Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Bioact Mater ; 40: 396-416, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39022185

ABSTRACT

Frozen shoulder (FS) manifests as progressively worsening pain and a reduction in shoulder range of motion (ROM). Salvianolic acid B (SaB) is recently expected to be used in the treatment of fibrosis diseases including FS. We firstly demonstrate that SaB can effectively hinder the progression of oxidative stress, inflammation, and pathological fibrosis within the synovial tissue in FS, potentially leading to the reduction or reversal of capsule fibrosis and joint stiffness. For further clinical application, we design and synthesize a novel, superior, antioxidant and antibacterial CSMA-PBA/OD-DA (CPDA) hydrogel for the delivery of SaB. In vitro experiments demonstrate that the CPDA hydrogel exhibits excellent biocompatibility and rheological properties, rendering it suitable for intra-articular injections. Upon injection into the contracted joint cavity of FS model rat, the SaB-CPDA hydrogel accelerate the recovery of ROM and exhibit superior anti-fibrosis effect, presenting the promise for the treatment of FS in vivo.

2.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000275

ABSTRACT

In tumor cells, interleukin-6 (IL-6) signaling can lead to activation of the epidermal growth factor receptor (EGFR), which prolongs Stat3 activation. In the present experiments, we tested the hypothesis that IL-6 signaling activates EGFR signaling in peripheral and spinal nociception and examined whether EGFR localization and activation coincide with pain-related behaviors in arthritis. In vivo in anesthetized rats, spinal application of the EGFR receptor blocker gefitinib reduced the responses of spinal cord neurons to noxious joint stimulation, but only after spinal pretreatment with IL-6 and soluble IL-6 receptor. Using Western blots, we found that IL-6-induced Stat3 activation was reduced by gefitinib in microglial cells of the BV2 cell line, but not in cultured DRG neurons. Immunohistochemistry showed EGFR localization in most DRG neurons from normal rats, but significant downregulation in the acute and most painful arthritis phase. In the spinal cord of mice, EGFR was highly activated mainly in the chronic phase of inflammation, with localization in neurons. These data suggest that spinal IL-6 signaling may activate spinal EGFR signaling. Downregulation of EGFR in DRG neurons in acute arthritis may limit nociception, but pronounced delayed activation of EGFR in the spinal cord may be involved in chronic inflammatory pain.


Subject(s)
ErbB Receptors , Interleukin-6 , Sensory Receptor Cells , Spinal Cord , Animals , Female , Mice , Rats , Arthritis/metabolism , Arthritis, Experimental/metabolism , Cell Line , ErbB Receptors/metabolism , Ganglia, Spinal/metabolism , Gefitinib/pharmacology , Interleukin-6/metabolism , Receptors, Interleukin-6/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , Signal Transduction , Spinal Cord/metabolism , STAT3 Transcription Factor/metabolism
3.
Osteoarthritis Cartilage ; 32(5): 561-573, 2024 May.
Article in English | MEDLINE | ID: mdl-38369276

ABSTRACT

OBJECTIVE: Neutralization of Interleukin (IL)-6-signaling by antibodies is considered a promising tool for the treatment of osteoarthritis (OA). To gain further insight into this potential treatment, this study investigated the effects of IL-6-signaling and IL-6 neutralization on chondrocyte metabolism and the release of IL-6-signaling-related mediators by human chondrocytes. DESIGN: Chondrocytes were collected from 49 patients with advanced knee/hip OA or femoral neck fracture. Isolated chondrocytes were stimulated with different mediators to analyze the release of IL-6, soluble IL-6 receptor (sIL-6R) and soluble gp130 (sgp130). The effect of IL-6 and IL-6/sIL-6R complex as well as neutralization of IL-6-signaling on the metabolism was analyzed. RESULTS: OA chondrocytes showed high basal IL-6 production and release, which was strongly negatively correlated with the production of cartilage-matrix-proteins. Chondrocytes produced and released sIL-6R and sgp130. The IL-6/sIL-6R complex significantly increased nitric oxide, prostaglandin E2 and matrix metalloproteinase 1 production, decreased Pro-Collagen Type II and mitochondrial ATP production, and increased glycolysis in OA chondrocytes. Neutralization of IL-6-signaling by antibodies did not significantly affect the metabolism of OA chondrocytes, but blocking of glycoprotein 130 (gp130)-signaling by SC144 significantly reduced the basal IL-6 release. CONCLUSION: Although IL-6 trans-signaling induced by IL-6/sIL-6R complex negatively affects OA chondrocytes, antibodies against IL-6 or IL-6R did not affect chondrocyte metabolism. Since inhibition of gp130-signaling reduced the enhanced basal release of IL-6, interfering with gp130-signaling may ameliorate OA progression because high cellular release of IL-6 correlates with reduced production of cartilage-matrix-proteins.


