Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.321
Filter
1.
Front Ophthalmol (Lausanne) ; 4: 1415002, 2024.
Article in English | MEDLINE | ID: mdl-38984107

ABSTRACT

The aim of the present study is to investigate the role of c-Jun N-terminal kinase (JNK) and matrix metalloproteinase-2 (MMP-2) in mediating the effects of interleukin-1ß (IL-1ß) on the function of lacrimal gland myoepithelial cells (MECs). MECs isolated from an α-smooth muscle actin-green fluorescent protein (SMA-GFP) transgenic mouse were treated with IL-1ß alone or in the presence of SP600125, a JNK inhibitor, or ARP100, an MMP-2 inhibitor. The GFP intensity and the cell size/area were measured, and on day 7, the SMA, calponin, and pro-MMP-2 protein levels and the MEC contraction were assessed. At baseline, the control and treated cells showed no differences in GFP intensity or cell size. Starting on day 2 and continuing on days 4 and 7, the GFP intensity and cell size were significantly lower in the IL-1ß-treated samples, and these effects were alleviated following inhibition of either JNK or MMP-2. Compared with the control, the levels of SMA and calponin were lower in the IL-1ß-treated samples, and both the JNK and MMP-2 inhibitors reversed this trend. The pro-MMP-2 protein level was elevated in the IL-1ß-treated samples, and this effect was abolished by the JNK inhibitor. Finally, oxytocin-induced MEC contraction was diminished in the IL-1ß-treated samples, and both the JNK and MMP-2 inhibitors reversed this effect. Our data suggest that IL-1ß uses the JNK/MMP-2 pathways to alter MEC functions, which might account for the diminished tears associated with aqueous-deficient dry eye disease.

2.
Immune Netw ; 24(3): e21, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974214

ABSTRACT

IL-1, a pleiotropic cytokine with profound effects on various cell types, particularly immune cells, plays a pivotal role in immune responses. The proinflammatory nature of IL-1 necessitates stringent control mechanisms of IL-1-mediated signaling at multiple levels, encompassing transcriptional and translational regulation, precursor processing, as well as the involvement of a receptor accessory protein, a decoy receptor, and a receptor antagonist. In T-cell immunity, IL-1 signaling is crucial during both the priming and effector phases of immune reactions. The fine-tuning of IL-1 signaling hinges upon two distinct receptor types; the functional IL-1 receptor (IL-1R) 1 and the decoy IL-1R2, accompanied by ancillary molecules such as the IL-1R accessory protein (IL-1R3) and IL-1R antagonist. IL-1R1 signaling by IL-1ß is critical for the differentiation, expansion, and survival of Th17 cells, essential for defense against extracellular bacteria or fungi, yet implicated in autoimmune disease pathogenesis. Recent investigations emphasize the physiological importance of IL-1R2 expression, particularly in its capacity to modulate IL-1-dependent responses within Tregs. The precise regulation of IL-1R signaling is indispensable for orchestrating appropriate immune responses, as unchecked IL-1 signaling has been implicated in inflammatory disorders, including Th17-mediated autoimmunity. This review provides a thorough exploration of the IL-1R signaling complex and its pivotal roles in immune regulation. Additionally, it highlights recent advancements elucidating the mechanisms governing the expression of IL-1R1 and IL-1R2, underscoring their contributions to fine-tuning IL-1 signaling. Finally, the review briefly touches upon therapeutic strategies targeting IL-1R signaling, with potential clinical applications.

