Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
Mol Divers ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970641

ABSTRACT

Interleukin-1 receptor-associated kinase 4 (IRAK4) is a crucial serine/threonine protein kinase that belongs to the IRAK family and plays a pivotal role in Toll-like receptor (TLR) and Interleukin-1 receptor (IL-1R) signaling pathways. Due to IRAK4's significant role in immunity, inflammation, and malignancies, it has become an intriguing target for discovering and developing potent small-molecule inhibitors. Consequently, there is a pressing need for rapid and accurate prediction of IRAK4 inhibitor activity. Leveraging a comprehensive dataset encompassing activity data for 1628 IRAK4 inhibitors, we constructed a prediction model using the LightGBM algorithm and molecular fingerprints. This model achieved an R2 of 0.829, an MAE of 0.317, and an RMSE of 0.460 in independent testing. To further validate the model's generalization ability, we tested it on 90 IRAK4 inhibitors collected in 2023. Subsequently, we applied the model to predict the activity of 13,268 compounds with docking scores less than - 9.503 kcal/mol. These compounds were initially screened from a pool of 1.6 million molecules in the chemdiv database through high-throughput molecular docking. Among these, 259 compounds with predicted pIC50 values greater than or equal to 8.00 were identified. We then performed ADMET predictions on these selected compounds. Finally, through a rigorous screening process, we identified 34 compounds that adhere to the four complementary drug-likeness rules, making them promising candidates for further investigation. Additionally, molecular dynamics simulations confirmed the stable binding of the screened compounds to the IRAK4 protein. Overall, this work presents a machine learning model for accurate prediction of IRAK4 inhibitor activity and offers new insights for subsequent structure-guided design of novel IRAK4 inhibitors.

3.
Clin Immunol ; 265: 110268, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838930

ABSTRACT

PURPOSE: To report a case of a five-month-old Chinese infant who died of interleukin-1 receptor-associated kinase-4 (IRAK-4) deficiency presenting with rapid and progressive Pseudomonas aeruginosa sepsis. METHODS: The genetic etiology of IRAK-4 deficiency was confirmed through trio-whole exome sequencing and Sanger sequencing. Functional consequences were invested using an in vitro minigene splicing assay. RESULTS: Trio-whole exome sequencing of genomic DNA identified two novel compound heterozygous mutations, IRAK-4 (NM_016123.3): c.942-1G > A and c.644_651+ 6delTTGCAGCAGTAAGT in the proband, which originated from his symptom-free parents. These mutations were predicted to cause frameshifts and generate three truncated proteins without enzyme activity. CONCLUSIONS: Our findings expand the range of IRAK-4 mutations and provide functional support for the pathogenic effects of splice-site mutations. Additionally, this case highlights the importance of considering the underlying genetic defects of immunity when dealing with unusually overwhelming infections in previously healthy children and emphasizes the necessity for timely treatment with wide-spectrum antimicrobials.


Subject(s)
Interleukin-1 Receptor-Associated Kinases , Pseudomonas Infections , Pseudomonas aeruginosa , Sepsis , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/deficiency , Pseudomonas aeruginosa/genetics , Pseudomonas Infections/genetics , Male , Infant , Sepsis/genetics , Sepsis/microbiology , Primary Immunodeficiency Diseases/genetics , Loss of Function Mutation , Heterozygote , Exome Sequencing , Immunologic Deficiency Syndromes/genetics
6.
Circulation ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708635