Subject(s)
Interleukin-6 , Humans , Chondrocytes/metabolism , Cytokine Receptor gp130/metabolism , Interleukin-6/metabolism , Receptors, Interleukin-6/metabolism , Signal Transduction
4.
Eur J Pharmacol ; 967: 176370, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38320719

ABSTRACT

At least seven dominantly inherited spinocerebellar ataxias (SCA) are caused by expansions of polyglutamine (polyQ)-encoding CAG repeat. The misfolded and aggregated polyQ-expanded proteins increase reactive oxygen species (ROS), cellular toxicity, and neuroinflammation in the disease pathogenesis. In this study, we evaluated the anti-inflammatory potentials of coumarin derivatives LM-021, LMDS-1, LMDS-2, and pharmacological chaperone tafamidis using mouse BV-2 microglia and SCA3 ataxin-3 (ATXN3)/Q75-GFP SH-SY5Y cells. The four tested compounds displayed anti-inflammatory activity by suppressing nitric oxide (NO), interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α production, and CD68 antigen (CD68) and histocompatibility-2 (MHCII) expression in lipopolysaccharides (LPS)/interferon (IFN)-γ-stimulated BV-2 microglia. In retinoic acid-differentiated ATXN3/Q75-GFP-expressing SH-SY5Y cells inflamed with LPS/IFN-γ-primed BV-2 conditioned medium, treatment with test compounds mitigated the increased caspase 1 activity and lactate dehydrogenase release, reduced ROS and ATXN3/Q75 aggregation, and promoted neurite outgrowth. Examination of IL-1ß and IL-6-mediated signaling pathways revealed that LM-021, LMDS-1, LMDS-2, and tafamidis decreased NLR family pyrin domain containing 1 (NLRP1), c-Jun N-terminal kinase/c-Jun proto-oncogene (JNK/JUN), inhibitor of kappa B (IκBα)/P65, mitogen-activated protein kinase 14/signal transducer and activator of transcription 1 (P38/STAT1), and/or Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling. The study results suggest the potential of LM-021, LMDS-1, LMDS-2, and tafamidis in treating SCA3 and probable other polyQ diseases.


Subject(s)
Machado-Joseph Disease , Neuroblastoma , Animals , Humans , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Interleukin-1beta/antagonists & inhibitors , Interleukin-6 , Lipopolysaccharides/pharmacology , Machado-Joseph Disease/drug therapy , Machado-Joseph Disease/genetics , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
5.
J Pain Res ; 16: 4317-4328, 2023.
Article in English | MEDLINE | ID: mdl-38145035

ABSTRACT

Introduction: While numerous studies have emphasized the pivotal involvement of the Interleukin 6 (IL-6) pathway in the development of chronic pain, the causal nature of this relationship remains uncertain. Methods: In this study, we opted to include genetic variants situated within the locus of the IL-6 receptor (IL-6R) that exhibited associations with C-reactive protein (CRP) levels. CRP serves as a downstream effector in the IL-6 pathway. Utilizing these variants as genetic proxies, we aimed to modulate IL-6 signaling. Employing a two-sample Mendelian randomization (MR) approach, we investigated the potential link between the genetic proxy and seven distinct subtypes of chronic pain, categorized based on their corresponding body locations. Moreover, we examined the relationship between chronic pain and an alternative instrument of IL-6 signaling that was weighted based on s-IL-6R levels. Furthermore, we conducted exploratory analyses to estimate the plausible causal association between CRP, gp130, and the subtypes of chronic pain. Results: Our analysis showed that genetic proxied downregulation of IL-6 signaling, weighted on CRP levels, was linked to a reduced risk of chronic back and knee pain. The sensitivity analyses across various MR methods confirmed the consistency of the findings and showed no evidence of horizontal pleiotropy or heterogeneity. Moreover, the results remained robust with different sets of instrument variables. A genetically increased level of s-IL-6R was also negatively associated with chronic back and knee pain. However, there was no causal relationship between CRP and gp130 with chronic pain. Conclusion: Based on our findings, there is evidence to suggest a potential causal relationship between IL-6 signaling and chronic back and knee pain. Consequently, the downregulation of IL-6 signaling holds promise as a potential therapeutic target for addressing chronic back and knee pain.

