Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.034
Filter
1.
Front Immunol ; 15: 1427100, 2024.
Article in English | MEDLINE | ID: mdl-38983847

ABSTRACT

Introduction: Interleukin-18 (IL-18), a pro-inflammatory cytokine belonging to the IL-1 Family, is a key mediator ofautoinflammatory diseases associated with the development of macrophage activation syndrome (MAS).High levels of IL-18 correlate with MAS and COVID-19 severity and mortality, particularly in COVID-19patients with MAS. As an inflammation inducer, IL-18 binds its receptor IL-1 Receptor 5 (IL-1R5), leadingto the recruitment of the co-receptor, IL-1 Receptor 7 (IL-1R7). This heterotrimeric complex subsequentlyinitiates downstream signaling, resulting in local and systemic inflammation. Methods: We reported earlier the development of a novel humanized monoclonal anti-human IL-1R7 antibody whichspecifically blocks the activity of human IL-18 and its inflammatory signaling in human cell and wholeblood cultures. In the current study, we further explored the strategy of blocking IL-1R7 inhyperinflammation in vivo using animal models. Results: We first identified an anti-mouse IL-1R7 antibody that significantly suppressed mouse IL-18 andlipopolysaccharide (LPS)-induced IFNg production in mouse splenocyte and peritoneal cell cultures. Whenapplied in vivo, the antibody reduced Propionibacterium acnes and LPS-induced liver injury and protectedmice from tissue and systemic hyperinflammation. Importantly, anti-IL-1R7 significantly inhibited plasma,liver cell and spleen cell IFNg production. Also, anti-IL-1R7 downregulated plasma TNFa, IL-6, IL-1b,MIP-2 production and the production of the liver enzyme ALT. In parallel, anti-IL-1R7 suppressed LPSinducedinflammatory cell infiltration in lungs and inhibited the subsequent IFNg production andinflammation in mice when assessed using an acute lung injury model. Discussion: Altogether, our data suggest that blocking IL-1R7 represents a potential therapeutic strategy to specificallymodulate IL-18-mediated hyperinflammation, warranting further investigation of its clinical application intreating IL-18-mediated diseases, including MAS and COVID-19.


Subject(s)
Inflammation , Lipopolysaccharides , Animals , Mice , Lipopolysaccharides/immunology , Inflammation/immunology , Humans , Interleukin-18/metabolism , Interleukin-18/immunology , Disease Models, Animal , COVID-19/immunology , Mice, Inbred C57BL , Macrophage Activation Syndrome/immunology , SARS-CoV-2/immunology
2.
J Cancer ; 15(14): 4604-4611, 2024.
Article in English | MEDLINE | ID: mdl-39006070

ABSTRACT

The association of Interleukin-18 (IL-18) genetic polymorphism with lung cancer risk has yielded inconsistent findings in previous studies. The current research aims to clarify the relationship of IL-18 gene polymorphism with lung cancer susceptibility through experimental investigation and meta-analysis, providing insights for lung cancer prevention and treatment. We conducted a thorough search of major databases from their inception until March 2024. OR and 95%CI were calculated to know the results of meta-analysis. The IL-18 gene polymorphism was detected using the PCR-RFLP method. Significant associations were detected across all genetic models in allele contrast (A vs. C: Odds Ratio [OR] = 1.29, 95% Confidence Interval [CI] = 1.07-1.55, p = 0.006), homozygote comparison (AA vs. CC: OR = 1.87, 95%CI = 1.34-2.62, p < 0.001), recessive genetic model (AA vs. CT/CC: OR = 1.54, 95%CI = 1.08-2.20, p = 0.018), and dominant genetic model (AA/AC vs. CC: OR = 1.41, 95%CI = 1.12-1.78, p = 0.003). Three genotypes (AA, AC, and CC) were identified for the IL-18 -607 C/A polymorphism, with significant associations noted for the AA genotype and A allele (p = 0.018 and 0.005, respectively). This is the first study which investigates this polymorphism with lung cancer in population of eastern China. The IL-18 -607 C/A polymorphism appears to significantly increase the risk of lung cancer in the population of Eastern China. Further research is imperative to validate these findings.