ABSTRACT

BACKGROUND: Recent interest in understanding cardiomyocyte cell cycle has been driven by potential therapeutic applications in cardiomyopathy. However, despite recent advances, cardiomyocyte mitosis remains a poorly understood process. For example, it is unclear how sarcomeres are disassembled during mitosis to allow the abscission of daughter cardiomyocytes. METHODS: Here, we use a proteomics screen to identify adducin, an actin capping protein previously not studied in cardiomyocytes, as a regulator of sarcomere disassembly. We generated many adeno-associated viruses and cardiomyocyte-specific genetic gain-of-function models to examine the role of adducin in neonatal and adult cardiomyocytes in vitro and in vivo. RESULTS: We identify adducin as a regulator of sarcomere disassembly during mammalian cardiomyocyte mitosis. α/γ-adducins are selectively expressed in neonatal mitotic cardiomyocytes, and their levels decline precipitously thereafter. Cardiomyocyte-specific overexpression of various splice isoforms and phospho-isoforms of α-adducin in identified Thr445/Thr480 phosphorylation of a short isoform of α-adducin as a potent inducer of neonatal cardiomyocyte sarcomere disassembly. Concomitant overexpression of this α-adducin variant along with γ-adducin resulted in stabilization of the adducin complex and persistent sarcomere disassembly in adult mice, which is mediated by interaction with α-actinin. CONCLUSIONS: These results highlight an important mechanism for coordinating cytoskeletal morphological changes during cardiomyocyte mitosis.

7.
Leuk Lymphoma ; 65(8): 1055-1067, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38659230

ABSTRACT

Primary central nervous system lymphoma (PCNSL) is a rare and highly aggressive lymphoma entirely localized in the central nervous system or vitreoretinal space. PCNSL generally initially responds to methotrexate-containing chemotherapy regimens, but progressive or relapsing disease is common, and the prognosis is poor for relapsed or refractory (R/R) patients. PCNSL is often characterized by activation of nuclear factor kappa B (NF-κB) due to mutations in the B-cell receptor (BCR) or toll-like receptor (TLR) pathways, as well as immune evasion. Targeted treatments that inhibit key PCNSL mechanisms and pathways are being evaluated; inhibition of Bruton's tyrosine kinase (BTK) downstream of BCR activation has demonstrated promising results in treating R/R disease. This review will summarize the evidence and potential for targeted therapeutic agents to improve treatment outcomes in PCNSL. This includes immunotherapeutic and immunomodulatory approaches and inhibitors of the key pathways driving PCNSL, such as aberrant BCR and TLR signaling.


Subject(s)
Central Nervous System Neoplasms , Molecular Targeted Therapy , Humans , Central Nervous System Neoplasms/therapy , Central Nervous System Neoplasms/drug therapy , Central Nervous System Neoplasms/pathology , Central Nervous System Neoplasms/diagnosis , Molecular Targeted Therapy/methods , Signal Transduction/drug effects , Lymphoma/therapy , Lymphoma/drug therapy , Lymphoma/diagnosis , Lymphoma/pathology , Lymphoma/genetics , Lymphoma/etiology , Disease Management
8.
Curr Issues Mol Biol ; 46(4): 2946-2960, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38666914

ABSTRACT

Targeting the FLT3 receptor and the IL-1R associated kinase 4 as well as the anti-apoptotic proteins MCL1 and BCL2 may be a promising novel approach in the treatment of acute myeloid leukemia (AML). The FLT3 and IRAK4 inhibitor emavusertib (CA4948), the MCL1 inhibitor S63845, the BCL2 inhibitor venetoclax, and the HSP90 inhibitor PU-H71 were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells in vitro. AML cells represented all major morphologic and molecular subtypes, including FLT3-ITD and NPM1 mutant AML cell lines and a variety of patient-derived AML cells. Emavusertib in combination with MCL1 inhibitor S63845 or BCL2 inhibitor venetoclax induced cell cycle arrest and apoptosis in MOLM-13 cells. In primary AML cells, the response to emavusertib was associated with the presence of the FLT3 gene mutation with an allelic ratio >0.5 and the presence of NPM1 gene mutations. S63845 was effective in all tested AML cell lines and primary AML samples. Blast cell percentage was positively associated with the response to CA4948, S63845, and venetoclax, with elevated susceptibility of primary AML with blast cell fraction >80%. Biomarkers of the response to venetoclax included the blast cell percentage and bone marrow infiltration rate, as well as the expression levels of CD11b, CD64, and CD117. Elevated susceptibility to CA4948 combination treatments with S63845 or PU-H71 was associated with FLT3-mutated AML and CD34 < 30%. The combination of CA4948 and BH3-mimetics may be effective in the treatment in FLT3-mutated AML with differential target specificity for MCL1 and BCL2 inhibitors. Moreover, the combination of CA4948 and PU-H71 may be a candidate combination treatment in FLT3-mutated AML.