6.
Aging (Albany NY) ; 15(16): 8061-8089, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37578928

ABSTRACT

Parkinson's disease (PD) is featured mainly by the loss of dopaminergic neurons and the presence of α-synuclein-containing aggregates in the substantia nigra of brain. The α-synuclein fibrils and aggregates lead to increased oxidative stress and neural toxicity in PD. Chronic inflammation mediated by microglia is one of the hallmarks of PD pathophysiology. In this report, we showed that coumarin-chalcone hybrid LM-021 and indole derivative NC009-1 reduced the expression of major histocompatibility complex-II, NLR family pyrin domain containing (NLRP) 3, caspase-1, inducible nitric oxide synthase, interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α in α-synuclein-activated mouse BV-2 microglia. Release of pro-inflammatory mediators including nitric oxide, IL-1ß, IL-6 and TNF-α was also mitigated. In BE(2)-M17 cells expressing A53T α-synuclein aggregates, LM-021 and NC009-1 reduced α-synuclein aggregation, neuroinflammation, oxidative stress and apoptosis, and promoted neurite outgrowth. These protective effects were mediated by downregulating NLRP1, IL-1ß and IL-6, and their downstream pathways including nuclear factor (NF)-κB inhibitor alpha (IκBα)/NF-κB P65 subunit (P65), c-Jun N-terminal kinase (JNK)/proto-oncogene c-Jun (JUN), mitogen-activated protein kinase 14 (P38)/signal transducer and activator of transcription (STAT) 1, and Janus kinase 2 (JAK2)/STAT3. The study results indicate LM-021 and NC009-1 as potential new drug candidates for PD.


Subject(s)
Chalcones , Parkinson Disease , Mice , Animals , alpha-Synuclein/metabolism , Chalcones/pharmacology , Interleukin-6/metabolism , Inflammation/metabolism , Oxidative Stress , Indoles/pharmacology , NF-kappa B/metabolism , Parkinson Disease/metabolism , Microglia/metabolism , Tumor Necrosis Factor-alpha/metabolism , Coumarins/pharmacology , Lipopolysaccharides/pharmacology
7.
J Cereb Blood Flow Metab ; 43(8): 1400-1418, 2023 08.
Article in English | MEDLINE | ID: mdl-37021637

ABSTRACT

Paracrine cerebral Interleukin 6 (Il6) is relevant for stroke recovery, but systemic Il6 elevation may worsen outcome. Hence, paracrine Il6 response modulation within the neurovascular unit has emerged as an attractive therapeutic approach. Lithium modulates Il6 responses and improves stroke outcome. However, lithium may cause serious adverse effects. Here, we report that Zincfinger protein 580 (Zfp580) mediates the effects of lithium on Il6 signaling. In contrast to lithium, Zfp580 inactivation had no neurotoxic effects, and Zfp580 knock out mice showed no phenotypic changes in cognitive and motor function behavioral tests. We discovered that lithium and hypoxia disinhibited Il6 via Zfp580 suppression and post-translational modification by small ubiquitin-like modifier (SUMO). After transient middle cerebral artery occlusion, loss of Zfp580 reduced paracrine Il6 and increased Il6 trans-signaling. Aside from modulating Il6 signaling, Zfp580 loss improved endothelial resilience to ischemia, was highly neuroprotective resulting in smaller infarcts and enhanced use-dependent neuroplasticity, all of which led to improved functional outcome. In conclusion, inactivation of Zfp580 exerts positive effects on multiple key mechanisms without exhibiting relevant adverse side effects, making it potentially a more specific and effective treatment target for stroke recovery than lithium. To fully assess its potential, Zfp580 inhibitors must be developed.


Subject(s)
Brain Ischemia , Stroke , Mice , Animals , Interleukin-6 , Lithium , Transcription Factors/metabolism , Stroke/drug therapy , Signal Transduction
8.
Age Ageing ; 52(1)2023 01 08.
Article in English | MEDLINE | ID: mdl-36729470