3.
JOR Spine ; 7(3): e1349, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38993524

ABSTRACT

Background: Inflammatory cytokines have been reported to be related to intervertebral disc degeneration (IVDD) in several previous studies. However, it remains unclear about the causal relationship between inflammatory cytokines and IVDD. This study employs Mendelian randomization (MR) to analyze the causal link between inflammatory cytokines and the risk of IVDD. Method: We used genetic variants associated with inflammatory cytokines from a meta-analysis of genome-wide association study (GWAS) in 8293 Finns as instrumental variables and IVDD data were sourced from the FinnGen consortium. The main analytical approach utilized Inverse-Variance Weighting (IVW) with random effects to assess the causal relationship. Additionally, complementary methods such as MR-Egger, weighted median, simple mode, weighted mode, and MR pleiotropy residual sum and outlier were employed to enhance the robustness of the final results. Result: We found interferon-gamma (IFN-γ, p = 2.14 × 10-6, OR = 0.870, 95% CI = 0.821-0.921), interleukin-1 beta (IL-1b, p = 0.012, OR = 0.951, 95% CI = 0.914-0.989), interleukin-4 (IL-4, p = 0.034, OR = 0.946, 95% CI = 0.899-0.996), interleukin-18 (IL-18, p = 0.028, OR = 0.964, 95% CI = 0.934-0.996), granulocyte colony-stimulating factor (GCSF, p = 0.010, OR = 0.919, 95% CI = 0.861-0.980), and Stromal cell-derived factor 1a (SDF1a, p = 0.014, OR = 1.072, 95% CI = 1.014-1.134) were causally associated with risk of IVDD. Conclusion: Our MR analyses found a potential causal relationship between six inflammation cytokines (IFN-γ, IL-1b, IL-4, IL-18, SDF1a, and GCSF) and altered IVDD risk.

4.
Cancer Immunol Immunother ; 73(9): 179, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960949

ABSTRACT

Adoptive cellular therapy (ACT) using memory-like (ML) natural killer (NK) cells, generated through overnight ex vivo activation with IL-12, IL-15, and IL-18, has shown promise for treating hematologic malignancies. We recently reported that a multifunctional fusion molecule, HCW9201, comprising IL-12, IL-15, and IL-18 domains could replace individual cytokines for priming human ML NK cell programming ("Prime" step). However, this approach does not include ex vivo expansion, thereby limiting the ability to test different doses and schedules. Here, we report the design and generation of a multifunctional fusion molecule, HCW9206, consisting of human IL-7, IL-15, and IL-21 cytokines. We observed > 300-fold expansion for HCW9201-primed human NK cells cultured for 14 days with HCW9206 and HCW9101, an IgG1 antibody, recognizing the scaffold domain of HCW9206 ("Expand" step). This expansion was dependent on both HCW9206 cytokines and interactions of the IgG1 mAb with CD16 receptors on NK cells. The resulting "Prime and Expand" ML NK cells exhibited elevated metabolic capacity, stable epigenetic IFNG promoter demethylation, enhanced antitumor activity in vitro and in vivo, and superior persistence in NSG mice. Thus, the "Prime and Expand" strategy represents a simple feeder cell-free approach to streamline manufacturing of clinical-grade ML NK cells to support multidose and off-the-shelf ACT.


Subject(s)
Immunologic Memory , Killer Cells, Natural , Recombinant Fusion Proteins , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Humans , Animals , Recombinant Fusion Proteins/genetics , Mice , Cell- and Tissue-Based Therapy/methods , Immunotherapy, Adoptive/methods , Interleukin-15/metabolism
5.
Reprod Sci ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977641

