests. RESULTS: Seventeen studies were included in the present systematic review and 16 studies were included in the meta-analysis. The pooled results from 16 studies (21 trials) with 1170 participants examining the impact of exercise on IGF-1 concentration showed a significant increase in IGF-1, and the pooled results among six studies (trials) showed a significant decrease in IGFBP-3 concentration (730 participants). In addition, resistance training and aerobic training had a significant effect on increasing IGF-1 concentration post-exercise compared with placebo. CONCLUSION: Based on this meta-analysis, Women who have completed menopause and followed an exercise routine showed changes in IGF-1 and IGFBP-3 levels that can indirectly be associated with risk of chronic age-related conditions.


Subject(s)
Exercise , Insulin-Like Growth Factor Binding Protein 3 , Insulin-Like Growth Factor I , Postmenopause , Resistance Training , Humans , Female , Postmenopause/physiology , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/analysis , Exercise/physiology , Insulin-Like Growth Factor Binding Protein 3/blood , Resistance Training/methods
17.
Eur J Pharm Sci ; 200: 106847, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972611

ABSTRACT

Exogenous insulin-like growth factor-1 (IGF-1) has been reported to promote wound healing through regulation of vascular endothelial cells (VECs). Despite the existing studies of IGF-1 on VEC and its role in angiogenesis, the mechanisms regarding anti-inflammatory and angiogenetic effects of IGF-1 remain unclear. In this study, we investigated the wound-healing process and the related signaling pathway of IGF-1 using an inflammation model induced by IFN-γ. The results demonstrated that IGF-1 can increase cell proliferation, suppress inflammation in VECs, and promote angiogenesis. In vivo studies further confirmed that IGF-1 can reduce inflammation, enhance vascular regeneration, and improve re-epithelialization and collagen deposition in acute wounds. Importantly, the Ras/PI3K/IKK/NF-κB signaling pathways was identified as the mechanisms through which IGF-1 exerts its anti-inflammatory and pro-angiogenic effects. These findings contribute to the understanding of IGF-1's role in wound healing and may have implications for the development of new wound treatment approaches.

18.
J Zhejiang Univ Sci B ; 25(7): 568-580, 2024 Jul 10.
Article in English, Chinese | MEDLINE | ID: mdl-39011677

ABSTRACT

Diabetes mellitus (DM) is a disease syndrome characterized by chronic hyperglycaemia. A long-term high-glucose environment leads to reactive oxygen species (ROS) production and nuclear DNA damage. Human umbilical cord mesenchymal stem cell (HUcMSC) infusion induces significant antidiabetic effects in type 2 diabetes mellitus (T2DM) rats. Insulin-like growth factor 1 (IGF1) receptor (IGF1R) is important in promoting glucose metabolism in diabetes; however, the mechanism by which HUcMSC can treat diabetes through IGF1R and DNA damage repair remains unclear. In this study, a DM rat model was induced with high-fat diet feeding and streptozotocin (STZ) administration and rats were infused four times with HUcMSC. Blood glucose, interleukin-6 (IL-6), IL-10, glomerular basement membrane, and renal function were examined. Proteins that interacted with IGF1R were determined through coimmunoprecipitation assays. The expression of IGF1R, phosphorylated checkpoint kinase 2 (p-CHK2), and phosphorylated protein 53 (p-p53) was examined using immunohistochemistry (IHC) and western blot analysis. Enzyme-linked immunosorbent assay (ELISA) was used to determine the serum levels of 8-hydroxydeoxyguanosine (8-OHdG). Flow cytometry experiments were used to detect the surface markers of HUcMSC. The identification of the morphology and phenotype of HUcMSC was performed by way of oil red "O" staining and Alizarin red staining. DM rats exhibited abnormal blood glucose and IL-6/10 levels and renal function changes in the glomerular basement membrane, increased the expression of IGF1 and IGF1R. IGF1R interacted with CHK2, and the expression of p-CHK2 was significantly decreased in IGF1R-knockdown cells. When cisplatin was used to induce DNA damage, the expression of p-CHK2 was higher than that in the IGF1R-knockdown group without cisplatin treatment. HUcMSC infusion ameliorated abnormalities and preserved kidney structure and function in DM rats. The expression of IGF1, IGF1R, p-CHK2, and p-p53, and the level of 8-OHdG in the DM group increased significantly compared with those in the control group, and decreased after HUcMSC treatment. Our results suggested that IGF1R could interact with CHK2 and mediate DNA damage. HUcMSC infusion protected against kidney injury in DM rats. The underlying mechanisms may include HUcMSC-mediated enhancement of diabetes treatment via the IGF1R-CHK2-p53 signalling pathway.


