Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.265
Filter
1.
Fish Shellfish Immunol ; : 109740, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960104

ABSTRACT

ß-glucans are carbohydrates present in the cell wall of many fungi, which are often used as immunostimulants in feeds for farmed species. Their capacity to activate innate immune responses directly acting on innate cell populations has been widely documented in fish. However, whether they can affect the functionality of adaptive immune cells has been scarcely explored. In this context, in the current work, we have determined the effects of ß-glucans on rainbow trout blood IgM+ B cells in the presence or absence of 2,4,6-trinitrophenyl hapten conjugated to lipopolysaccharide (TNP-LPS), a model antigen. For this, rainbow trout peripheral blood leukocytes were incubated with different doses of ß-glucans or media alone in the presence or absence of TNP-LPS for 48 h. The size, levels of expression of surface MHC II, antigen processing and phagocytic capacities and proliferation of IgM+ B cells were then studied by flow cytometry. The number of IgM-secreting cells in the cultures was also estimated by ELISpot. ß-glucans significantly decreased the levels of surface MHC II expression and the antigen processing capacities of these cells, especially in the presence of TNP-LPS, while they increased their phagocytic activity. On their own, ß-glucans slightly activated the proliferation of IgM+ B cells but reduced that induced by TNP-LPS. In contrast, ß-glucans significantly increased the number of cells secreting IgM in the cultures. This effect of ß-glucans on the IgM-secreting capacity of B cells was also confirmed through a feeding experiment, in which the IgM-secreting capacity of blood leukocytes obtained from fish fed a ß-glucan-supplemented diet for one month was compared to that of leukocytes obtained from fish fed a control diet. Altogether, these findings contribute to increase our knowledge regarding the effects of ß-glucans on fish adaptive responses.

2.
J Microbiol Methods ; : 106985, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960328

ABSTRACT

The assessment of ELISA plates coated with phenolic glycolipid-I/PGL-I revealed excellent stability during eight years of storage at room temperature, promoting consistent IgM antibody detection in multibacillary leprosy patients. These stable, standardized plates can significantly contribute to efficient leprosy serology research and support its widespread distribution and use in endemic countries.

3.
Article in English | MEDLINE | ID: mdl-38970645

ABSTRACT

PURPOSE OF REVIEW: Waldenström macroglobulinemia is a rare non-Hodgkin lymphoma (NHL) characterized by lymphoplasmacytic bone marrow infiltration associated with an immunoglobulin M (IgM) monoclonal gammopathy. Over the past two decades, a number of important novel therapies have emerged for the treatment of relapsed and refractory (R/R) WM. The purpose of this review is to discuss these novel agents. RECENT FINDINGS: Chemoimmunotherapy which formed the basis treatment for R/R WM is slowly being replaced by novel targeted agents. These therapies, including Bruton's tyrosine kinase inhibitors, proteasome inhibitors, and B-cell lymphoma 2 inhibitors, have widened the landscape of management. Emerging therapies currently under investigation, such as bispecific T-cell engagers, chimeric antigen T-cell receptor therapy, and novel small molecule inhibitors, have additionally shown the potential to improve response and survival. The treatment of R/R WM has greatly evolved, in large part due to a greater understanding of the biology of WM, and the evaluation of novel targeted agents in the basket trials of NHL, showing early activity in the small WM cohorts. Combination regimens with these established and emerging novel therapies have the potential to further improve disease control and induce higher rates of deep responses. Strategies aimed at altering the disease trajectory would require randomized controlled trials to provide relevant data on optimal integration and sequencing of more effective and tolerable regimens earlier in the disease course.

4.
Adv Exp Med Biol ; 1445: 119-128, 2024.
Article in English | MEDLINE | ID: mdl-38967754

ABSTRACT

Immunoglobulins (Igs) have been widely accepted to be exclusively expressed by B cells. Nonetheless, this theory is challenged by mounting evidence which suggests that Igs can also be generated by non B cells (non B-Ig), including cardiomyocytes (CM). Non B-Ig exhibits unique physical and chemical characteristics, unique variable region sequences and functions, which diverge from those of B-Ig. For instance, non B-Ig demonstrates hydrophobicity, limited diversity in the variable region, and extracellular matrix protein activity. Likewise, cardiomyocytes can express different classes of Igs, including IgM, IgG, and free Igκ light chains (cardiomyocyte derived-Igs, CM-Igs). In particular, CM-Igs can be secreted into the extracellular space in various cardiovascular diseases, such as myocardial ischaemia and myocardial fibrosis where they might be involved in complement activation and direct damage to cardiomyocytes. Nevertheless, the precise pathological activity of CM-Igs remains unclear. Recently, Zhu et al. focused on studying the sequence characteristics and functions of CM-Igκ; they discovered that the CM-Igκ exhibits a unique VJ recombination pattern, high hydrophobicity, and is principally located on the intercalated discs and cross striations of the cardiomyocytes. Interestingly, loss of Igκ in cardiomyocytes results in structural disorders in intercalated discs and dysfunction in myocardial contraction and conduction. Mechanically, Igκ promotes the stabilisation of plectin, a cytoskeleton cross-linker protein that connects desmin to desomsome, to maintain the normal structure of the intercalated disc. This finding indicates that CM-Igκ plays an integral role in maintaining cytoskeleton structure. Consequently, it is imperative to reveal the physiological functions and mechanisms of pathological injury associated with CM-Igs.