ABSTRACT

BACKGROUND: numerous studies point towards a critical role of Interleukin 6 (IL-6) pathway in frailty pathogenesis yet the causal relationship between the two remains elusive. METHODS: we selected genetic variants near the IL-6 receptor locus (IL-6R) associated with reduced C-reactive protein (CRP) levels, a downstream effector of IL-6 pathway, and we used them as genetic proxies of IL-6 signalling downregulation. We then performed a two-sample Mendelian randomisation (MR) to investigate the association with frailty status, as defined by the Frailty Index (FI) in 11,171 individuals from the Hellenic Longitudinal Investigation of Ageing and Diet (HELIAD) study. MR analysis was repeated after excluding depression or cognition-related FI items as well as following age or sex stratification. Association with frailty was also examined using an alternative instrument, weighted on s-IL-6R levels. Replication was attempted in UK Biobank dataset. RESULTS: genetic predisposition to IL-6 signalling downregulation, weighted on CRP levels, was associated with lower risk of frailty, inserted either as categorical (odds ratio [95% confidence interval] = 0.15 [-3.39, -0.40], P = 0.013) or continuous variable (beta [se] = -0.09 [0.003], P = 0.0009). Sensitivity analyses revealed similar estimates across different MR methods with no evidence for horizontal pleiotropy or heterogeneity. Results remained robust after exclusion of depression or cognition-related FI items and following sex or age stratification. Genetically increased s-IL-6R levels were negatively correlated with frailty and this finding remained significant in a meta-analysis of UK Biobank and HELIAD cohorts. CONCLUSION: our results support a potential causal effect of IL-6 signalling on frailty and further suggest that downregulation of IL-6 levels may reduce frailty risk.


Subject(s)
Frailty , Humans , Frailty/diagnosis , Frailty/genetics , Interleukin-6/genetics , Longitudinal Studies , Aging/genetics , Mendelian Randomization Analysis/methods
9.
Toxicol Appl Pharmacol ; 454: 116233, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36096280

ABSTRACT

Trichloroethylene (TCE) is a widely used industrial chemical and common environmental pollutant. Exposure to TCE promotes CD4+ T cell-driven autoimmunity including autoimmune hepatitis (AIH) in both humans and female autoimmune-prone mice. Because the developing immune system is more sensitive during development, we predicted that non- autoimmune-prone, C57/Bl6 (B6) mice would exhibit some autoimmune-related changes using the Developmental Origins of Health and Disease (DOHaD) model of exposure. Both male and female mice were exposed to vehicle or an environmentally relevant dose of 5 µg/ml TCE (0.9 mg/kg/day) beginning at 2 weeks pre-conception and ending at weaning. CD4+ T cells were assessed for phenotypic markers by flow cytometry. An assessment of cytokines elicited ex vivo after 4d polarization from naïve to CD4+ T helper subsets (i.e., Th1, Th17, and T reg) was conducted. mRNA expression of liver genes associated with inflammation, regeneration/repair associated with AIH disease progression in autoimmune-prone mice were evaluated by qRT-PCR. The results demonstrated TCE's ability to induce autoimmune- related biomarkers in B6 mice to an even greater degree in females compared to males when exposed during development.


Subject(s)
Environmental Pollutants , Hepatitis, Autoimmune , Trichloroethylene , Animals , Autoimmunity , Biomarkers , CD4-Positive T-Lymphocytes , Cytokines/metabolism , Female , Humans , Male , Mice , Mice, Inbred Strains , RNA, Messenger , Trichloroethylene/toxicity
10.
Biomedicines ; 10(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36009550

ABSTRACT

Persistent STAT3 signaling plays a pivotal role in human tumor malignancy, including triple-negative breast cancer (TNBC). There are few treatment options currently available for TNBC; thus, given its importance to cancer, STAT3 is a potential cancer therapeutic target and is the focus of drug discovery efforts. In this study, we tested a novel orally bioavailable small-molecule STAT3 inhibitor, LLL12B, in human MDA-MB-231, SUM159, and murine 4T1 TNBC cell lines. TNBC cells frequently expressed persistent STAT3 phosphorylation and their cell viability was sensitive to STAT3 knockdown by siRNA. LLL12B selectively inhibited the IL-6-mediated induction of STAT3 phosphorylation, but had little effect on the IFN-γ-mediated induction of STAT1 phosphorylation nor the EGF-mediated induction of ERK phosphorylation. In addition, targeting STAT3 with LLL12B induced apoptosis, reduced colony formation ability, and inhibited cell migration in TNBC cells. Furthermore, LLL12B suppressed the tumor growth of the MDA-MB-231 TNBC cells in a mammary fat pad mouse tumor model in vivo. Together, our findings support the concept that targeting persistent STAT3 signaling using the novel small-molecule LLL12B is a potential approach for TNBC therapy.