3.
Mol Divers ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970641

ABSTRACT

Interleukin-1 receptor-associated kinase 4 (IRAK4) is a crucial serine/threonine protein kinase that belongs to the IRAK family and plays a pivotal role in Toll-like receptor (TLR) and Interleukin-1 receptor (IL-1R) signaling pathways. Due to IRAK4's significant role in immunity, inflammation, and malignancies, it has become an intriguing target for discovering and developing potent small-molecule inhibitors. Consequently, there is a pressing need for rapid and accurate prediction of IRAK4 inhibitor activity. Leveraging a comprehensive dataset encompassing activity data for 1628 IRAK4 inhibitors, we constructed a prediction model using the LightGBM algorithm and molecular fingerprints. This model achieved an R2 of 0.829, an MAE of 0.317, and an RMSE of 0.460 in independent testing. To further validate the model's generalization ability, we tested it on 90 IRAK4 inhibitors collected in 2023. Subsequently, we applied the model to predict the activity of 13,268 compounds with docking scores less than - 9.503 kcal/mol. These compounds were initially screened from a pool of 1.6 million molecules in the chemdiv database through high-throughput molecular docking. Among these, 259 compounds with predicted pIC50 values greater than or equal to 8.00 were identified. We then performed ADMET predictions on these selected compounds. Finally, through a rigorous screening process, we identified 34 compounds that adhere to the four complementary drug-likeness rules, making them promising candidates for further investigation. Additionally, molecular dynamics simulations confirmed the stable binding of the screened compounds to the IRAK4 protein. Overall, this work presents a machine learning model for accurate prediction of IRAK4 inhibitor activity and offers new insights for subsequent structure-guided design of novel IRAK4 inhibitors.

4.
Cureus ; 16(6): e62245, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39006711

ABSTRACT

Yao syndrome, a rare autoinflammatory disorder linked to mutations in the nucleotide-binding oligomerization domain-containing protein-2 (NOD2) gene, manifests through periodic fever, polyarthritis, dermatitis, gastrointestinal disturbances, and sicca-like symptoms. The therapeutic landscape is limited, primarily encompassing glucocorticoids, interleukin-1 (IL-1), and IL-6 inhibitors. This report details the case of a teenager with periodic fevers, arthritis, livedo reticularis, and NOD2 gene mutations R702W and IVS8+158C consistent with Yao syndrome. The individual demonstrated significant improvement with canakinumab therapy. This case report aims to enhance recognition and understanding of Yao syndrome's clinical spectrum and management options.

5.
Article in English | MEDLINE | ID: mdl-38989581

ABSTRACT

BACKGROUND: In early atherosclerosis, circulating LDLs (low-density lipoproteins) traverse individual endothelial cells by an active process termed transcytosis. The CANTOS trial treated advanced atherosclerosis using a blocking antibody for IL-1ß (interleukin-1ß); this significantly reduced cardiovascular events. However, whether IL-1ß regulates early disease, particularly LDL transcytosis, remains unknown. METHODS: We used total internal reflection fluorescence microscopy to quantify transcytosis by human coronary artery endothelial cells exposed to IL-1ß. To investigate transcytosis in vivo, we injected wild-type and knockout mice with IL-1ß and LDL to visualize acute LDL deposition in the aortic arch. RESULTS: Exposure to picomolar concentrations of IL-1ß induced transcytosis of LDL but not of albumin by human coronary artery endothelial cells. Surprisingly, expression of the 2 known receptors for LDL transcytosis, ALK-1 (activin receptor-like kinase-1) and SR-BI (scavenger receptor BI), was unchanged or decreased. Instead, IL-1ß increased the expression of the LDLR (LDL receptor); this was unexpected because LDLR is not required for LDL transcytosis. Overexpression of LDLR had no effect on basal LDL transcytosis. However, knockdown of LDLR abrogated the effect of IL-1ß on transcytosis rates while the depletion of Cav-1 (caveolin-1) did not. Since LDLR was necessary but overexpression had no effect, we reasoned that another player must be involved. Using public RNAseq data to curate a list of Rab GTPases affected by IL-1ß, we identified Rab27a. Overexpression of Rab27a alone had no effect on basal transcytosis, but its knockdown prevented induction by IL-1ß. This was phenocopied by depletion of the Rab27a effector JFC1. In vivo, IL-1ß increased LDL transcytosis in the aortic arch of wild-type but not Ldlr-/- or Rab27a-deficient mice. The JFC1 inhibitor nexinhib20 also blocked IL-1ß-induced LDL accumulation in the aorta. CONCLUSIONS: IL-1ß induces LDL transcytosis by a distinct pathway requiring LDLR and Rab27a; this route differs from basal transcytosis. We speculate that induction of transcytosis by IL-1ß may contribute to the acceleration of early disease.