Subject(s)
Immunoglobulins , Myocytes, Cardiac , Humans , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Animals , Immunoglobulins/metabolism , Immunoglobulins/genetics , Clinical Relevance
5.
Eur J Immunol ; : e2350704, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973082

ABSTRACT

Secretory IgA is crucial for preventing the invasion of entero-pathogens via intestinal mucosa. While it is well-established that Transforming growth factor ß1 (TGF-ß1) regulates IgA production in human and mouse B cells, our previous investigation revealed different functions of TGF-ß1 in IgA generation in pigs compared with humans and mice, with the underlying mechanism remaining elusive. In this study, IgM+ B cells from porcine Peyer's patches (PPs) were isolated and stimulated with recombinant porcine TGF-ß1 to evaluate the effect of TGF-ß1 on pigs. The results showed that antibody production from B cells of PPs was impaired by TGF-ß1 ex vivo. Furthermore, TGF-ß1 treatment led to a decrease in the expression of germ-line transcript αand postswitch transcript α. Moreover, we observed that TGF-ß1 predominantly inhibited the phosphorylation of p38-mitogen-activated protein kinases (MAPK), confirming the involvement of the p38-MAPK pathway in porcine IgA generation and IgA class switch recombination. The application of p38-MAPK inhibitor resulted in decreased B-cell differentiation levels. Collectively, this study demonstrates that exogenous TGF-ß1 restrains the production and class switch recombination of IgA antibodies by inhibiting p38-MAPK signaling in porcine PPs B cells, which may constitute a component of TGF-ß1-mediated inhibition of B-cell activation.

6.
Front Cell Infect Microbiol ; 14: 1373450, 2024.
Article in English | MEDLINE | ID: mdl-38975325

ABSTRACT

Introduction: Coronavirus Disease 2019 (COVID-19) is a severe respiratory illness caused by the RNA virus SARS-CoV-2. Globally, there have been over 759.4 million cases and 6.74 million deaths, while Ecuador has reported more than 1.06 million cases and 35.9 thousand deaths. To describe the COVID-19 pandemic impact and the vaccinations effectiveness in a low-income country like Ecuador, we aim to assess the seroprevalence of IgG and IgM antibodies against SARS-CoV-2 in a sample from healthy blood donors at the Cruz Roja Ecuatoriana. Methods: The present seroprevalence study used a lateral flow immunoassay (LFIA) to detect anti-SARS-CoV-2 IgG and IgM antibodies in months with the highest confirmed case rates (May 2020; January, April 2021; January, February, June, July 2022) and months with the highest vaccination rates (May, June, July, August, December 2021) in Quito, Ecuador. The IgG and IgM seroprevalence were also assessed based on sex, age range, blood type and RhD antigen type. The sample size was 8,159, and sampling was performed based on the availability of each blood type. Results: The results showed an overall IgG and IgM seroprevalence of 47.76% and 3.44%, respectively. There were no differences in IgG and IgM seroprevalences between blood groups and sex, whereas statistical differences were found based on months, age range groups, and RhD antigen type. For instance, the highest IgG seroprevalence was observed in February 2022 and within the 17-26 years age range group, while the highest IgM seroprevalence was in April 2021 and within the 47-56 years age range group. Lastly, only IgG seroprevalence was higher in RhD+ individuals while IgM seroprevalence was similar across RhD types. Discussion: This project contributes to limited data on IgG and IgM antibodies against SARS-CoV-2 in Ecuador. It suggests that herd immunity may have been achieved in the last evaluated months, and highlights a potential link between the RhD antigen type and COVID-19 susceptibility. These findings have implications for public health strategies and vaccine distribution not only in Ecuador but also in regions with similar characteristics.