ABSTRACT

There is a chronic inflammation in PCOS patients, which is correlated with the pathogenesis of PCOS. IL-18 and IL-18BP are related with some inflammatory diseases, while less explored in PCOS. Whether IL-18BP could be a potential drug of PCOS remains unknown.IL-18 and testosterone levels were evaluated in serum of 10 non-PCOS control patients and 20 PCOS patients. Female C57/BL6 mice were gavaged with letrozole to induce PCOS mouse model and IL-18 level was evaluated in the serum of PCOS mouse model, and IL-18 is intraperitoneally injected in female mice, IL-18BP is intraperitoneally injected in the PCOS mice models. Then the body weights, estrous cycles, reproductive hormones and morphology of ovaries were analyzed. The level of ovarian chronic inflammation, fibrosis and endoplasmic reticulum (ER) stress are evaluated.IL-18 levels are increased in the serum of PCOS patients and PCOS mice models respectively. The serum DHEAS, iWAT weight and adipocyte size were increased in IL-18 group compared to the control group (P < 0.05). In the PCOS mouse model treated with IL-18BP, the body weight and serum LH/FSH ratio was decreased compared to the PCOS group (P < 0.05). The expression levels of inflammatory factors and fibrosis-related genes, the expression level of endoplasmic reticulum stress-related genes, and the ROS positive area of ovarian tissue was decreased (P < 0.05).IL-18 is involved in inducing PCOS phenotypes, while IL-18BP relieves PCOS phenotypes by alleviating ovarian chronic inflammation, fibrosis and ER stress in PCOS mice.

6.
Front Neurol ; 15: 1420942, 2024.
Article in English | MEDLINE | ID: mdl-38966083

ABSTRACT

Introduction: Intervertebral disc degeneration (IVDD) is a complex disease caused by genetic and environmental factors, but its pathogenesis is still unclear. Although studies of inflammatory cytokines have been used in recent years to unravel the biological mechanisms of a variety of diseases, such analyses have not yet been applied to IVDD. Therefore, we used a Mendelian Randomization approach to explore the potential mechanisms underlying the pathogenesis of IVDD. Methods: We obtained GWAS data from publicly available databases for inflammatory cytokines and IVDD, respectively, and explored the causal relationship between individual inflammatory cytokines and IVDD using instrumental variable (IV) analysis. We primarily used IVW methods to assess causality, while sensitivity, heterogeneity and multidirectionality analyses were performed for positive results (p < 0.05). All analyses were performed using R software. Results: In our study, we performed a two-sample MR analysis of 41 inflammatory cytokines to identify metabolites causally associated with IVDD. Ultimately, 2 serum metabolites associated with IVDD were identified (pval<0.05), IFN-γ and IL-18. sensitivity, heterogeneity, and Pleiotropy test analyses were performed for all results. Conclusion: Our study identified a causal relationship between IFN-γ and IL-18 and IVDD. It is valuable for the monitoring and prevention of IVDD and the exploration of targeted drugs. However, more evidence is needed to validate our study.

7.
Immunity ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906145

ABSTRACT

Tissues are exposed to diverse inflammatory challenges that shape future inflammatory responses. While cellular metabolism regulates immune function, how metabolism programs and stabilizes immune states within tissues and tunes susceptibility to inflammation is poorly understood. Here, we describe an innate immune metabolic switch that programs long-term intestinal tolerance. Intestinal interleukin-18 (IL-18) stimulation elicited tolerogenic macrophages by preventing their proinflammatory glycolytic polarization via metabolic reprogramming to fatty acid oxidation (FAO). FAO reprogramming was triggered by IL-18 activation of SLC12A3 (NCC), leading to sodium influx, release of mitochondrial DNA, and activation of stimulator of interferon genes (STING). FAO was maintained in macrophages by a bistable switch that encoded memory of IL-18 stimulation and by intercellular positive feedback that sustained the production of macrophage-derived 2'3'-cyclic GMP-AMP (cGAMP) and epithelial-derived IL-18. Thus, a tissue-reinforced metabolic switch encodes durable immune tolerance in the gut and may enable reconstructing compromised immune tolerance in chronic inflammation.