9.
Exp Neurol ; 377: 114794, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38685307

ABSTRACT

BACKGROUND: Interleukin-1 receptor-associated kinase 4 (IRAK4) plays an important role in immune modulation in various central nervous system disorders. However, IRAK4 has not been reported in epilepsy models in animal and clinical studies, nor has its involvement in regulating pyroptosis in epilepsy. METHOD: First, we performed transcriptome sequencing, quantitative real-time polymerase chain reaction, and western blot analysis on the hippocampal tissues of refractory epilepsy patients to measure the mRNA and protein levels of IRAK4 and pyroptosis-related proteins. Second, we successfully established a pentylenetetrazol (PTZ)-induced seizure mouse model. We conducted behavioral tests, electroencephalography, virus injection, and molecular biology experiments to investigate the role of IRAK4 in seizure activity regulation. RESULTS: IRAK4 is upregulated in the hippocampus of epilepsy patients and PTZ-induced seizure model mice. IRAK4 expression is observed in the hilar neurons of PTZ-induced mice. Knocking down IRAK4 in PTZ-induced mice downregulated pyroptosis-related protein expression and alleviated seizure activity. Overexpressing IRAK4 in naive mice upregulated pyroptosis-related protein expression and increased PTZ-induced abnormal neuronal discharges. IRAK4 and NF-κB were found to bind to each other in patient hippocampal tissue samples. Pyrrolidine dithiocarbamate reversed the pyroptosis-related protein expression increase caused by PTZ. PF-06650833 alleviated seizure activity and inhibited pyroptosis in PTZ-induced seizure mice. CONCLUSION: IRAK4 plays a key role in the pathological process of epilepsy, and its potential mechanism may be related to pyroptosis mediated by the NF-κB/NLRP3 signaling pathway. PF-06650833 has potential as a therapeutic agent for alleviating epilepsy.


Subject(s)
Epilepsy , Hippocampus , Interleukin-1 Receptor-Associated Kinases , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Neurons , Pyroptosis , Seizures , Signal Transduction , Animals , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Hippocampus/metabolism , Hippocampus/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/drug effects , Pyroptosis/physiology , Mice , Signal Transduction/drug effects , Signal Transduction/physiology , Humans , NF-kappa B/metabolism , Male , Seizures/metabolism , Seizures/chemically induced , Neurons/metabolism , Neurons/drug effects , Epilepsy/metabolism , Epilepsy/chemically induced , Female , Mice, Inbred C57BL , Adult , Pentylenetetrazole/toxicity , Young Adult , Adolescent , Child
10.
Molecules ; 29(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38675622

ABSTRACT

IRAK4 is a critical mediator in NF-κB-regulated inflammatory signaling and has emerged as a promising therapeutic target for the treatment of autoimmune diseases; however, none of its inhibitors have received FDA approval. In this study, we identified a novel small-molecule IRAK4 kinase inhibitor, DW18134, with an IC50 value of 11.2 nM. DW18134 dose-dependently inhibited the phosphorylation of IRAK4 and IKK in primary peritoneal macrophages and RAW264.7 cells, inhibiting the secretion of TNF-α and IL-6 in both cell lines. The in vivo study demonstrated the efficacy of DW18134, significantly attenuating behavioral scores in an LPS-induced peritonitis model. Mechanistically, DW18134 reduced serum TNF-α and IL-6 levels and attenuated inflammatory tissue injury. By directly blocking IRAK4 activation, DW18134 diminished liver macrophage infiltration and the expression of related inflammatory cytokines in peritonitis mice. Additionally, in the DSS-induced colitis model, DW18134 significantly reduced the disease activity index (DAI) and normalized food and water intake and body weight. Furthermore, DW18134 restored intestinal damage and reduced inflammatory cytokine expression in mice by blocking the IRAK4 signaling pathway. Notably, DW18134 protected DSS-threatened intestinal barrier function by upregulating tight junction gene expression. In conclusion, our findings reported a novel IRAK4 inhibitor, DW18134, as a promising candidate for treating inflammatory diseases, including peritonitis and IBD.