Subject(s)
Antibodies, Viral , Blood Donors , COVID-19 , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/immunology , Ecuador/epidemiology , Immunoglobulin G/blood , Seroepidemiologic Studies , Immunoglobulin M/blood , Male , SARS-CoV-2/immunology , Adult , Blood Donors/statistics & numerical data , Antibodies, Viral/blood , Female , Middle Aged , Adolescent , Young Adult , Aged , Pandemics
7.
Cureus ; 16(6): e62820, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38912072

ABSTRACT

Polyneuropathy, organomegaly, endocrinopathy, M-protein, and skin changes (POEMS) syndrome is a multisystem paraneoplastic disorder due to an underlying plasma cell neoplasm, and its occurrence among HIV patients is extremely rare. The diagnosis of POEMS syndrome can be challenging in this context, particularly if its disabling polyneuropathy is misdiagnosed as neuropathy related to HIV. Herein, we report the case of a female patient with treated HIV who later developed POEMS syndrome. After a misdiagnosis of chronic inflammatory demyelinating polyneuropathy related to HIV and unsuccessful corticosteroids and cyclophosphamide therapies, the correct diagnosis of POEMS syndrome was made. The patient achieved significant hematological and neurological improvement after six cycles of lenalidomide. Autologous stem cell transplantation was then scheduled to prevent eventual relapses.

8.
Infect Immun ; : e0048123, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837339

ABSTRACT

The currently accepted initiation of Babesia infection describes a sporozoite stage infused into the host, along with other saliva components, by the tick vector. This sporozoite can enter and initiate erythrocyte infection directly. In the particular case of Babesia microti, however, that sporozoite loses the ability to further propagate in vitro once deprived of its natural host. True B. sensu stricto do not require the host collaboration described in this study. Hence it has become a current topic of research involving B. microti (B. sensu lato), a rather unique species that requires host collaboration to maintain an erythrocyte propagation cycle. The main attachment protein is synthesized by this parasite in excess and exported to the host from the erythrocyte infrastructure to immunize the host at all stages of infection. The synthesis of host immune IgM antibody is necessary for the propagation of B. microti, being central to entry into uninfected host erythrocytes. Sequential use of the host immune system then involves complement factor C3b to complete the three-part assembly necessary to initiate the rhoptry sequence for invasion of uninfected erythrocytes and further propagation. These several components must be furnished within the in vitro culture medium and the sequence of these reactions is discussed. The corollary view of the parasite survival versus the host immune defenses is also discussed as it involves the same host factors promoting continuing parasite growth. This is the first description of continuous in vitro propagation of B. microti.

9.
Front Med (Lausanne) ; 11: 1346790, 2024.
Article in English | MEDLINE | ID: mdl-38873201

ABSTRACT

Purpose: The major aim of our meta-analysis was to review the effectiveness of various treatment modalities for achieving successful remission and preventing recurrence for women with idiopathic granulomatous mastitis (IGM). This knowledge is instrumental in developing evidence-based guidelines for clinicians to improve management strategies and outcomes for patients with IGM. Methods: A systematic literature search was performed on MEDLINE (Ovid), Embase (Elsevier), PubMed, Cochrane Library, Web of Science, and Google Scholar; studies published to 19 January 2022 were included. A meta-analysis of 57 observational studies was performed. The results of two randomized controlled trials were also examined. Results: There were 3,035 IGM patients across the observational and randomised studies. Overall recurrence and remission rates across all treatment strategies in 59 studies are 87.9% (2,667/3035) and 13.5% (359/2667), respectively. The studies reported 19 different treatment strategies, comprising observation, medical monotherapies, surgery, and combinations involving medical therapies, with and without surgery. Among monotherapy treatment, surgical management had the highest pooled remission rate (0.99 [95% confidence interval (CI) = 0.97-1.00]); among combination therapy, this was steroids and surgery (0.99 [0.94-1.00]). Antibiotic monotherapy had the lowest remission rate (0.72 [0.37-0.96]). The highest recurrence rates belonged to treatments that combined antibiotics and surgery (0.54 [0.02-1.00]), and antibiotics, steroids, and surgery (0.57 [0.00-1.00]). Most successful for preventing recurrence were observation (0.03 [0.00-0.10]), methotrexate (0.08 [0.00-0.24]), and steroids and surgery (0.05 [0.01-0.12]). There is a significant association between longer follow-up duration and recurrence rate reported, p = 0.002. Conclusion: Combination therapies, especially those incorporating antibiotics, steroids, and surgery, have demonstrated higher remission rates, challenging the use of antibiotic monotherapy. There is an increased emphasis on the need for personalised, multi-pronged approach for preventing IGM recurrence, with longer follow-up care. More prospective future work in IGM research, with standardised diagnostic criteria, treatment protocols, and reporting guidelines will be important for developing treatment protocols and guidelines clinicians can adhere to in the clinical management of IGM patients.Systematic review registration: PROSPERO (CRD42022301386).