8.
J Inflamm Res ; 17: 3839-3864, 2024.
Article in English | MEDLINE | ID: mdl-38895141

ABSTRACT

Pyroptosis is a pro-inflammatory form of cell death resulting from the activation of gasdermins (GSDMs) pore-forming proteins and the release of several pro-inflammatory factors. However, inflammasomes are the intracellular protein complexes that cleave gasdermin D (GSDMD), leading to the formation of robust cell membrane pores and the initiation of pyroptosis. Inflammasome activation and gasdermin-mediated membrane pore formation are the important intrinsic processes in the classical pyroptotic signaling pathway. Overactivation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome triggers pyroptosis and amplifies inflammation. Current evidence suggests that the overactivation of inflammasomes and pyroptosis may further induce the progression of cancers, nerve injury, inflammatory disorders and metabolic dysfunctions. Current evidence also indicates that pyroptosis-dependent cell death accelerates the progression of diabetes and its frequent consequences including diabetic peripheral neuropathy (DPN). Pyroptosis-mediated inflammatory reaction further exacerbates DPN-mediated CNS injury. Accumulating evidence shows that several molecular signaling mechanisms trigger pyroptosis in insulin-producing cells, further leading to the development of DPN. Numerous studies have suggested that certain natural compounds or drugs may possess promising pharmacological properties by modulating inflammasomes and pyroptosis, thereby offering potential preventive and practical therapeutic approaches for the treatment and management of DPN. This review elaborates on the underlying molecular mechanisms of pyroptosis and explores possible therapeutic strategies for regulating pyroptosis-regulated cell death in the pharmacological treatment of DPN.

9.
J Inflamm Res ; 17: 3801-3813, 2024.
Article in English | MEDLINE | ID: mdl-38887753

ABSTRACT

Acute lung injury (ALI) manifests through harm to the capillary endothelium and alveolar epithelial cells, arising from a multitude of factors, leading to scattered interstitial alterations, pulmonary edema, and subsequent acute hypoxic respiratory insufficiency. Acute lung injury (ALI), along with its more serious counterpart, acute respiratory distress syndrome (ARDS), carry a fatality rate that hovers around 30-40%. Its principal pathological characteristic lies in the unchecked inflammatory reaction. Currently, the main strategies for treating ALI are alleviation of inflammation and prevention of respiratory failure. Concerning the etiology of ALI, NLRP3 Inflammasome is essential to the body's innate immune response. The composition of this inflammasome complex includes NLRP3, the pyroptosis mediator ASC, and pro-caspase-1. Recent research has reported that the inflammatory response centered on NLRP3 inflammasomes plays a key part in inflammation in ALI, and may hence be a prospective candidate for therapeutic intervention. In the review, we present an overview of the ailment characteristics of acute lung injury along with the constitution and operation of the NLRP3 inflammasome within this framework. We also explore therapeutic strategies targeting the NLRP3 inflammasome to combat acute lung injury.

10.
Cancers (Basel) ; 16(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38927931

ABSTRACT

The aim of this study was to assess the potential value of circulating active and inactive IL-18 levels in distinguishing pseudo and true tumor progression among NSCLC patients receiving immune checkpoint inhibitor treatments (ICIs). METHODS: This ancillary study includes 195 patients with metastatic non-small-cell lung cancer (NSCLC) treated with ICI in monotherapy, either pembrolizumab or nivolumab. Plasmatic levels of IL-18-related compounds, comprising the inhibitor IL-18 binding protein (IL-18BP), the inactive IL-18 (corresponding to IL-18/IL-18BP complex), and the active free IL-18, were assayed by ELISA. Objective tumoral response was analyzed by 18FDG PET-CT at baseline, 7 weeks, and 3 months post treatment induction, using PERCIST criteria. RESULTS: Plasmatic IL-18BP and total IL-18 levels are increased at baseline in NSCLC patients compared with healthy controls, whereas IL-18/IL-18BP complexes are decreased, and free IL-18 levels remain unchanged. Neither of the IL-18-related compounds allowed to discriminate ICI responding to nonresponding patients. However, inactive IL-18 levels allowed to discriminate patients with a first tumor progression, assessed after 7 weeks of treatment, with worse overall survival. In addition, we showed that neutrophil concentration is also a predictive indicator of patients' outcomes with OS (HR = 2.6, p = 0.0001) and PFS (HR = 2.2, p = 0.001). CONCLUSIONS: Plasmatic levels of inactive IL-18, combined with circulating neutrophil concentrations, can effectively distinguish ICI nonresponding patients with better overall survival (OS), potentially guiding rapid decisions for therapeutic intensification.