Subject(s)
Checkpoint Kinase 2 , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Rats, Sprague-Dawley , Receptor, IGF Type 1 , Signal Transduction , Tumor Suppressor Protein p53 , Umbilical Cord , Animals , Male , Rats , Receptor, IGF Type 1/metabolism , Tumor Suppressor Protein p53/metabolism , Humans , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/therapy , Umbilical Cord/cytology , Checkpoint Kinase 2/metabolism , Mesenchymal Stem Cells/metabolism , Diabetic Nephropathies/therapy , Diabetic Nephropathies/metabolism , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Experimental/metabolism , Diet, High-Fat , DNA Damage , Blood Glucose/metabolism
19.
Oecologia ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014256

ABSTRACT

The insulin-like growth factor 1 (IGF-1) is a pleiotropic hormone that regulates essential life-history traits and is known for its major contribution to determining individual ageing processes. High levels of IGF-1 have been linked to increased mortality and are hypothesised to cause oxidative stress. This effect has been observed in laboratory animals, but whether it pertains to wild vertebrates has not been tested. This is surprising because studying the mechanisms that shape individual differences in lifespan is important to understanding mortality patterns in populations of free-living animals. We tested this hypothesis under semi-natural conditions by simulating elevated IGF-1 levels in captive bearded reedlings, a songbird species with an exceptionally fast pace of life. We subcutaneously injected slow-release biodegradable microspheres loaded with IGF-1 and achieved a systemic 3.7-fold increase of the hormone within the natural range for at least 24 h. Oxidative damage to lipids showed marked sexual differences: it significantly increased the day after the manipulation in treated males and returned to baseline levels four days post-treatment, while no treatment effect was apparent in females. Although there was no overall difference in survival between the treatment groups, high initial (pre-treatment) IGF-1 and low post-treatment plasma malondialdehyde levels were associated with enhanced survival prospects in males. These results suggest that males may be more susceptible to IGF-1-induced oxidative stress than females and quickly restoring oxidative balance may be related to fitness. IGF-1 levels evolve under opposing selection forces, and natural variation in this hormone's level may reflect the outcome of individual optimization.

20.
Life Sci ; 352: 122911, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002609

ABSTRACT

The concept of "type 3 diabetes" has emerged to define alterations in glucose metabolism that predispose individuals to the development of Alzheimer's disease (AD). Novel evidence suggests that changes in the insulin/insulin-like growth factor 1 (IGF-1)/growth hormone (GH) axis, which are characteristic of Diabetes Mellitus, are one of the major factors contributing to excessive amyloid-beta (Aß) production and neurodegenerative processes in AD. Moreover, molecular findings suggest that insulin resistance and dysregulated IGF-1 signaling promote atherosclerosis via endothelial dysfunction and a pro-inflammatory state. As the pathophysiological role of Aß1-40 in patients with cardiovascular disease has attracted attention due to its involvement in plaque formation and destabilization, it is of great interest to explore whether a paradigm similar to that in AD exists in the cardiovascular field. Therefore, this review aims to elucidate the intricate interplay between insulin resistance, IGF-1, and Aß1-40 in the cardiovascular system and assess the applicability of the type 3 diabetes concept. Understanding these relationships may offer novel therapeutic targets and diagnostic strategies to mitigate cardiovascular risk in patients with insulin resistance and dysregulated IGF-1 signaling.

SELECTION OF CITATIONS
SEARCH DETAIL
...