6.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000195

ABSTRACT

Ovarian cancer (OC) poses a significant global health challenge with high mortality rates, emphasizing the need for improved treatment strategies. The immune system's role in OC progression and treatment response is increasingly recognized, particularly regarding peripheral blood mononuclear cells (PBMCs) and cytokine production. This study aimed to investigate PBMC subpopulations (T and B lymphocytes, natural killer cells, monocytes) and cytokine production, specifically interleukin-1 beta (IL-1ß), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-10 (IL-10), interleukin-12 (IL-12), and tumor necrosis factor alpha (TNFα), in monocytes of OC patients both preoperatively and during the early postoperative period. Thirteen OC patients and 23 controls were enrolled. Preoperatively, OC patients exhibited changes in PBMC subpopulations, including decreased cytotoxic T cells, increased M2 monocytes, and the disbalance of monocyte cytokine production. These alterations persisted after surgery with subtle additional changes observed in PBMC subpopulations and cytokine expression in monocytes. Considering the pivotal role of these altered cells and cytokines in OC progression, our findings suggest that OC patients experience an enhanced pro-tumorigenic environment, which persists into the early postoperative period. These findings highlight the impact of surgery on the complex interaction between the immune system and OC progression. Further investigation is needed to clarify the underlying mechanisms during this early postoperative period, which may hold potential for interventions aimed at improving OC management.


Subject(s)
Cytokines , Leukocytes, Mononuclear , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/surgery , Ovarian Neoplasms/pathology , Middle Aged , Cytokines/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Postoperative Period , Preoperative Period , Monocytes/immunology , Monocytes/metabolism , Aged , Adult , Case-Control Studies
7.
Gene ; : 148768, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39013482

ABSTRACT

Although antiviral drugs can effectively inhibit hepatitis B virus (HBV) replication, the maintenance of chronic inflammation in the liver is still considered to be an important cause for the progression of HBV-related liver disease to liver fibrosis and advanced liver disease. As an endogenous inhibitory receptor of IL-1R and TLR signaling pathways, single immunoglobulin interleukin-1-related receptor (SIGIRR) has been proven to reduce inflammation in tissues to maintain system homeostasis. However, the relationship between SIGIRR expression and HBV replication and inflammatory pathway activation in hepatocytes remains unclear. In this study, hepatitis B virus X protein (HBx) upregulated MyD88 in liver cells, promoting NF-κB signaling and inflammatory factor production with LPS treatment, and the cell supernatant accelerated the activation and collagen secretion of hepatic stellate cells. However, SIGIRR overexpression suppressed HBx-mediated MyD88/NF-κB inflammatory signaling activation and inflammatory cytokine production induced by LPS in hepatocytes and HBV replication hepatocytes. Although we did not find any effect of SIGIRR on HBV replication in vitro, this study investigated the role of SIGIRR in blocking the proinflammatory function of HBx, which may provide a new idea for the treatment of chronic hepatitis B.

8.
J Headache Pain ; 25(1): 113, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39009958

ABSTRACT

BACKGROUND: Neurogenic meningeal inflammation is regarded as a key driver of migraine headache. Multiple evidence show importance of inflammatory processes in the dura mater for pain generation but contribution of the leptomeninges is less clear. We assessed effects of cortical spreading depolarization (CSD), the pathophysiological mechanism of migraine aura, on expression of inflammatory mediators in the leptomeninges. METHODS: A single CSD event was produced by a focal unilateral microdamage of the cortex in freely behaving rats. Three hours later intact cortical leptomeninges and parenchyma of ipsi-lesional (invaded by CSD) and sham-treated contra-lesional (unaffected by CSD) hemispheres were collected and mRNA levels of genes associated with inflammation (Il1b, Tnf, Ccl2; Cx3cl1, Zc3h12a) and endocannabinoid CB2 receptors (Cnr2) were measured using qPCR. RESULTS: Three hours after a single unilateral CSD, most inflammatory factors changed their expression levels in the leptomeninges, mainly on the side of CSD. The meninges overlying affected cortex increased mRNA expression of all proinflammatory cytokines (Il1b, Tnf, Ccl2) and anti-inflammatory factors Zc3h12a and Cx3cl1. Upregulation of proinflammatory cytokines was found in both meninges and parenchyma while anti-inflammatory markers increased only meningeal expression. CONCLUSION: A single CSD is sufficient to produce pronounced leptomeningeal inflammation that lasts for at least three hours and involves mostly meninges overlying the cortex affected by CSD. The prolonged post-CSD inflammation of the leptomeninges can contribute to mechanisms of headache generation following aura phase of migraine attack.