Subject(s)
Inflammatory Bowel Diseases , Interleukin-1 Receptor-Associated Kinases , Peritonitis , Animals , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/metabolism , Mice , Peritonitis/drug therapy , Peritonitis/chemically induced , RAW 264.7 Cells , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Disease Models, Animal , Signal Transduction/drug effects , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Humans , Male , Phosphorylation/drug effects , Cytokines/metabolism , NF-kappa B/metabolism , Mice, Inbred C57BL
11.
Front Pediatr ; 12: 1340367, 2024.
Article in English | MEDLINE | ID: mdl-38487470

ABSTRACT

Inborn errors of immunity (IEI) can often be misdiagnosed early in life due to their heterogenous clinical presentations. Interleukin-1 receptor-associated kinase 4 (IRAK-4) deficiency is one of the rare innate immunodeficiency disorders. We present the case of a patient who presented at the age of 15 days with meningitis and septic shock that responded to antibiotics. She was admitted again at the age of 45 days with pseudomonas aeruginosa bacteremia that was associated with increased inflammatory markers. Her third admission was at the age of 2.5 months due to left sided peri-orbital cellulitis that was again associated with elevated inflammatory markers. At 3.5 months, she experienced left orbital cellulitis, which was complicated by extensive sinus involvement, erosion, and abscess formation in the pterygopalatine fossa. Her condition progressed to septic shock and required multiple antibiotics and surgical interventions for drainage and control of the infection source. Both abscess and blood culture were positive for pseudomonas aeruginosa. An IEI was suspected but basic immunology testing was normal. Whole Exome Sequencing was performed and a novel mutation in IRAK4 was detected. In conclusion, we highlight the importance of raising awareness among pediatricians about the potentially lethal IEI and the need to consult specialists when these diseases are suspected. Among them is IRAK-4 deficiency which can be diagnosed by sophisticated functional assays and/or genetic testing.

12.
Adv Biomed Res ; 13: 17, 2024.
Article in English | MEDLINE | ID: mdl-38525404

ABSTRACT

Background: Myelodysplastic syndrome (MDS) is a clonal hematologic disorder that requires the integration of morphologic, cytogenetic, hematologic, and clinical findings for a successful diagnosis. Trying to find ancillary tests such as biomarkers improve the diagnosis process. Several studies showed that a disordered immune system is associated with MDS. The chronic activated innate immune system, particularly the Toll-like receptors (TLRs) pathway could be involved in the induction of the inflammation. Materials and Methods: In the present study, we investigated the expression of TLR2, TLR4, and IRAK4 in bone marrow (BM) of MDS patients, the leukemia group, and the healthy group. For this purpose, we assessed the expression of TLR2, TLR4, and IRAK4 by real time-PCR. Results: In line with new findings, we demonstrated that the expression of TLR2, TLR4, and IRAK4 significantly increased in MDS BM compared with the healthy group. Moreover, IRAK4 expression raised significantly in MDS patients compared with other studied hematologic neoplasms. Also, the expression levels of TLR2 and TLR4 significantly increased in MDS in comparison to some studied non-MDS malignancies (P ˂ 0.05). Receiver operating characteristics (ROC) analysis and area under the curve (AUC) suggested that the expression of TLR2, TLR4, and IRAK4 (AUC = 0.702, AUC = 0.75, and AUC = 0.682, respectively) had acceptable diagnostic values to identify MDS from the other understudied leukemias. Conclusion: Overall, the expression of TLR2, TLR4, and IRAK4 could be potential biomarkers for discriminating MDS from some hematologic disorders.