11.
Stem Cell Reports ; 17(9): 1991-2004, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35961310

ABSTRACT

IL-6 has been shown to be required for somatic cell reprogramming into induced pluripotent stem cells (iPSCs). However, how Il6 expression is regulated and whether it plays a role during embryo development remains unknown. Here, we describe that IL-6 is necessary for C/EBPα-enhanced reprogramming of B cells into iPSCs but not for B cell to macrophage transdifferentiation. C/EBPα overexpression activates both Il6 and Il6ra genes in B cells and in PSCs. In embryo development, Cebpa is enriched in the trophectoderm of blastocysts together with Il6, while Il6ra is mostly expressed in the inner cell mass (ICM). In addition, Il6 expression in blastocysts requires Cebpa. Blastocysts secrete IL-6 and neutralization of the cytokine delays the morula to blastocyst transition. The observed requirement of C/EBPα-regulated IL-6 signaling for pluripotency during somatic cell reprogramming thus recapitulates a physiologic mechanism in which the trophectoderm acts as niche for the ICM through the secretion of IL-6.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha , Interleukin-6 , Blastocyst , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Embryonic Development , Interleukin-6/metabolism , Morula/metabolism
12.
Allergol Int ; 71(1): 73-82, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34332882

ABSTRACT

BACKGROUND: Accumulating evidence indicated the crucial role for interleukin 6 (IL-6) signaling in the development of allergic asthma. Yet, the role of IL-6 signaling in toluene diisocyanate (TDI)-induced mixed granulocytic airway inflammation still remains unclear. Thus, the aims of this study were to dissect the role of IL-6 signaling and to evaluate the effect of tocilizumab on TDI-induced steroid-resistant asthma. METHODS: TDI-induced asthma model was prepared and asthmatic mice were respectively given IL-6 monoclonal antibody, IL-6R monoclonal antibody (tocilizumab, 5 mg/kg, i.p. after each challenge) for therapeutic purposes or isotype IgG as control. RESULTS: TDI exposure just elevated IL-6R expression in the infiltrated inflammatory cells around the airway, but increased glycoprotein 130 expression in the whole lung, especially in bronchial epithelium. Moreover, TDI inhalation increased airway hyperresponsiveness (AHR) to methacholine, coupled with mixed granulocytic inflammation, exaggerated epithelial denudation, airway smooth muscle thickening, goblet cell metaplasia, extensive submucosal collagen deposition, dysregulated Th2/Th17 responses, as well as innate immune responses and raised serum IgE. And almost all these responses except for raised serum IgE were markedly ameliorated by the administration of IL-6 neutralizing antibody or tocilizumab, but exhibited poor response to systemic steroid treatment. Also, TDI challenge induced nucleocytoplasm translocation of HMGB1 and promoted its release in the BALF, as well as elevated lung level of STAT3 phosphorylation, which were inhibited by anti-IL-6 and anti-IL-6R treatment. CONCLUSIONS: Our data suggested that IL-6 monoclonal antibody and tocilizumab might effectively abrogate TDI-induced airway inflammation and remodeling, which could be used as a clinical potential therapy for patients with severe asthma.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Asthma/drug therapy , Interleukin-6/adverse effects , Animals , Asthma/pathology , Disease Models, Animal , Drug Resistance , Humans , Interleukin-6/administration & dosage , Mice , Mice, Inbred BALB C , Respiratory Hypersensitivity/diagnosis , Signal Transduction , Toluene 2,4-Diisocyanate
13.
Diagnostics (Basel) ; 11(6)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205600

ABSTRACT

We have investigated glycoconjugates sialization profile, endogen synthesis rate of antiganglioside antibodies (AGA), IL-6 signaling pathways correlated with activity disease in systemic lupus erythematous (SLE) and lupus nephritis (LN). MATERIAL AND METHODS: A case-control study was developed and included 109 patients with SLE with or without renal impairment, 32 patients with IgA nephropathy and 60 healthy volunteers, clinically and paraclinically monitored. The following parameters were evaluated in volunteers serum: total sialic acid (TSA), orosomucoids, lipid bound sialic acid (LSA), interleukin-6 (IL-6), soluble factors IL-6R, gp130, anti -GM1, -GM2, -GM3, -GD1a, -GD1b, -GT1b, -GQ1b antigangliosides antibodies of IgG and IgM type. RESULTS: Experimental data analysis showed: increase in synthesis rhythm of sialoglyco-conjugated in SLE (TSA increased in SLE and LN compared to control), accelerated catabolism of LSA in LN (LSA/TSA ratio was higher in SLE and LN than in control group), overexpression of IL-6 mediated trans-signaling (sIL-6R/sgp 130 ratio was subunit in SLE and IgA nephropathy and superunit in LN), large AGA profile synthesis of IgM isotype (over 45.1% in SLE and over 20.7% in LN). CONCLUSIONS: Hypersialization, accelerated glycosphingolipids degradation, IL-6 trans-signaling amplify and AGA pattern could represent essential mechanisms in LN pathogenesis.