10.
Front Immunol ; 15: 1371118, 2024.
Article in English | MEDLINE | ID: mdl-38873612

ABSTRACT

Background: The respiratory tract microbiome is essential for human health and well-being and is determined by genetic, lifestyle, and environmental factors. Patients with Common Variable Immunodeficiency (CVID) suffer from respiratory and intestinal tract infections, leading to chronic diseases and increased mortality rates. While CVID patients' gut microbiota have been analyzed, data on the respiratory microbiome ecosystem are limited. Objective: This study aims to analyze the bacterial composition of the oropharynx of adults with CVID and its link with clinical and immunological features and risk for respiratory acute infections. Methods: Oropharyngeal samples from 72 CVID adults and 26 controls were collected in a 12-month prospective study. The samples were analyzed by metagenomic bacterial 16S ribosomal RNA sequencing and processed using the Quantitative Insights Into Microbial Ecology (QIME) pipeline. Differentially abundant species were identified and used to build a dysbiosis index. A machine learning model trained on microbial abundance data was used to test the power of microbiome alterations to distinguish between healthy individuals and CVID patients. Results: Compared to controls, the oropharyngeal microbiome of CVID patients showed lower alpha- and beta-diversity, with a relatively increased abundance of the order Lactobacillales, including the family Streptococcaceae. Intra-CVID analysis identified age >45 years, COPD, lack of IgA, and low residual IgM as associated with a reduced alpha diversity. Expansion of Haemophilus and Streptococcus genera was observed in patients with undetectable IgA and COPD, independent from recent antibiotic use. Patients receiving azithromycin as antibiotic prophylaxis had a higher dysbiosis score. Expansion of Haemophilus and Anoxybacillus was associated with acute respiratory infections within six months. Conclusions: CVID patients showed a perturbed oropharynx microbiota enriched with potentially pathogenic bacteria and decreased protective species. Low residual levels of IgA/IgM, chronic lung damage, anti antibiotic prophylaxis contributed to respiratory dysbiosis.


Subject(s)
Common Variable Immunodeficiency , Dysbiosis , Oropharynx , Respiratory Tract Infections , Humans , Common Variable Immunodeficiency/microbiology , Common Variable Immunodeficiency/immunology , Common Variable Immunodeficiency/complications , Oropharynx/microbiology , Male , Female , Middle Aged , Adult , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/immunology , Microbiota , Prospective Studies , Aged , RNA, Ribosomal, 16S/genetics , Acute Disease , Bacteria/classification , Bacteria/genetics , Case-Control Studies
11.
Front Microbiol ; 15: 1385582, 2024.
Article in English | MEDLINE | ID: mdl-38894968

ABSTRACT

Toxoplasmosis, while often asymptomatic and prevalent as a foodborne disease, poses a considerable mortality risk for immunocompromised individuals during pregnancy. Point-of-care serological tests that detect specific IgG and IgM in patient sera are critical for disease management under limited resources. Despite many efforts to replace the T. gondii total lysate antigens (TLAs) by recombinant antigens (rAgs) in commercial kits, while IgG detection provides significant specificity and sensitivity, IgM detection remains comparatively low in sensitivity. In this study, we attempted to identify novel antigens targeting IgM in early infection, thereby establishing an IgM on-site detection kit. Using two-dimensional gel electrophoresis (2DE) and mouse serum immunoblotting, three novel antigens, including EF1γ, PGKI, and GAP50, were indicated to target T. gondii IgM. However, rAg EF1γ was undetectable by IgM of mice sera in Western blotting verification experiments, and ELISA coated with PGKI did not eliminate cross-reactivity, in contrast to GAP50. Subsequently, the lateral flow reaction employing a strip coated with 0.3 mg/mL purified rAg GAP50 and exhibited remarkable sensitivity compared with the conventional ELISA based on tachyzoite TLA, which successfully identified IgM in mouse sera infected with tachyzoites, ranging from 103 to 104 at 5 dpi and 104 at 7 dpi, respectively. Furthermore, by using standard T. gondii-infected human sera from WHO, the limit of detection (LOD) for the rapid fluorescence immunochromatographic test (FICT) using GAP50 was observed at 0.65 IU (international unit). These findings underline the particular immunoreactivity of GAP50, suggesting its potential as a specific biomarker for increasing the sensitivity of the FICT in IgM detection.