Subject(s)
Cortical Spreading Depression , Meninges , Animals , Cortical Spreading Depression/physiology , Rats , Male , Meninges/physiopathology , Inflammation/physiopathology , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Disease Models, Animal , Rats, Wistar , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/genetics
9.
J Clin Med ; 13(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38929904

ABSTRACT

Background: The accruing evidence about the efficacy of anti-IL-1 agents in Familial Mediterranean Fever (FMF) patients led to their widespread off-label use. Therefore, identifying precise indications and clinical characteristics of IL-1i-warranting patients are important. This study investigated the clinical characteristics and treatment indications of patients with FMF requiring interleukin 1 inhibition therapy (IL-1i). Methods: Hospital records of FMF patients attending a tertiary care center at the Department of Rheumatology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital were retrospectively analyzed. Data on symptoms and disease manifestations, age of symptom onset, time to diagnosis, MEFV variants, type of treatment, and their indications were collected. Results: Between June 2020 and March 2023, 312 FMF patients were identified. The mean age at the onset of symptoms was 14.0, and the mean time to diagnosis was 11.9 years. In total, 87.1% of patients were receiving colchicine monotherapy, while the remaining 11.8% warranted IL-1i. Clinical symptoms and flare manifestations did not show a significant difference between the two groups. However, patients receiving IL-1i started having symptoms at younger age (11.5 vs. 14.5, p = 0.042) and time to diagnosis was longer (18.2 vs. 11.0, p < 0.01). M694V homozygosity was more common in patients receiving IL-1i. Indications for patients receiving IL-1i were colchicine resistance (8.0%), secondary amyloidosis (5.1%), and colchicine intolerance (2.2%). Conclusions: This study shows that a subset of FMF patients, particularly those with a more severe phenotype with an earlier disease onset and M694V homozygosity, require IL-1i treatment despite the overall good efficacy and tolerability of colchicine, primarily due to colchicine resistance, intolerance, or complications such as amyloidosis.

10.
Nutrients ; 16(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38931177

ABSTRACT

CONTEXT/OBJECTIVE: In order to better understand which metabolic differences are related to insulin resistance in metabolic syndrome (MetSyn), we used hyperinsulinemic-euglycemic (HE) clamps in individuals with MetSyn and related peripheral insulin resistance to circulating biomarkers. DESIGN/METHODS: In this cross-sectional study, HE-clamps were performed in treatment-naive men (n = 97) with MetSyn. Subjects were defined as insulin-resistant based on the rate of disappearance (Rd). Machine learning models and conventional statistics were used to identify biomarkers of insulin resistance. Findings were replicated in a cohort with n = 282 obese men and women with (n = 156) and without (n = 126) MetSyn. In addition to this, the relation between biomarkers and adipose tissue was assessed by nuclear magnetic resonance imaging. RESULTS: Peripheral insulin resistance is marked by changes in proteins related to inflammatory processes such as IL-1 and TNF-receptor and superfamily members. These proteins can distinguish between insulin-resistant and insulin-sensitive individuals (AUC = 0.72 ± 0.10) with MetSyn. These proteins were also associated with IFG, liver fat (rho 0.36, p = 1.79 × 10-9) and visceral adipose tissue (rho = 0.35, p = 6.80 × 10-9). Interestingly, these proteins had the strongest association in the MetSyn subgroup compared to individuals without MetSyn. CONCLUSIONS: MetSyn associated with insulin resistance is characterized by protein changes related to body fat content, insulin signaling and pro-inflammatory processes. These findings provide novel targets for intervention studies and should be the focus of future in vitro and in vivo studies.


