Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 272
Filter
1.
Clin Exp Pharmacol Physiol ; 51(11): e13911, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39360626

ABSTRACT

Sepsis-induced acute lung injury (ALI) is characterized by inflammatory damage to pulmonary endothelial and epithelial cells. The aim of this study is to probe the significance and mechanism of tripartite motif-containing protein 21 (TRIM21) in sepsis-induced ALI. The sepsis-induced ALI mouse model was established by cecum ligation and puncture. The mice were infected with lentivirus and treated with proteasome inhibitor MG132. The lung respiratory damage, levels of interleukin-6 (IL-6), tumour necrosis factor α (TNF-α), IL-10 and pathological changes were observed. The expression levels of TRIM21, interferon regulatory factors 1 (IRF1) and triggering receptor expressed on myeloid cells 2 (TREM2) were measured and their interactions were analysed. The ubiquitination level of IRF1 was detected. TRIM21 and TREM2 were downregulated and IRF1 was upregulated in sepsis-induced ALI mice. TRIM21 overexpression eased inflammation and lung injury. TRIM21 promoted IRF1 degradation via ubiquitination modification. IRF1 bonded to the TREM2 promoter to inhibit its transcription. Overexpression of IRF1 or silencing TREM2 reversed the improvement of TRIM21 overexpression on lung injury in mice. In conclusion, TRIM21 reduced IRF1 expression by ubiquitination to improve TREM2 expression and ameliorate sepsis-induced ALI.


Subject(s)
Acute Lung Injury , Interferon Regulatory Factor-1 , Ribonucleoproteins , Sepsis , Ubiquitination , Animals , Sepsis/metabolism , Sepsis/complications , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/etiology , Acute Lung Injury/genetics , Mice , Ribonucleoproteins/metabolism , Ribonucleoproteins/genetics , Male , Mice, Inbred C57BL
2.
Article in English | MEDLINE | ID: mdl-39230659

ABSTRACT

Absent in melanoma 2(AIM2) exacerbates atherosclerosis by inflammasome assembly. However, AIM2-mediated inflammation in diabetic cardiomyopathy remains incompletely understood. Here we investigate the role of AIM2 in high glucose (HG)- and diabetes-induced inflammatory cardiomyopathy. By RNA-seq, we found that AIM2 were significantly upregulated in HG-induced macrophages, upregulation of AIM2 in cardiac infiltrating macrophages was confirmed in a high-fat diet (HFD)/streptozotocin (STZ)-induceddiabetic mouse model . Therefore, AIM2 knockout mice were constructed. Compared to WT mice, HFD/STZ-induced cardiac hypertrophy and dysfunction were significantly improved in AIM2-/- mice, despite no changes in blood glucose and body weight. Further, AIM2 deficiency inhibited cardiac recruitment of M1-macrophages and cytokine production. Mechanistically, AIM2-deficient macrophgaes reduced IL-1ß and TNF-α secretion, which impaired the NLRC4/IRF1 signaling in cardiomyocytes, and reduced further recruitment of macrophages, attenuated cardiac inflammation and hypertrophy, these effects were confirmed by silencing IRF1 in WT mice, and significantly reversed by overexpression of IRF1 in AIM2-/- mice. Taken together, our findings suggest that AIM2 serves as a novel target for the treatment of diabetic cardiomyopathy.