12.
Dev Comp Immunol ; 159: 105216, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901502

ABSTRACT

Lambs harboring the Hb-AA ß-globin haplotype present improved cell-mediated responses and increased resistance against Haemonchus contortus infection. The aim of the present study was to compare the effect of sex and ß-globin haplotypes on specific humoral responses and phenotypes of resistance during H. contortus infection in Morada Nova sheep. As expected, females displayed stronger resistance during the first and second experimental challenges. Differential systemic humoral immune responses were observed comparing sex groups, in which higher levels of specific antibodies targeting 24 kDa excretory-secretory (ES24) protein of H. contortus of IgG and IgM antibodies were respectively observed as predominant isotypes in males and females. The IgM levels were significantly correlated with phenotypes of resistance, evaluated by packed cell volume and fecal egg counts. To our knowledge this is the first study reporting divergent humoral responses profiles to H. contortus infection between male and female sheep. The impact of ß-globin haplotypes was less pronounced in females compared to males. Notably, only males showed significant weight differences across haplotypes, with Hb-AA lambs being the heaviest. Additionally, Hb-AA males had significantly higher PCV (indicating better red blood cell health) and lower FEC (indicating lower parasite burden). These findings suggest a more pronounced effect of ß-globin polymorphisms on H. contortus infection in males, potentially due to their generally weaker resistance compared to females. This study highlights the importance of sex and ß-globin haplotypes in shaping immune responses to H. contortus infection. Specifically, IgM antibodies targeting the ES24 protein appear to play a crucial role in host-parasite interactions and may hold promise for therapeutic development.

13.
BMC Vet Res ; 20(1): 267, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902724

ABSTRACT

BACKGROUND: Scale drop disease virus (SDDV) threatens Asian seabass (Lates calcarifer) aquaculture production by causing scale drop disease (SDD) in Asian seabass. Research on the development of SDDV vaccines is missing an in-depth examination of long-term immunity and the immune reactions it provokes. This study investigated the long-term immune protection and responses elicited by an SDDV vaccine. The research evaluated the effectiveness of a formalin-inactivated SDDV vaccine (SDDV-FIV) using both prime and prime-booster vaccination strategies in Asian seabass. Three groups were used: control (unvaccinated), single-vaccination (prime only), and booster (prime and booster). SDDV-FIV was administered via intraperitoneal route, with a booster dose given 28 days post-initial vaccination. RESULTS: The immune responses in vaccinated fish (single and booster groups) showed that SDDV-FIV triggered both SDDV-specific IgM and total IgM production. SDDV-specific IgM levels were evident until 28 days post-vaccination (dpv) in the single vaccination group, while an elevated antibody response was maintained in the booster group until 70 dpv. The expression of immune-related genes (dcst, mhc2a1, cd4, ighm, cd8, il8, ifng, and mx) in the head kidney and peripheral blood lymphocytes (PBLs) of vaccinated and challenged fish were significantly upregulated within 1-3 dpv and post-SDDV challenge. Fish were challenged with SDDV at 42 dpv (challenge 1) and 70 dpv (challenge 2). In the first challenge, the group that received booster vaccinations demonstrated notably higher survival rates than the control group (60% versus 20%, P < 0.05). However, in the second challenge, while there was an observable trend towards improved survival rates for the booster group compared to controls (42% versus 25%), these differences did not reach statistical significance (P > 0.05). These findings suggest that the SDDV-FIV vaccine effectively stimulates both humoral and cellular immune responses against SDDV. Booster vaccination enhances this response and improves survival rates up to 42 dpv. CONCLUSIONS: This research provides valuable insights into the development of efficient SDDV vaccines and aids in advancing strategies for immune modulation to enhance disease management in the aquaculture of Asian seabass.


Subject(s)
Fish Diseases , Immunization, Secondary , Vaccines, Inactivated , Viral Vaccines , Animals , Fish Diseases/prevention & control , Fish Diseases/immunology , Fish Diseases/virology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Immunization, Secondary/veterinary , Iridoviridae/immunology , DNA Virus Infections/veterinary , DNA Virus Infections/prevention & control , DNA Virus Infections/immunology , Formaldehyde , Antibodies, Viral/blood , Vaccination/veterinary , Immunoglobulin M/blood , Perciformes/immunology , Bass/immunology
14.
Vaccine X ; 19: 100497, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38933697