11.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928186

ABSTRACT

The inflammasome regulates the innate inflammatory response and is involved in autoimmune diseases. In this study, we explored the levels of IL-18 and IL-1ß in serum and urine and the influence of various single-nucleotide polymorphisms (SNPs) on kidney lesions at diagnosis in patients with ANCA-associated vasculitis (AAV) and their clinical outcomes. Ninety-two patients with renal AAV were recruited, and blood and urine were collected at diagnosis. Serum and urine cytokine levels were measured by ELISA. DNA was extracted and genotyped using TaqMan assays for SNPs in several inflammasome genes. Lower serum IL-18 (p = 0.049) and the IL-18 rs187238 G-carrier genotype (p = 0.042) were associated with severe fibrosis. The IL-18 rs1946518 TT genotype was associated with an increased risk of relapse (p = 0.05), whereas GG was related to better renal outcomes (p = 0.031). The rs187238 GG genotype was identified as a risk factor for mortality within the first year after AAV diagnosis, independent of the requirement for dialysis or lung involvement (p = 0.013). We suggest that decreased cytokine levels could be a surrogate marker of scarring and chronicity of the renal lesions, together with the rs187238 GG genotype. If our results are validated, the rs1946518 TT genotype predicts the risk of relapse and renal outcomes during follow-up.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Inflammasomes , Interleukin-18 , Interleukin-1beta , Polymorphism, Single Nucleotide , Humans , Interleukin-18/genetics , Interleukin-18/blood , Male , Female , Inflammasomes/genetics , Middle Aged , Interleukin-1beta/genetics , Interleukin-1beta/blood , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/genetics , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/blood , Aged , Kidney/pathology , Kidney/metabolism , Genotype , Adult , NLR Family, Pyrin Domain-Containing 3 Protein/genetics
12.
Sci Rep ; 14(1): 14892, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38937503

ABSTRACT

Accurate screening of COVID-19 infection status for symptomatic patients is a critical public health task. Although molecular and antigen tests now exist for COVID-19, in resource-limited settings, screening tests are often not available. Furthermore, during the early stages of the pandemic tests were not available in any capacity. We utilized an automated machine learning (ML) approach to train and evaluate thousands of models on a clinical dataset consisting of commonly available clinical and laboratory data, along with cytokine profiles for patients (n = 150). These models were then further tested for generalizability on an out-of-sample secondary dataset (n = 120). We were able to develop a ML model for rapid and reliable screening of patients as COVID-19 positive or negative using three approaches: commonly available clinical and laboratory data, a cytokine profile, and a combination of the common data and cytokine profile. Of the tens of thousands of models automatically tested for the three approaches, all three approaches demonstrated > 92% sensitivity and > 88 specificity while our highest performing model achieved 95.6% sensitivity and 98.1% specificity. These models represent a potential effective deployable solution for COVID-19 status classification for symptomatic patients in resource-limited settings and provide proof-of-concept for rapid development of screening tools for novel emerging infectious diseases.


Subject(s)
COVID-19 , Cytokines , Machine Learning , Humans , COVID-19/diagnosis , Cytokines/blood , SARS-CoV-2/isolation & purification , SARS-CoV-2/immunology , Mass Screening/methods , Male , Female , Sensitivity and Specificity , Middle Aged , Adult , Aged
13.
Front Cardiovasc Med ; 11: 1351567, 2024.
Article in English | MEDLINE | ID: mdl-38854655

ABSTRACT

Background: ST-segment elevation myocardial infarction (STEMI) persists to be prevalent in the elderly with a dismal prognosis. The capacity of endothelial progenitor cells (EPCs) is reduced with aging. Nevertheless, the influence of aging on the functionality of EPCs in STEMI is not fully understood. Method: This study enrolled 20 younger STEMI patients and 21 older STEMI patients. We assessed the Thrombolysis in Myocardial Infarction (TIMI) and Global Registry of Acute Coronary Events Risk (GRACE) scores in two groups. Then, we detected EPC migration, proliferation, adhesion, and plasma interleukin (IL)-18 and IL-23 concentrations in two groups. In addition, we analyzed the interconnection between age, EPC function, plasma IL-18 and IL-23 concentrations, and GRACE or TIMI scores in STEMI patients. Result: GRACE and TIMI scores in older STEMI patients were higher than in younger STEMI patients, whereas EPC function declined. GRACE and TIMI scores were found to have an inverse relationship with the EPC function. In older STEMI patients, plasma concentrations of IL-18 and IL-23 increased. Plasma IL-18 and IL-23 concentrations were adversely connected to EPC capacity and positively related to GRACE and TIMI scores. Moreover, age was positively correlated with plasma IL-18 or IL-23 concentrations, as well as GRACE or TIMI scores. However, age was adversely correlated with EPC function. Conclusion: In patients with STEMI, aging results in declined EPC function, which may be associated with inflammatory cytokines. The current investigation may offer new perception about mechanism and therapeutic targets of aging STEMI.