14.
Cytokine ; 146: 155624, 2021 10.
Article in English | MEDLINE | ID: mdl-34166855

ABSTRACT

Interleukin 6 is the classical member of the IL-6 family of cytokines which triggers activation of the JAK/STAT signaling cascade in cells. IL-6 is a pleiotropic cytokine that acts on many cell types and plays a critical role in immune responses, inflammation, and haematopoiesis. Our understanding of the molecular mechanisms governing IL-6 signaling has been aided by numerous studies of this signal transduction pathway, including those utilising the M1 cell line. Here we discuss the studies that we and others have undertaken using the M1 line to examine IL-6 inducible genes, particularly those targets that acts as negative regulators of signaling. Finally, we present a model for the current understanding of the IL-6 signaling pathway at a structural and mechanistic level.


Subject(s)
Interleukin-6/metabolism , Macrophages/metabolism , Signal Transduction , Animals , Cell Line , Gene Expression Regulation , Humans , Models, Biological , Suppressor of Cytokine Signaling Proteins/metabolism
15.
Membranes (Basel) ; 11(5)2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33923292

ABSTRACT

Colorectal cancer (CRC) is the third most frequent cancer worldwide and the second greatest cause of cancer deaths. About 75% of all CRCs are sporadic cancers and arise following somatic mutations, while about 10% are hereditary cancers caused by germline mutations in specific genes. Several factors, such as growth factors, cytokines, and genetic or epigenetic alterations in specific oncogenes or tumor-suppressor genes, play a role during the adenoma-carcinoma sequence. Recent studies have reported an increase in interleukin-6 (IL-6) and soluble interleukin-6 receptor (sIL-6R) levels in the sera of patients affected by colon cancer that correlate with the tumor size, suggesting a potential role for IL-6 in colon cancer progression. IL-6 is a pleiotropic cytokine showing both pro- and anti-inflammatory roles. Two different types of IL-6 signaling are known. Classic IL-6 signaling involves the binding of IL-6 to its membrane receptor on the surfaces of target cells; alternatively, IL-6 binds to sIL-6R in a process called IL-6 trans-signaling. The activation of IL-6 trans-signaling by metalloproteinases has been described during colon cancer progression and metastasis, involving a shift from membrane-bound interleukin-6 receptor (IL-6R) expression on the tumor cell surface toward the release of soluble IL-6R. In this review, we aim to shed light on the role of IL-6 signaling pathway alterations in sporadic colorectal cancer and the development of familial polyposis syndrome. Furthermore, we evaluate the possible roles of IL-6 and IL-6R as biomarkers useful in disease follow-up and as potential targets for therapy, such as monoclonal antibodies against IL-6 or IL-6R, or a food-based approach against IL-6.

16.
Cell Biol Int ; 44(9): 1911-1918, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32441799

ABSTRACT

The application of tyrosine kinase inhibitors (TKIs) to the epidermal growth factor receptor (EGFR) has been proven to be highly effective for non-small-cell lung cancer (NSCLC). However, patients often evolve into acquired resistance. The secondary mutations in EGFR account for nearly half of the acquired resistance. While the remaining 50% of patients exhibit tolerance to EGFR-TKIs with unclear mechanism(s). Cylindromatosis (CYLD), a deubiquitinase, functions as a tumor suppressor to regulate cell apoptosis, proliferation, and immune response, and so on. The role of CYLD in NSCLC EGFR-TKI resistance remains elusive. Here, we found CYLD was upregulated in PC-9 cells, whereas downregulated in PC-9 acquired gefitinib-resistant (PC-9/GR) cells in response to the treatment of gefitinib, which is consistent with the results in the Gene Expression Omnibus database. Overexpression of CYLD promoted a more apoptotic death ratio in PC-9/GR cells than that in PC-9 cells. In addition, silencing the expression of CYLD resulted in an increase of the expression level of interleukin-6, transforming growth factor-ß and tumor necrosis factor-α, which may contribute to acquired resistance of PC-9 cells to gefitinib. Taken together, our data in vitro demonstrate that PC-9/GR cells downregulated CYLD expression, enhanced subsequent CYLD-dependent antiapoptotic capacity and inflammatory response, which may provide a possible target for acquired gefitinib-resistant treatment in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Deubiquitinating Enzyme CYLD/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Deubiquitinating Enzyme CYLD/metabolism , Drug Resistance, Neoplasm/genetics , ErbB Receptors/metabolism , Gefitinib/metabolism , Gefitinib/pharmacology , Genes, Tumor Suppressor/drug effects , Humans , Inflammation , Lung Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology
17.
Breast Cancer Res Treat ; 181(1): 31-41, 2020 May.
Article in English | MEDLINE | ID: mdl-32240456