ABSTRACT

Background: Comirnaty, Pfizer-BioNTech's polyethylene-glycol (PEG)-containing Covid-19 vaccine, can cause hypersensitivity reactions (HSRs), or rarely, life-threatening anaphylaxis in a small fraction of immunized people. A causal role of anti-PEG antibodies (Abs) has been proposed, but causality has not yet proven in an animal model. The aim of this study was to provide such evidence using pigs immunized against PEG, which displayed very high levels of anti-PEG antibodies (Abs). We also aimed to find evidence for a role of complement activation and thromboxane A2 release in blood to explore the mechanism of anaphylaxis. Methods: Pigs (n = 6) were immunized with 0.1 mg/kg PEGylated liposome (Doxebo) i.v., and the rise of anti-PEG IgG and IgM were measured in serial blood samples with ELISA. After âˆ¼2-3 weeks the animals were injected i.v. with 1/3 human dose of the PEGylated mRNA vaccine, Comirnaty, and the hemodynamic (PAP, SAP) cardiopulmonary (HR, EtCO2,), hematological (WBC, granulocyte, lymphocyte and platelet counts) parameters and blood immune mediators (anti-PEG IgM and IgG antibodies, thromboxane B2, C3a) were measured as endpoints of HSRs (anaphylaxis). Results: The level of anti-PEG IgM and IgG rose 5-10-thousand-fold in all of 6 pigs immunized with Doxebo by day 6, after which time all animals developed anaphylactic shock to i.v. injection of 1/3 human dose of Comirnaty. The reaction, starting within 1 min involved maximal pulmonary hypertension and decreased systemic pulse pressure amplitude, tachycardia, granulo- and thrombocytopenia, and skin reactions (flushing or rash). These physiological changes or their absence were paralleled by C3a and TXB2 rises in blood. Conclusions: Consistent with previous studies, these data show a causal role of anti-PEG Abs in the anaphylaxis to Comirnaty, which involves complement activation, and, hence, it represents C activation-related pseudo-anaphylaxis. The setup provides the first large-animal model for mRNA-vaccine-induced anaphylaxis in humans.

15.
BMC Infect Dis ; 24(1): 525, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789918

ABSTRACT

The burden of hepatitis E in Southeast Asia is substantial, influenced by its distinct socio-economic and environmental factors, as well as variations in healthcare systems. The aim of this study was to assess the pooled seroprevalence of hepatitis E across countries within the Southeast Asian region by the UN division.The study analyzed 66 papers across PubMed, Web of Science, and Scopus databases, encompassing data from of 44,850 individuals focusing on anti-HEV seroprevalence. The investigation spanned nine countries, excluding Brunei and East Timor due to lack of data. The pooled prevalence of anti-HEV IgG was determined to be 21.03%, with the highest prevalence observed in Myanmar (33.46%) and the lowest in Malaysia (5.93%). IgM prevalence was highest in Indonesia (12.43%) and lowest in Malaysia (0.91%). The study stratified populations into high-risk (farm workers, chronic patients) and low-risk groups (general population, blood donors, pregnant women, hospital patients). It revealed a higher IgG-28.9%, IgM-4.42% prevalence in the former group, while the latter group exhibited figures of 17.86% and 3.15%, respectively, indicating occupational and health-related vulnerabilities to HEV.A temporal analysis (1987-2023), indicated an upward trend in both IgG and IgM prevalence, suggesting an escalating HEV burden.These findings contribute to a better understanding of HEV seroprevalence in Southeast Asia, shedding light on important public health implications and suggesting directions for further research and intervention strategies.Key pointsResearch QuestionInvestigate the seroprevalence of hepatitis E virus (HEV) in Southeast Asian countries focusing on different patterns, timelines, and population cohorts.FindingsSporadic Transmission of IgG and IgM Prevalence:• Pooled anti-HEV IgG prevalence: 21.03%• Pooled anti-HEV IgM prevalence: 3.49%Seroprevalence among specific groups:High-risk group (farm workers and chronic patients):• anti-HEV IgG: 28.9%• anti-HEV IgM: 4.42%Low-risk group (general population, blood donors, pregnant women, hospital patients):• anti-HEV IgG: 17.86%• anti-HEV IgM: 3.15%Temporal Seroprevalence of HEV:Anti-HEV IgG prevalence increased over decades (1987-1999; 2000-2010; 2011-2023): 12.47%, 18.43%, 29.17% as an anti-HEV IgM prevalence: 1.92%, 2.44%, 5.27%ImportanceProvides a comprehensive overview of HEV seroprevalence in Southeast Asia.Highlights variation in seroprevalence among different population groups.Reveals increasing trend in HEV seroprevalence over the years.Distinguishes between sporadic and epidemic cases for a better understanding of transmission dynamics.