14.
Mol Biol Rep ; 51(1): 762, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874690

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is experiencing a concerning rise in both incidence and mortality rates. Current therapeutic strategies are limited in their effectiveness, largely due to the complex causes of the disease and significant levels of drug resistance. Given the latest developments in human umbilical cord mesenchymal stem cells (hUC-MSCs) research, there is a debate over the continued use of stem cell transplantation for treating tumors. Consequently, this study seeks to explore the role of hUC-MSCs in the management of HCC. METHODS AND RESULTS: HUC-MSCs increased the number (10.75 ± 1.50) in the DEN/TCPOBOP-induced mice hepatoma model, compared with DMSO group (7.25 ± 1.71). Moreover, the liver index in hUC-MSCs group (0.21 ± 0.06) was greater than that in DMSO group (0.09 ± 0.01). Immunohistochemical (IHC) analysis revealed that while hUC-MSCs did not alter Foxp3 expression, they significantly stimulated Ki67 expression, indicative of increased tumor cellular proliferation. Additionally, immunofluorescence (IF) studies showed that hUC-MSCs increased CD8+ T cell counts without affecting macrophage numbers. Notably, granzyme B expression remained nearly undetectable. We observed that serum IL-18 levels were higher in the hUC-MSCs group (109.66 ± 0.38 pg/ml) compared to the DMSO group (91.14 ± 4.37 pg/ml). Conversely, IL-1ß levels decreased in the hUC-MSCs group (63.00 ± 0.53 pg/ml) relative to the DMSO group (97.38 ± 9.08 pg/ml). CONCLUSIONS: According to this study, hUC-MSCs promoted the growth of liver tumors. Therefore, we proposed that hUC-MSCs are not suitable for treating HCC, as they exhibit clinically prohibited abnormalities.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , Interleukin-18 , Liver Neoplasms , Mesenchymal Stem Cells , Umbilical Cord , Mesenchymal Stem Cells/metabolism , Humans , Animals , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/metabolism , Umbilical Cord/cytology , Interleukin-18/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/therapy , Mice , Mesenchymal Stem Cell Transplantation/methods , Male , Cell Line, Tumor , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology
15.
Front Neurol ; 15: 1307319, 2024.
Article in English | MEDLINE | ID: mdl-38836002

ABSTRACT

Background: Migraines affect one billion individuals globally, with a higher occurrence among young adults and women. A significant survey in the United States indicated that 17.1% of women and 5.6% of men suffer from migraines. This study seeks to investigate the potential connection between NLRP3 and MMP9 in migraine pathology. Methods: The research involved searching databases such as PubMed, Scopus, Science Direct, Google Scholar, and Proquest, with the search concluding on March 31, 2024. Following PRISMA guidelines, PICO data were collected, focusing exclusively on animal models induced by Nitroglycerine (10 mg/kg), while excluding clinical studies. Results: The study, originally registered in Prospero Reg. No. CRD42022355893, conducted bias analysis using SYRCLE's RoB tool and evaluated author consensus using GraphPad v9.5.1. Out of 7,359 search results, 22 papers met the inclusion criteria. Inter-rater reliability among reviewers was assessed using Cohen's kappa statistics. Conclusion: This review summarizes 22 preclinical studies on Nitroglycerin (NTG), NLRP3, MMP9, and related biomarkers in migraine. They reveal that NTG, especially at 10 mg/kg, consistently induces migraine-like symptoms in rodents by activating NLRP3 inflammasome and stimulating proinflammatory molecule production. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, CRD42022355893.