13.
Front Immunol ; 15: 1325090, 2024.
Article in English | MEDLINE | ID: mdl-38348034

ABSTRACT

Smoking is a leading risk factor of chronic obstructive pulmonary disease (COPD), that is characterized by chronic lung inflammation, tissue remodeling and emphysema. Although inflammation is critical to COPD pathogenesis, the cellular and molecular basis underlying smoking-induced lung inflammation and pathology remains unclear. Using murine smoke models and single-cell RNA-sequencing, we show that smoking establishes a self-amplifying inflammatory loop characterized by an influx of molecularly heterogeneous neutrophil subsets and excessive recruitment of monocyte-derived alveolar macrophages (MoAM). In contrast to tissue-resident AM, MoAM are absent in homeostasis and characterized by a pro-inflammatory gene signature. Moreover, MoAM represent 46% of AM in emphysematous mice and express markers causally linked to emphysema. We also demonstrate the presence of pro-inflammatory and tissue remodeling associated MoAM orthologs in humans that are significantly increased in emphysematous COPD patients. Inhibition of the IRAK4 kinase depletes a rare inflammatory neutrophil subset, diminishes MoAM recruitment, and alleviates inflammation in the lung of cigarette smoke-exposed mice. This study extends our understanding of the molecular signaling circuits and cellular dynamics in smoking-induced lung inflammation and pathology, highlights the functional consequence of monocyte and neutrophil recruitment, identifies MoAM as key drivers of the inflammatory process, and supports their contribution to pathological tissue remodeling.


Subject(s)
Emphysema , Pneumonia , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Mice , Animals , Macrophages, Alveolar/pathology , Monocytes/pathology , Pneumonia/pathology , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Emphysema/etiology , Pulmonary Emphysema/pathology , Inflammation/pathology , Emphysema/pathology
15.
Small ; 20(4): e2306270, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37702136

ABSTRACT

Persistent and uncontrolled inflammation is the root cause of various debilitating diseases. Given that interleukin-1 receptor-associated kinase 4 (IRAK4) is a critical modulator of inflammation, inhibition of its activity with selective drug molecules (IRAK4 inhibitors) represents a promising therapeutic strategy for inflammatory disorders. To exploit the full potential of this treatment approach, drug carriers for efficient delivery of IRAK4 inhibitors to inflamed tissues are essential. Herein, the first nanoparticle-based platform for the targeted systemic delivery of a clinically tested IRAK4 inhibitor, PF-06650833, with limited aqueous solubility (57 µg mL-1 ) is presented. The developed nanocarriers increase the intrinsic aqueous dispersibility of this IRAK4 inhibitor by 40 times. A targeting peptide on the surface of nanocarriers significantly enhances their accumulation after intravenous injection in inflamed tissues of mice with induced paw edema and ulcerative colitis when compared to non-targeted counterparts. The delivered IRAK4 inhibitor markedly abates inflammation and dramatically suppresses paw edema, mitigates colitis symptoms, and reduces proinflammatory cytokine levels in the affected tissues. Importantly, repeated injections of IRAK4 inhibitor-loaded nanocarriers have no acute toxic effect on major organs of mice. Therefore, the developed nanocarriers have the potential to significantly improve the therapeutic efficacy of IRAK4 inhibitors for different inflammatory diseases.


Subject(s)
Colitis , Interleukin-1 Receptor-Associated Kinases , Mice , Animals , Interleukin-1 Receptor-Associated Kinases/chemistry , Cytokines , Inflammation/drug therapy , Edema
16.
Article in English | MEDLINE | ID: mdl-38046987