Subject(s)
Hepatitis Antibodies , Hepatitis E virus , Hepatitis E , Immunoglobulin G , Immunoglobulin M , Hepatitis E/epidemiology , Hepatitis E/blood , Humans , Seroepidemiologic Studies , Hepatitis E virus/immunology , Immunoglobulin M/blood , Immunoglobulin G/blood , Hepatitis Antibodies/blood , Asia, Southeastern/epidemiology , Female , Prevalence , Risk Factors , Male , Pregnancy
16.
J Control Release ; 371: 603-618, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782061

ABSTRACT

Cell adhesion molecule 1 (CADM1), a single-pass transmembrane protein, is involved in oncogenesis. We previously demonstrated the therapeutic efficacy of anti-CADM1 ectodomain monoclonal antibodies against mesothelioma; however, the underlying mechanism is unclear. In the present study, we explored the molecular behavior of anti-CADM1 antibodies in CADM1-expressing tumor cells. Sequencing analyses revealed that the anti-CADM1 chicken monoclonal antibodies 3E1 and 9D2 are IgY and IgM isotype antibodies, respectively. Co-administration of 3E1 and 9D2 altered the subcellular distribution of CADM1 from the detergent-soluble fraction to the detergent-resistant fraction in tumor cells. Using recombinant chicken-mouse chimeric antibodies that had been isotype-switched from IgG to IgM, we demonstrated that the combination of the variable region of 3E1 and the constant region of IgM was required for CADM1 relocation. Cytochemical studies showed that 3E1 colocalized with late endosomes/lysosomes after co-administration with 9D2, suggesting that the CADM1-antibody complex is internalized from the cell surface to intracellular compartments by lipid-raft mediated endocytosis. Finally, 3E1 was conjugated with the antimitotic agent monomethyl auristatin E (MMAE) via a cathepsin-cleavable linker. Co-administration of 3E1-monomethyl auristatin E and 9D2 suppressed the growth of multiple types of tumor cells, and this anti-tumor activity was confirmed in a syngeneic mouse model of melanoma. 3E1 and 9D2 are promising drug delivery vehicles for CADM1-expressing tumor cells.


Subject(s)
Antibodies, Monoclonal , Cell Adhesion Molecule-1 , Drug Delivery Systems , Immunoglobulins , Animals , Humans , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Immunoglobulins/administration & dosage , Immunoglobulins/metabolism , Cell Line, Tumor , Mice , Mice, Inbred C57BL , Oligopeptides/administration & dosage , Oligopeptides/chemistry , Immunoglobulin M/immunology , Immunoglobulin M/administration & dosage , Chickens , Melanoma, Experimental/drug therapy , Melanoma, Experimental/immunology , Female
18.
Eur J Neurol ; 31(8): e16331, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38794973

ABSTRACT

BACKGROUND AND PURPOSE: Mechanisms behind hypogammaglobulinaemia during rituximab treatment are poorly understood. METHODS: In this register-based multi-centre retrospective cohort study of multiple sclerosis (MS) patients in Sweden, 2745 patients from six participating Swedish MS centres were identified via the Swedish MS registry and included between 14 March 2008 and 25 January 2021. The exposure was treatment with at least one dose of rituximab for MS or clinically isolated syndrome, including data on treatment duration and doses. The degree of yearly decrease in immunoglobulin G (IgG) and immunoglobulin M (IgM) levels was evaluated. RESULTS: The mean decrease in IgG was 0.27 (95% confidence interval 0.17-0.36) g/L per year on rituximab treatment, slightly less in older patients, and without significant difference between sexes. IgG or IgM below the lower limit of normal (<6.7 or <0.27 g/L) was observed in 8.8% and 8.3% of patients, respectively, as nadir measurements. Six out of 2745 patients (0.2%) developed severe hypogammaglobulinaemia (IgG below 4.0 g/L) during the study period. Time on rituximab and accumulated dose were the main predictors for IgG decrease. Previous treatment with fingolimod and natalizumab, but not teriflunomide, dimethyl fumarate, interferons or glatiramer acetate, were significantly associated with lower baseline IgG levels by 0.80-1.03 g/L, compared with treatment-naïve patients. Switching from dimethyl fumarate or interferons was associated with an additional IgG decline of 0.14-0.19 g/L per year, compared to untreated. CONCLUSIONS: Accumulated dose and time on rituximab treatment are associated with a modest but significant decline in immunoglobulin levels. Previous MS therapies may influence additional IgG decline.