ABSTRACT

PURPOSE: Persistent STAT3 signaling is frequently detected in many cancer types including triple-negative breast cancer, and thus could potentially serve as a viable therapeutic target. We have designed a novel non-peptide compound LLY17 targeting STAT3 using Advanced Multiple Ligand Simultaneous Docking (AMLSD) methods. However, the efficacy of LLY17 has not been evaluated extensively in human and murine triple-negative breast cancer cells. In this study, we tested LLY17 in multiple human and murine triple-negative breast cancer cell lines. METHODS: Human triple-negative breast cancer MDA-MB-468, MDA-MB-231, SUM159, and BT-549 cells, and murine triple-negative breast cancer 4T1 cells were used to study the inhibition effects of LLY17. The inhibition of STAT3 activation of LLY17 was investigated using western blot analysis. Cell viability, apoptosis and migration assays were carried out by MTT assay, Caspase-3/7 assay and wound healing assay, respectively. A mammary fat pad syngeneic mouse model was used to evaluate the antitumor effect of LLY17 in vivo. RESULTS: LLY17 inhibited IL-6-mediated induction of STAT3 phosphorylation but had no effect on IFN-γ-induced STAT1 phosphorylation or EGF-induced ERK phosphorylation. LLY17 inhibited STAT3 phosphorylation and induced apoptosis in human and murine triple-negative breast cancer cells but exhibited minimal toxicity toward Luminal A subtype breast cancer MCF-7 cells. RNAi attenuation experiments supported the requirement of STAT3 for LLY17-mediated inhibition of cell viability in triple-negative breast cancer cells. In addition, LLY17 inhibited cell migration of human and murine triple-negative breast cancer cells. Furthermore, LLY17 suppressed tumor growth and STAT3 phosphorylation of triple-negative breast cancer cells in a mammary fat pad syngeneic mouse model in vivo. CONCLUSIONS: Together, our findings suggest that targeting persistent STAT3 signaling by novel small molecule LLY17 may be a potential approach for the therapy of triple-negative breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , STAT3 Transcription Factor/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Phosphorylation/drug effects , STAT3 Transcription Factor/chemistry , STAT3 Transcription Factor/metabolism , Small Molecule Libraries/chemistry , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
18.
BMC Med Genomics ; 13(1): 22, 2020 02 10.
Article in English | MEDLINE | ID: mdl-32041604

ABSTRACT

BACKGROUND: The survival of INA-6 human multiple myeloma cells is strictly dependent upon the Interleukin-6-activated transcription factor STAT3. Although transcriptional analyses have revealed many genes regulated by STAT3, to date no protein-coding STAT3 target gene is known to mediate survival in INA-6 cells. Therefore, the aim here was to identify and analyze non-protein-coding STAT3 target genes. In addition to the oncogenic microRNA-21, we previously described five long noncoding RNAs (lncRNAs) induced by STAT3, named STAiRs. Here, we focus on STAT3-induced RNA 18 (STAiR18), an mRNA-like, long ncRNA that is duplicated in the human lineage. One STAiR18 locus is annotated as the already well described LINC00152/CYTOR, however, the other harbors the MIR4435-2HG gene and is, up to now, barely described. METHODS: CAPTURE-RNA-sequencing was used to analyze STAiR18 transcript architecture. To identify the STAiR18 and STAT3 phenotype, siRNA-based knockdowns were performed and microarrays were applied to identify their target genes. RNA-binding partners of STAiR18 were determined by Chromatin-Isolation-by-RNA-Purification (ChIRP) and subsequent sequencing. STAT3 expression in dependence of STAiR18 was investigated by immunoblots, chromatin- and RNA-immunoprecipitations. RESULTS: As identified by CAPTURE-RNA sequencing, a complex splice pattern originates from both STAiR18 loci, generating different transcripts. Knockdown of the most abundant STAiR18 isoforms dramatically decreased INA-6 cell vitality, suggesting a functional role in myeloma cells. Additionally, STAiR18 and STAT3 knockdowns yielded overlapping changes of transcription patterns in INA-6 cells, suggesting a close functional interplay between the two factors. Moreover, Chromatin isolation by RNA purification (ChIRP), followed by genome-wide RNA sequencing showed that STAiR18 associates specifically with the STAT3 primary transcript. Furthermore, the knockdown of STAiR18 reduced STAT3 levels on both the RNA and protein levels, suggesting a positive feedback between both molecules. Furthermore, STAiR18 knockdown changes the histone methylation status of the STAT3 locus, which explains the positive feedback and indicates that STAiR18 is an epigenetic modulator. CONCLUSION: Hence, STAiR18 is an important regulator of myeloma cell survival and is strongly associated with the oncogenic function of STAT3. The close functional interplay between STAT3 and STAiR18 suggests a novel principle of regulatory interactions between long ncRNAs and signaling pathways.