16.
mBio ; : e0297523, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837391

ABSTRACT

Caspases are a family of cysteine proteases that act as molecular scissors to cleave substrates and regulate biological processes such as programmed cell death and inflammation. Extensive efforts have been made to identify caspase substrates and to determine factors that dictate substrate specificity. Thousands of putative substrates have been identified for caspases that regulate an immunologically silent type of cell death known as apoptosis, but less is known about substrates of the inflammatory caspases that regulate an immunostimulatory type of cell death called pyroptosis. Furthermore, much of our understanding of caspase substrate specificities is derived from work done with peptide substrates, which do not often translate to native protein substrates. Our knowledge of inflammatory caspase biology and substrates has recently expanded and here, we discuss the recent advances in our understanding of caspase substrate specificities, with a focus on inflammatory caspases. We highlight new substrates that have been discovered and discuss the factors that engender specificity. Recent evidence suggests that inflammatory caspases likely utilize two binding interfaces to recognize and process substrates, the active site and a conserved exosite.

17.
Oral Dis ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937944

ABSTRACT

OBJECTIVE: Oral lichen planus (OLP) is a chronic inflammatory disease characterized by a dense T-cell infiltration and the degeneration of basal keratinocytes. The potential functions of mucosal associated invariant T (MAIT) cells in OLP have been analyzed in our previous study. Keratinocytes under proinflammatory conditions have been demonstrated to activate T cells. This study was aimed to investigate how keratinocytes stimulate MAIT cells in OLP, and to explore the role of activated MAIT cells on keratinocytes. METHODS AND RESULTS: Increased MAIT cells and higher activation marker CD69 were detected in OLP lesions by flow cytometry. The enhanced expression of MHC class I-like molecule (MR1) required for MAIT cell activation in the epithelial layer of OLP lesions was determined by immunohistochemistry. Keratinocytes treated by 5-A-RU prodrug and lipopolysaccharide, respectively, exhibited higher expression of MR1 and secretion of IL-18. In direct coculture systems consisting of keratinocytes and peripheral blood mononuclear cells, both 5-A-RU prodrug-pretreated keratinocytes and lipopolysaccharide-pretreated keratinocytes activated MAIT cells to secrete granzyme B, contributing to elevated keratinocyte apoptosis. CONCLUSIONS: Keratinocytes were capable to activate MAIT cells via MR1 and cytokines in OLP, and granzyme B produced by activated MAIT cells intensified keratinocyte apoptosis, engaging in the pathogenesis of OLP.

18.
Mol Ther ; 32(7): 2373-2392, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38745414

ABSTRACT

Interleukin (IL)18 is a potent pro-inflammatory cytokine that is activated upon caspase 1 cleavage of the latent precursor, pro-IL18. Therapeutic T cell armoring with IL18 promotes autocrine stimulation and positive modulation of the tumor microenvironment (TME). However, existing strategies are imperfect since they involve constitutive/poorly regulated activity or fail to modify the TME. Here, we have substituted the caspase 1 cleavage site within pro-IL18 with that preferred by granzyme B, yielding GzB-IL18. We demonstrate that GzB-IL18 is constitutively released but remains functionally latent unless chimeric antigen receptor (CAR) T cells are activated, owing to concomitant granzyme B release. Armoring with GzB-IL18 enhances cytolytic activity, proliferation, interferon (IFN)-γ release, and anti-tumor efficacy by a similar magnitude to constitutively active IL18. We also demonstrate that GzB-IL18 provides a highly effective armoring strategy for γδ CAR T cells, leading to enhanced metabolic fitness and significant potentiation of therapeutic activity. Finally, we show that constitutively active IL18 can unmask CAR T cell-mediated cytokine release syndrome in immunocompetent mice. By contrast, GzB-IL18 promotes anti-tumor activity and myeloid cell re-programming without inducing such toxicity. Using this stringent system, we have tightly coupled the biological activity of IL18 to the activation state of the host CAR T cell, favoring safer clinical implementation of this technology.