Subject(s)
Agammaglobulinemia , Immunologic Factors , Multiple Sclerosis , Rituximab , Humans , Sweden , Female , Male , Agammaglobulinemia/chemically induced , Agammaglobulinemia/blood , Rituximab/adverse effects , Rituximab/therapeutic use , Adult , Middle Aged , Immunologic Factors/adverse effects , Immunologic Factors/administration & dosage , Multiple Sclerosis/drug therapy , Retrospective Studies , Registries , Cohort Studies , Immunoglobulin G/blood
19.
Mol Ther ; 32(7): 2080-2093, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38715362

ABSTRACT

Systemic dosing of adeno-associated viral (AAV) vectors poses potential risk of adverse side effects including complement activation triggered by anti-capsid immunity. Due to the multifactorial nature of toxicities observed in this setting, a wide spectrum of immune modulatory regimens are being investigated in the clinic. Here, we discover an IgM cleaving enzyme (IceM) that degrades human IgM, a key trigger in the anti-AAV immune cascade. We then engineer a fusion enzyme (IceMG) with dual proteolytic activity against human IgM and IgG. IceMG cleaves B cell surface antigen receptors and inactivates phospholipase gamma signaling in vitro. Importantly, IceMG is more effective at inhibiting complement activation compared with an IgG cleaving enzyme alone. Upon IV dosing, IceMG rapidly and reversibly clears circulating IgM and IgG in macaques. Antisera from these animals treated with IceMG shows decreased ability to neutralize AAV and activate complement. Consistently, pre-conditioning with IceMG restores AAV transduction in mice passively immunized with human antisera. Thus, IgM cleaving enzymes show promise in simultaneously addressing multiple aspects of anti-AAV immunity mediated by B cells, circulating antibodies and complement. These studies have implications for improving safety of AAV gene therapies and possibly broader applications including organ transplantation and autoimmune diseases.


Subject(s)
Complement Activation , Dependovirus , Genetic Vectors , Immunoglobulin G , Immunoglobulin M , Dependovirus/genetics , Dependovirus/immunology , Animals , Immunoglobulin M/immunology , Humans , Immunoglobulin G/immunology , Mice , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Antibodies, Neutralizing/immunology , Transduction, Genetic , Gene Transfer Techniques , Antibodies, Viral/immunology , Proteolysis , Genetic Therapy/methods , Protein Engineering
20.
Front Immunol ; 15: 1394429, 2024.
Article in English | MEDLINE | ID: mdl-38799467

ABSTRACT

Background: The severity, symptoms, and outcome of COVID-19 is thought to be closely linked to how the virus enters host cells. This process involves the key roles of angiotensin-converting enzyme 2 (ACE2) and the Tyrosine protein kinase receptor UFO (AXL) receptors. However, there is limited research on the circulating levels of ACE2 and AXL and their implications in COVID-19. Methods: A control group of 71 uninfected individuals was also included in the study. According to the Guidance for Corona Virus Disease 2019 (10th edition), a cohort of 358 COVID-19 patients were categorized into non-severe and severe cases. Serum ACE2/AXL levels in COVID-19 patients were detected by enzyme-linked immunosorbent assay (ELISA) at different time points post-COVID-19 infection, including days 0-7, 8-15, 31-179 and >180 days. Serum SARS-CoV-2 IgG/IgM antibodies in COVID-19 patients at the same intervals were assessed by using an iFlash 3000 Chemiluminescence Immunoassay Analyzer. The receiver operating characteristic (ROC) curves were used to assess the diagnostic value of the biological markers, and the association between laboratory parameters and illness progression were explored. Results: Compared with the uninfected group, the levels of ACE2 and AXL in the COVID-19 group were decreased, and the SARS-COV-2 IgG level was increased. AXL (AUC = 0.774) demonstrated a stronger predictive ability for COVID-19 than ACE2. In the first week after infection, only the level of AXL was statistically different between severe group and non-severe group. After first week, the levels of ACE2 and AXL were different in two groups. Moreover, in severe COVID-19 cases, the serum ACE2, AXL, and SARS-COV-2 IgM levels reached a peak during days 8-15 before declining, whereas serum SARS-COV-2 IgG levels continued to rise, reaching a peak at day 31-180 days before decreasing. In addition, the AXL level continued to decrease and the SARS-COV-2 IgG level continued to increase in the infected group after 180 days compared to the uninfected group. Conclusions: The levels of serum ACE2 and AXL correlate with COVID-19 severity. However, AXL can also provide early warning of clinical deterioration in the first week after infection. AXL appears to be a superior potential molecular marker for predicting COVID-19 progression.


Subject(s)
Angiotensin-Converting Enzyme 2 , Axl Receptor Tyrosine Kinase , Biomarkers , COVID-19 , Disease Progression , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases , SARS-CoV-2 , Humans , COVID-19/blood , COVID-19/immunology , COVID-19/diagnosis , Receptor Protein-Tyrosine Kinases/blood , Receptor Protein-Tyrosine Kinases/immunology , Male , Proto-Oncogene Proteins/blood , Female , Angiotensin-Converting Enzyme 2/blood , Biomarkers/blood , Middle Aged , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral/blood , Immunoglobulin G/blood , Severity of Illness Index , Immunoglobulin M/blood , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL
...