Subject(s)
Biomarkers , Insulin Resistance , Metabolic Syndrome , Proteome , Humans , Metabolic Syndrome/metabolism , Male , Female , Cross-Sectional Studies , Middle Aged , Adult , Biomarkers/blood , Glucose Clamp Technique , Obesity/metabolism , Adipose Tissue/metabolism , Insulin/blood , Insulin/metabolism , Intra-Abdominal Fat/metabolism
11.
Biomolecules ; 14(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38927050

ABSTRACT

Schnitzler syndrome is a rare disorder characterized by a chronic urticarial rash associated with immunoglobulin M (IgM) monoclonal gammopathy. Schnitzler syndrome shares strong clinicopathologic similarities with monogenic IL-1-mediated autoinflammatory disorders and is now considered an acquired adult-onset autoinflammatory disease. The spectacular effect of interleukin-1 inhibitors demonstrates the key role of this cytokine in the pathogenesis of the disease. However, the physiopathology of Schnitzler syndrome remains elusive, and the main question regarding the relationship between autoinflammatory features and monoclonal gammopathy is still unanswered. The purpose of this narrative review is to describe what is currently known about the pathogenesis of this peculiar disease, as well as to address its diagnosis and management.


Subject(s)
Schnitzler Syndrome , Schnitzler Syndrome/drug therapy , Schnitzler Syndrome/diagnosis , Humans , Immunoglobulin M/immunology , Interleukin-1/antagonists & inhibitors , Interleukin-1/metabolism
12.
Biomedicines ; 12(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38927423

ABSTRACT

PURPOSE: We assessed the prognostic role of pro-inflammatory cytokines of the IL-1 superfamily in patients with pancreatic cancer. METHODS: This retrospective study was performed using two independent cohorts of patients with pancreatic cancer: the International Cancer Genome Consortium (ICGC, N = 267) cohort and The Cancer Genome Atlas (TCGA, N = 178) cohort. Univariate Cox regressions were used to identify prognosis-related pro-inflammatory cytokines of the IL-1 superfamily. Cytokines associated with outcome were included in a multivariate Cox model with relevant clinicopathological variables to identify prognostic biomarkers. RESULTS: IL-1α was the only pro-inflammatory cytokine of the IL-1 superfamily that was significantly associated with prognosis in both cohorts. In the training cohort (ICGC), the decile of patients with the lowest IL1A expression had better overall survival (HR = 1.99 [1.01-3.93], p = 0.05) and better relapse-free survival (HR = 1.85 [1.02-3.34], p = 0.04) than the group with the highest IL1A expression. The validation cohort (TCGA) confirmed these results: the decile with the lowest IL1A expression had better overall survival (HR = 3.00 [1.14-7.90], p = 0.03) and a lower risk of progression (HR = 3.11 [1.24-7.80], p = 0.01). CONCLUSIONS: IL1A is an independent prognostic marker and could be considered a potential therapeutic target in pancreatic cancer patients.