Subject(s)
Feedback, Physiological , Multiple Myeloma , Neoplasm Proteins , RNA, Long Noncoding , RNA, Neoplasm , STAT3 Transcription Factor , Signal Transduction/genetics , Cell Line, Tumor , Humans , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
19.
Front Pharmacol ; 11: 615972, 2020.
Article in English | MEDLINE | ID: mdl-33384605

ABSTRACT

Background: Interleukin-6 (IL-6) is known to be detrimental in coronavirus disease 2019 (COVID-19) because of its involvement in driving cytokine storm. This systematic review and meta-analysis aimed to assess the safety and efficacy of anti-IL-6 signaling (anti-IL6/IL-6R/JAK) agents on COVID-19 based on the current evidence. Methods: Studies were identified through systematic searches of PubMed, EMBASE, ISI Web of Science, Cochrane library, ongoing clinical trial registries (clinicaltrials.gov), and preprint servers (medRxiv, ChinaXiv) on August 10, 2020, as well as eligibility checks according to predefined selection criteria. Statistical analysis was performed using Review Manager (version 5.3) and STATA 12.0. Results: Thirty-one studies were included in the pooled analysis of mortality, and 12 studies were identified for the analysis of risk of secondary infections. For mortality analysis, 5630 COVID-19 cases including 2,132 treated patients and 3,498 controls were analyzed. Anti-IL-6 signaling agents plus standard of care (SOC) significantly decreased the mortality rate compared to SOC alone (pooled OR = 0.61, 95% CI 0.45-0.84, p = 0.002). For the analysis of secondary infection risk, 1,624 patients with COVID-19 including 639 treated patients and 985 controls were included, showing that anti-IL-6 signaling agents did not increase the rate of secondary infections (pooled OR = 1.21, 95% CI 0.70-2.08, p = 0.50). By contrast, for patients with critical COVID-19 disease, anti-IL-6 signaling agents failed to reduce mortality compared to SOC alone (pooled OR = 0.75, 95% CI 0.42-1.33, p = 0.33), but they tended to increase the risk of secondary infections (pooled OR = 1.85, 95% CI 0.95-3.61, p = 0.07). A blockade of IL-6 signaling failed to reduce the mechanical ventilation rate, ICU admission rate, or elevate the clinical improvement rate. Conclusion: IL-6 signaling inhibitors reduced the mortality rate without increasing secondary infections in patients with COVID-19 based on current studies. For patients with critical disease, IL-6 signaling inhibitors did not exhibit any benefit.

20.
Immunol Lett ; 218: 5-10, 2020 02.
Article in English | MEDLINE | ID: mdl-31863784

ABSTRACT

Interleukin (IL)-33 is an alarmin factor that is highly secreted in a variety of autoimmune diseases, induces maturation of dendritic cells (DCs) and differentiation of T helper 17 (Th17) cells. As the balance between Th17 cells and regulatory T cells (Tregs) is important to maintain immune homeostasis, in this study, we investigated the effects of IL-33 on Treg cell response. We observed that direct treatment with IL-33 had no effect on Treg differentiation, whereas IL-33-matured DCs (IL33-matDCs) inhibited the differentiation of CD4+ T cells to Tregs by decreasing the expression of Foxp3. Furthermore, co-culture with IL-33-matDCs changed stable Tregs (CD25hiCD4+ Tregs) to IL-17-producing cells, whereas IL-33-matDCs had little effects on unstable Tregs (CD25loCD4+ Tregs). The stable Tregs were demonstrated to express high levels of IL-6 receptors. Blocking of IL-6 secreted from IL-33-matDCs suppressed the conversion of Tregs to Th17 cells, indicating the greater propensity to convert stable Tregs to Th17 cells is due to IL-6 signaling. Taken together, these results demonstrate that IL-33 inhibits Treg differentiation and the conversion of stable Tregs to Th17 cells via DCs.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/metabolism , Interleukin-33/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Animals , Biomarkers , Cell Communication , Cell Differentiation/immunology , Cell Plasticity/immunology , Coculture Techniques , Female , Immunophenotyping , Interleukin-2 Receptor alpha Subunit/metabolism , Lymphocyte Activation/immunology , Mice , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...