ABSTRACT

Mouse models with humanized immune systems are becoming increasingly prevalent in pharmaceutical research as a platform for preclinical testing with potential for greater translatability to clinical applications. However, the presence of both mouse and human cells that respond to TLR ligands poses a challenge for investigating therapeutic modalities targeting TLR signaling. AZ617 is a human TLR4 agonist, which has been shown in vitro to preferentially induce human cytokines via the TLR4 signaling pathway. We sought to examine the ability of AZ617 to preferentially induce human cytokines in CD34+ stem cell-engrafted NOG-EXL mice (huNOG-EXL), to determine its suitability as an in vivo human functional readout. AZ617 elicited a strong human TNFα and IL-6 response in vivo that demonstrated a 10- and 5-fold preference, respectively, over the mouse TNFα and IL-6. To assess efficacy of inhibiting a key protein in the TLR4 signaling pathway, PF-06650833, a small molecule inhibitor of IRAK4, was used as a tool molecule. PF-0660833 was found to effectively inhibit AZ617-induced human TNFα release in vitro. Likewise, PF-06650833 reduced AZ617-induced human TNFα in the huNOG-EXL mouse model, with a weaker effect on human IL-6. A longitudinal study tracking functionality of monocytes revealed that the ability of monocytes to respond to ex vivo stimuli was increased by 21 weeks after engraftment. Taken together, our data suggests that human selective TLR ligands could preferentially drive cytokine production from human cells in huNOG-EXL mice. This model will allow for investigation of pharmacological inhibition of human TLR signaling pathways in an in vivo model system.

17.
Front Immunol ; 14: 1276512, 2023.
Article in English | MEDLINE | ID: mdl-37915574

ABSTRACT

Dendritic cells (DCs), central participants in the allergic immune response, can capture and present allergens leading to allergic inflammation in the immunopathogenesis of allergic rhinitis (AR). In addition to initiating antigen-specific immune responses, DCs induce tolerance and modulate immune homeostasis. As a special type of DCs, tolerogenic DCs (tolDCs) achieve immune tolerance mainly by suppressing effector T cell responses and inducing regulatory T cells (Tregs). TolDCs suppress allergic inflammation by modulating immune tolerance, thereby reducing symptoms of AR. Activation of the TLR4/IRAK4/NF-κB signaling pathway contributes to the release of inflammatory cytokines, and inhibitors of this signaling pathway induce the production of tolDCs to alleviate allergic inflammatory responses. This review focuses on the relationship between tolDCs and TLR4/IRAK4/NF-κB signaling pathway with AR.


Subject(s)
NF-kappa B , Rhinitis, Allergic , Humans , Toll-Like Receptor 4 , Interleukin-1 Receptor-Associated Kinases , Signal Transduction , Inflammation , Dendritic Cells
18.
Development ; 150(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37997696

ABSTRACT

Toll-like receptors (TLRs) in mammalian systems are well known for their role in innate immunity. In addition, TLRs also fulfil crucial functions outside immunity, including the dorsoventral patterning function of the original Toll receptor in Drosophila and neurogenesis in mice. Recent discoveries in flies suggested key roles for TLRs in epithelial cells in patterning of junctional cytoskeletal activity. Here, we address the function of TLRs and the downstream key signal transduction component IRAK4 in human epithelial cells. Using differentiated human Caco-2 cells as a model for the intestinal epithelium, we show that these cells exhibit baseline TLR signalling, as revealed by p-IRAK4, and that blocking IRAK4 function leads to a loss of epithelial tightness involving key changes at tight and adherens junctions, such as a loss of epithelial tension and changes in junctional actomyosin. Changes upon IRAK-4 inhibition are conserved in human bronchial epithelial cells. Knockdown of IRAK4 and certain TLRs phenocopies the inhibitor treatment. These data suggest a model whereby TLR receptors near epithelial junctions might be involved in a continuous sensing of the epithelial state to promote epithelial tightness and integrity.


Subject(s)
Interleukin-1 Receptor-Associated Kinases , Toll-Like Receptors , Humans , Caco-2 Cells , Immunity, Innate , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Signal Transduction
19.
Front Immunol ; 14: 1239082, 2023.
Article in English | MEDLINE | ID: mdl-37954584