13.
Article in English | MEDLINE | ID: mdl-38916186

ABSTRACT

Significance: Fidelity of intercellular communication depends on unambiguous interactions between protein ligands and membrane receptors. Most proteins destined to the extracellular space adopt the required three-dimensional shape as they travel through the endoplasmic reticulum (ER), Golgi complex, and other organelles of the exocytic pathway. However, some proteins, many of which are involved in inflammation, avoid this classical secretory route and follow unconventional pathways to leave the cell. Recent Advances: Stringent quality control systems operate in the ER and cis-Golgi, restricting transport to native conformers, devoid of non-native disulfides and/or reactive thiols. However, some proteins released by living cells require reduced cysteines to exert their extracellular function(s). Remarkably, these proteins lack the secretory signal sequence normally required by secretory proteins for translocation into the ER lumen. Critical Issues: Why do interleukin-1ß, high mobility group box 1, and other proinflammatory proteins avoid the ER-Golgi route to reach the intercellular space? These proteins require reactive cysteines for exerting their function. Therefore, eluding thiol-mediated quality control along the exocytic pathway is likely one of the main reasons why extracellular proteins that need to be reduced utilize unconventional pathways of secretion, where a quality control aimed at oxidating native cysteines is not present. Future Directions: Particularly under stress conditions, cells release redox-active enzymes and nonprotein thiol compounds that exert an extracellular control of redox-sensitive protein activity, shaping inflammatory responses. This post-secretion, redox-dependent editing of protein messages is still largely undefined. Understanding the underlying mechanistic events will hopefully provide new tools to control inflammation.

14.
Cureus ; 16(5): e60946, 2024 May.
Article in English | MEDLINE | ID: mdl-38910713

ABSTRACT

SARS-CoV-2 (COVID-19) has been associated with numerous complications, including autoimmune and autoinflammatory diseases. The surge of cytokines following COVID-19 infection or vaccination has been proposed to contribute to immune dysregulation, which might subsequently give rise to an autoinflammatory syndrome. Adult-onset Still's disease (AOSD) is one of the rare autoinflammatory diseases characterized by a surge of cytokines. Although an association between COVID-19 vaccines and AOSD has been reported, an association with COVID-19 infection or nirmatrelvir/ritonavir remains very rare. In this case, we present a patient who developed AOSD after COVID-19 infection and subsequent treatment with nirmatrelvir/ritonavir. After the initial response to glucocorticoids, canakinumab was initiated, resulting in positive clinical outcomes.

15.
J Adv Pharm Technol Res ; 15(2): 63-69, 2024.
Article in English | MEDLINE | ID: mdl-38903552

ABSTRACT

Globally, an estimated 50 million people are affected by epilepsy, a persistent, noncommunicable neurological ailment. Quercetin (QR) is a prevalent flavonoid substance extensively dispersed throughout agricultural life. In a pilocarpine (PILO)-induced epilepsy model in mice, this investigation aimed to determine whether QR has an antiepileptic effect and explore its putative mechanism of action. Fifty mice were allocated into seven groups, with six in every group. The first group received physiological saline, the second group was given diazepam (1 mg/kg), and four groups were administered QR at 50, 100, 150, and 200 mg/kg, respectively. The seventh group (the induction group) received normal saline. After 30 min, all groups were injected intraperitoneally with PILO. The impact of QR on motor coordination was assessed using the rotarod test, while measures such as latency to first seizure, generalized tonic-clonic seizures (GTCS), number of convulsions, and mortality were recorded. Serum samples were collected through the retro-orbital route to measure prostaglandin E2 (PGE2) and interleukin 1 beta (IL-1ß) levels. QR showed no significant difference in motor impairment, but increased duration until the initial seizure occurred and declined the mortality rate, duration of GTCS, and incidence of convulsions. All doses of QR significantly reduced PGE2 levels (P ≤ 0.05). However, QR's effect on IL-1ß reduction was statistically insignificant (P > 0.05). QR's capacity to inhibit PILO-induced epilepsy by decreasing IL-1 and PGE2 levels is supported by this study. The results of this work indicate that QR could have a function to treat acute epilepsy.