Subject(s)
Granzymes , Immunotherapy, Adoptive , Interleukin-18 , Receptors, Chimeric Antigen , Interleukin-18/metabolism , Granzymes/metabolism , Animals , Mice , Humans , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Cell Line, Tumor , Tumor Microenvironment/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lymphocyte Activation/immunology , Cytotoxicity, Immunologic , Xenograft Model Antitumor Assays , Interferon-gamma/metabolism
19.
Zhonghua Xue Ye Xue Za Zhi ; 45(3): 284-289, 2024 Mar 14.
Article in Chinese | MEDLINE | ID: mdl-38716601

ABSTRACT

Objective: To analyze the level and clinical significance of IL-18 and IL-18-binding protein (BP) in the bone marrow of patients with myelodysplastic syndrome (MDS) . Methods: A total of 43 newly diagnosed patients with MDS who were admitted to the Department of Hematology, Tianjin Medical University General Hospital, from July 2020 to February 2021 were randomly selected. The control group consisted of 14 patients with acute myeloid leukemia (AML) and 25 patients with iron-deficiency anemia (IDA). The levels of IL-18 and IL-18 BP in the bone marrow supernatant were measured, and their correlations with MDS severity, as well as the functionality of CD8(+) T cells and natural killer cells, was analyzed. Results: The levels of IL-18, IL-18 BP, and free IL-18 (fIL-18) in the bone marrow supernatant of patients with MDS were higher than in the IDA group. The level of fIL-18 was linearly and negatively correlated with the MDS-International Prognostic Scoring System (IPSS) score. IL-18 receptor (IL-18Rα) expression on CD8(+) T cells in the MDS group was lower than in the IDA group, and the levels of fIL-18 and IL-18Rα were positively correlated with CD8(+) T-cell function in the MDS group. Conclusion: IL-18 BP antagonizes IL-18, leading to a decrease in fIL-18 in the bone marrow microenvironment of patients with MDS, affecting CD8(+) T-cell function, which is closely related to MDS severity; therefore, it may become a new target for MDS treatment.


Subject(s)
Bone Marrow , Intercellular Signaling Peptides and Proteins , Interleukin-18 , Myelodysplastic Syndromes , Humans , Myelodysplastic Syndromes/metabolism , Interleukin-18/metabolism , Bone Marrow/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , CD8-Positive T-Lymphocytes/metabolism , Male , Female , Killer Cells, Natural/metabolism , Middle Aged , Clinical Relevance
20.
Aging (Albany NY) ; 16(10): 8611-8629, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38771140

ABSTRACT

PURPOSE: Breast cancer prognosis and functioning have not been thoroughly examined in relation to immunological and lipid metabolism. However, there is a lack of prognostic and functional analyses of the relationship between lipid metabolism and immunity in breast cancer. METHODS: DEGs in breast cancer were obtained from UCSC database, and lipid metabolism and immune-related genes were obtained from GSEA and Immune databases. A predictive signature was constructed using univariate Cox and LASSO regression on lipid metabolism and immune-related DEGs. The signature's prognostic significance was assessed using Kaplan-Meier, time-dependent ROC, and risk factor survival scores. Survival prognosis, therapeutic relevance, and functional enrichment were used to mine model gene biology. We selected IL18, which has never been reported in breast cancer before, in the signature to learn more about its function, potential to predict outcome, and immune system role. RT-PCR was performed to verify the true expression level of IL18. RESULTS: A total of 136 DEGs associated with breast cancer responses to both immunity and lipid metabolism. Nine key genes (CALR, CCL5, CEPT, FTT3, CXCL13, FLT3, IL12B, IL18, and IL24, p < 1.6e-2) of breast cancer were identified, and a prognostic was successfully constructed with a good predictive ability. IL18 in the model also had good clinical prognostic guidance value and immune regulation and therapeutic potential. Furthermore, the expression of IL18 was higher than that in paracancerous tissue. CONCLUSIONS: A unique predictive signature model could effectively predict the prognosis of breast cancer, which can not only achieve survival prediction, but also screen out key genes with important functional mechanisms to guide clinical drug experiments.


Subject(s)
Breast Neoplasms , Lipid Metabolism , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Humans , Female , Lipid Metabolism/genetics , Prognosis , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Interleukin-18/genetics , Interleukin-18/metabolism , Gene Expression Profiling , Transcriptome , Databases, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...