ABSTRACT

Several studies have identified mutations in the MYD88L265P gene as a key driver mutation in several B-cell lymphomas. B-cell lymphomas that harbor the MYD88L265P mutation form a complex with phosphorylated Bruton's tyrosine kinase (BTK) and are responsive to BTK inhibition. However, BTK inhibition in B-cell lymphomas rarely results in a complete response and most patients experience eventual disease relapse. Persistent survival signaling though downstream molecules such as interleukin 1 receptor-associated kinase 4 (IRAK-4), an integral part of the "myddosome" complex, has been shown to be constitutively active in B-cell lymphoma patients treated with BTK inhibitors. Emerging evidence is demonstrating the therapeutic benefit of IRAK-4 inhibition in B-cell lymphomas, along with possibly reversing BTK inhibitor resistance. While MYD88 gene mutations are not present in myeloid malignancies, downstream overexpression of the oncogenic long form of IRAK-4 has been found in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), particularly in AML and MDS that harbor mutations in splicing factors U2AF1 and SF3B1. These data suggest that the anti-leukemic activity of IRAK-4 inhibition can be exploited in relapsed/refractory (R/R) AML/MDS. In this review article, we discuss the currently available pre-clinical and clinical data of emavusertib, a selective, orally bioavailable IRAK-4 inhibitor in the treatment of R/R B-cell lymphomas and myeloid malignancies.


Subject(s)
Leukemia, Myeloid, Acute , Lymphoma, B-Cell , Myeloproliferative Disorders , Humans , Protein-Tyrosine Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Signal Transduction , Agammaglobulinaemia Tyrosine Kinase , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/genetics
20.
Front Immunol ; 14: 1231749, 2023.
Article in English | MEDLINE | ID: mdl-37744344

ABSTRACT

We describe a novel, severe autoinflammatory syndrome characterized by neuroinflammation, systemic autoinflammation, splenomegaly, and anemia (NASA) caused by bi-allelic mutations in IRAK4. IRAK-4 is a serine/threonine kinase with a pivotal role in innate immune signaling from toll-like receptors and production of pro-inflammatory cytokines. In humans, bi-allelic mutations in IRAK4 result in IRAK-4 deficiency and increased susceptibility to pyogenic bacterial infections, but autoinflammation has never been described. We describe 5 affected patients from 2 unrelated families with compound heterozygous mutations in IRAK4 (c.C877T (p.Q293*)/c.G958T (p.D320Y); and c.A86C (p.Q29P)/c.161 + 1G>A) resulting in severe systemic autoinflammation, massive splenomegaly and severe transfusion dependent anemia and, in 3/5 cases, severe neuroinflammation and seizures. IRAK-4 protein expression was reduced in peripheral blood mononuclear cells (PBMC) in affected patients. Immunological analysis demonstrated elevated serum tumor necrosis factor (TNF), interleukin (IL) 1 beta (IL-1ß), IL-6, IL-8, interferon α2a (IFN-α2a), and interferon ß (IFN-ß); and elevated cerebrospinal fluid (CSF) IL-6 without elevation of CSF IFN-α despite perturbed interferon gene signature. Mutations were located within the death domain (DD; p.Q29P and splice site mutation c.161 + 1G>A) and kinase domain (p.Q293*/p.D320Y) of IRAK-4. Structure-based modeling of the DD mutation p.Q29P showed alteration in the alignment of a loop within the DD with loss of contact distance and hydrogen bond interactions with IRAK-1/2 within the myddosome complex. The kinase domain mutation p.D320Y was predicted to stabilize interactions within the kinase active site. While precise mechanisms of autoinflammation in NASA remain uncertain, we speculate that loss of negative regulation of IRAK-4 and IRAK-1; dysregulation of myddosome assembly and disassembly; or kinase active site instability may drive dysregulated IL-6 and TNF production. Blockade of IL-6 resulted in immediate and complete amelioration of systemic autoinflammation and anemia in all 5 patients treated; however, neuroinflammation has, so far proven recalcitrant to IL-6 blockade and the janus kinase (JAK) inhibitor baricitinib, likely due to lack of central nervous system penetration of both drugs. We therefore highlight that bi-allelic mutation in IRAK4 may be associated with a severe and complex autoinflammatory and neuroinflammatory phenotype that we have called NASA (neuroinflammation, autoinflammation, splenomegaly and anemia), in addition to immunodeficiency in humans.


Subject(s)
Anemia , Leukocytes, Mononuclear , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , Splenomegaly/genetics , Interleukin-6 , Neuroinflammatory Diseases , Anemia/genetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...