16.
Immunol Res ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698191

ABSTRACT

The pathological manifestation of the inflammatory process primarily stems from the heightened release of pro-inflammatory cytokines, with IL-1ß standing out as a pivotal cytokine. The excessive presence of IL-1ß disrupts immune signaling, thereby assuming a pathogenic and exacerbating role in the pathophysiology of numerous inflammatory diseases. Regulating IL-1ß levels becomes crucial, and the IL-1Ra molecule serves this purpose by binding to the IL-1R1 receptor, thereby impeding the binding of IL-1ß. Several pharmaceuticals have entered the market, aiming to neutralize IL-1ß's biological function through diverse mechanisms. However, the existing IL-1ß inhibitors are recombinant proteins, characterized by a high production cost and limited stability. Therefore, this study aimed to predict a peptide, named DAP1-2, based on the IL-1Ra molecule. DAP1-2 was designed to attenuate responses triggered by IL-1ß by blocking the IL-1R1 receptor. The selection of amino acids from the IL-1Ra molecule (PDB: I1RA) that interact with the three domains of the IL-1R1 receptor was performed using Swiss PDB Viewer. After prediction, chemical synthesis was made using the Fmoc-Synthesis technique. The efficacy of DAP1-2 was assessed using RAW 264.7 cells, which were exposed to LPS (5 µg/mL) for 24 h to induce IL-1ß expression and treated with the peptides in different concentrations. IL-1ß levels were assessed using ELISA, and the gene expression of IL-1ß was measured by RT-qPCR, additionally to the viability test. Results revealed a significant reduction in IL-1ß levels and gene expression in cells stimulated by LPS and treated with DAP1-2 in different concentrations. Furthermore, the MTT assay confirmed the nontoxic nature of the peptides on the cell lineage. This alternative approach shows promise as an IL-1 inhibitor, due to the stability, ease of production, and cost-effectiveness provided by the use of synthetic peptides.

17.
J Bone Oncol ; 46: 100608, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38800348

ABSTRACT

Interleukin-1B (IL-1B) is a potent pro-inflammatory cytokine that plays multiple, pivotal roles, in the complex interplay between breast cancer cells and the bone microenvironment. IL-1B is involved in the growth of the primary tumours, regulation of inflammation within the tumour microenvironment, promotion of epithelial to mesenchymal transition (EMT), migration and invasion. Moreover, when breast cancer cells arrive in the bone microenvironment there is an upregulation of IL-1B which promotes the creation of a conducive niche for metastatic breast cancer cells as well as stimulating initiation of the vicious cycle of bone metastasis. Pre-clinical studies have demonstrated that inhibition of IL-1 signalling reduces bone metastasis from oestrogen receptor positive/triple-negative breast cancers in various mouse models. However, effects on primary tumours and soft tissue metastasis remain controversial with some studies showing increased tumour growth in these sites, whilst others show no effects. Notably, combining anti-IL-1 therapy with standard-of-care treatments, such as chemotherapy and immunotherapy, has been demonstrated to reduce the growth of primary tumours, bone metastasis, as well as metastatic outgrowth in other organs. This review focuses on the mechanisms by which IL-1B promotes breast cancer bone metastasis.

18.
Biomolecules ; 14(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38785989

ABSTRACT

Endometriosis is a gynecological disorder associated with local inflammation and neuroproliferation. Increased nerve bundle density has been attributed to increased expression of nerve growth factor (NGF) and interleukin-1ß (IL-1ß). Immunohistochemical analysis was carried out on 12 patients presenting with all three anatomic subtypes of endometriosis (deep, superficial peritoneal, endometrioma) at surgery, with at least two surgically excised subtypes available for analysis. Immunolocalization for nerve bundle density around endometriosis using protein gene product 9.5 (PGP9.5), as well as NGF and IL-1ß histoscores in endometriosis epithelium/stroma, was performed to evaluate differences in scores between lesions and anatomic subtypes per patient. Intra-individual heterogeneity in scores across lesions was assessed using the coefficient of variation (CV). The degree of score variability between subtypes was evaluated using the percentage difference between mean scores from one subtype to another subtype for each marker. PGP9.5 nerve bundle density was heterogenous across multiple subtypes of endometriosis, ranging from 50.0% to 173.2%, where most patients (8/12) showed CV ≥ 100%. The percentage difference in scores showed that PGP9.5 nerve bundle density and NGF and IL-1ß expression were heterogenous between anatomic subtypes within the same patient. Based on these observations of intra-individual heterogeneity, we conclude that markers of neuroproliferation in endometriosis should be stratified by anatomic subtype in future studies of clinical correlation.


Subject(s)
Endometriosis , Interleukin-1beta , Nerve Growth Factor , Humans , Female , Endometriosis/metabolism , Endometriosis/pathology , Interleukin-1beta/metabolism , Nerve Growth Factor/metabolism , Adult , Ubiquitin Thiolesterase/metabolism , Middle Aged
19.
Eur Radiol ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795131

ABSTRACT

OBJECTIVE: In nonalcoholic fatty liver disease (NAFLD), liver fibrosis is the strongest predictor of adverse outcomes. We sought to investigate the relationship between liver fibrosis and cardiac remodeling in participants from the general population using magnetic resonance imaging (MRI), as well as explore potential mechanistic pathways by analyzing circulating cardiovascular biomarkers. METHODS: In this cross-sectional study, we prospectively included participants with type 2 diabetes and individually matched controls from the SCAPIS (Swedish CArdioPulmonary bioImage Study) cohort in Linköping, Sweden. Between November 2017 and July 2018, participants underwent MRI at 1.5 Tesla for quantification of liver proton density fat fraction (spectroscopy), liver fibrosis (stiffness from elastography), left ventricular (LV) structure and function, as well as myocardial native T1 mapping. We analyzed 278 circulating cardiovascular biomarkers using a Bayesian statistical approach. RESULTS: In total, 92 participants were enrolled (mean age 59.5 ± 4.6 years, 32 women). The mean liver stiffness was 2.1 ± 0.4 kPa. 53 participants displayed hepatic steatosis. LV concentricity increased across quartiles of liver stiffness. Neither liver fat nor liver stiffness displayed any relationships to myocardial tissue characteristics (native T1). In a regression analysis, liver stiffness was related to increased LV concentricity. This association was independent of diabetes and liver fat (Beta = 0.26, p = 0.0053), but was attenuated (Beta = 0.17, p = 0.077) when also adjusting for circulating levels of interleukin-1 receptor type 2. CONCLUSION: MRI reveals that liver fibrosis is associated to structural LV remodeling, in terms of increased concentricity, in participants from the general population. This relationship could involve the interleukin-1 signaling. CLINICAL RELEVANCE STATEMENT: Liver fibrosis may be considered a cardiovascular risk factor in patients without cirrhosis. Further research on the mechanisms that link liver fibrosis to left ventricular concentricity may reveal potential therapeutic targets in patients with non-alcoholic fatty liver disease (NAFLD). KEY POINTS: Previously, studies on liver fibrosis and cardiac remodeling have focused on advanced stages of liver fibrosis. Liver fibrosis is associated with left ventricular (LV) concentricity and may relate to interleukin-1 receptor type 2. Interleukin-1 signaling is a potential mechanistic interlink between early liver fibrosis and LV remodeling.

20.
Article in English | MEDLINE | ID: mdl-38798075

ABSTRACT

BACKGROUND: Several studies have demonstrated a relationship between genetic polymorphisms of interleukin-1 beta (IL-1ß) and cancer development; however, their influence on cancer prognosis is unknown. In the present study, we aimed to evaluate the impact of IL-1ß single nucleotide polymorphisms on the hematogenous dissemination and prognosis of hepatocellular carcinoma. METHODS: We conducted a retrospective cohort study including patients with hepatocellular carcinoma who underwent primary liver resection at our hospital between April 2015 and December 2018. The primary endpoints were overall and recurrence-free survival. Secondary endpoints were microscopic portal vein invasion and number of circulating tumor cells. RESULTS: A total of 148 patients were included, 32 with rs16944 A/A genotype. A/A genotype was associated with microscopic portal vein invasion and number of circulating tumor cells (p = .03 and .04). In multivariate analysis, A/A genotype, alpha-fetoprotein level, and number of circulating tumor cells were associated with microscopic portal vein invasion (p = .01, .01, and <.01). A/A genotype, Child-Pugh B, and intraoperative blood loss were independent predictive factors for overall survival (p = .02, <.01, and <.01). CONCLUSIONS: Our results indicate that the IL-1ß rs16944 A/A genotype is involved in number of circulating tumor cells, microscopic portal vein invasion, and prognosis in HCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...