3.
Cell Mol Biol Lett ; 29(1): 117, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237877

ABSTRACT

BACKGROUND: PD-L1 expression on cancer cells is an important mechanism of tumor immune escape, and immunotherapy targeting the PD-L1/PD1 interaction is a common treatment option for patients with melanoma. However, many patients do not respond to treatment and novel predictors of response are emerging. One suggested modifier of PD-L1 is the p53 pathway, although the relationship of p53 pathway function and activation is poorly understood. METHODS: The study was performed on human melanoma cell lines with various p53 status. We investigated PD-L1 and proteins involved in IFNγ signaling by immunoblotting and mRNA expression, as well as membrane expression of PD-L1 by flow cytometry. We evaluated differences in the ability of NK cells to recognize and kill target tumor cells on the basis of p53 status. We also investigated the influence of proteasomal degradation and protein half-life, IFNγ signaling and p53 activation on biological outcomes, and performed bioinformatic analysis using available data for melanoma cell lines and melanoma patients. RESULTS: We demonstrate that p53 status changes the level of membrane and total PD-L1 protein through IRF1 regulation and show that p53 loss influences the recently discovered SOX10/IRF1 regulatory axis. Bioinformatic analysis identified a dependency of SOX10 on p53 status in melanoma, and a co-regulation of immune signaling by both transcription factors. However, IRF1/PD-L1 regulation by p53 activation revealed complicated regulatory mechanisms that alter IRF1 mRNA but not protein levels. IFNγ activation revealed no dramatic differences based on TP53 status, although dual p53 activation and IFNγ treatment confirmed a complex regulatory loop between p53 and the IRF1/PD-L1 axis. CONCLUSIONS: We show that p53 loss influences the level of PD-L1 through IRF1 and SOX10 in an isogenic melanoma cell model, and that p53 loss affects NK-cell cytotoxicity toward tumor cells. Moreover, activation of p53 by MDM2 inhibition has a complex effect on IRF1/PD-L1 activation. These findings indicate that evaluation of p53 status in patients with melanoma will be important for predicting the response to PD-L1 monotherapy and/or dual treatments where p53 pathways participate in the overall response.


Subject(s)
B7-H1 Antigen , Interferon Regulatory Factor-1 , Melanoma , SOXE Transcription Factors , Signal Transduction , Tumor Suppressor Protein p53 , Humans , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Melanoma/genetics , Melanoma/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Cell Line, Tumor , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , SOXE Transcription Factors/metabolism , SOXE Transcription Factors/genetics , Interferon-gamma/metabolism , Interferon-gamma/genetics , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Gene Expression Regulation, Neoplastic
4.
Mol Ther Methods Clin Dev ; 32(3): 101316, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39282077

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) are an attractive platform for cell therapy due to their safety profile and unique ability to secrete broad arrays of immunomodulatory and regenerative molecules. Yet, MSCs are well known to require preconditioning or priming to boost their therapeutic efficacy. Current priming methods offer limited control over MSC activation, yield transient effects, and often induce the expression of pro-inflammatory effectors that can potentiate immunogenicity. Here, we describe a genetic priming method that can both selectively and sustainably boost MSC potency via the controlled expression of the inflammatory-stimulus-responsive transcription factor interferon response factor 1 (IRF1). MSCs engineered to hyper-express IRF1 recapitulate many core responses that are accessed by biochemical priming using the proinflammatory cytokine interferon-γ (IFN-γ). This includes the upregulation of anti-inflammatory effector molecules and the potentiation of MSC capacities to suppress T cell activation. However, we show that IRF1-mediated genetic priming is much more persistent than biochemical priming and can circumvent IFN-γ-dependent expression of immunogenic MHC class II molecules. Together, the ability to sustainably activate and selectively tailor MSC priming responses creates the possibility of programming MSC activation more comprehensively for therapeutic applications.

5.
Article in English | MEDLINE | ID: mdl-39133272

ABSTRACT

Despite the complexity of allergic rhinitis (AR) pathogenesis, no FDA-approved drug has been developed to achieve optimal therapeutic effects. The present study explored the efficacy and mechanism of Huangqi (Hedysarum Multijugum Maxim)-Gancao (Glycyrrhizae Radix et Rhizoma or licorice) herb pair in treating AR by network pharmacology and experimental approaches. The bioactive ingredients of Huangqi and Gancao were identified and used to predict the targets of these herbs in AR and generate the pharmacological network. Ovalbumin (OVA)-induced AR mouse model was established to assess the anti-AR effect of the Huangqi decoction (HQD) prepared based on both herbs. We identified 90 active ingredients of the Huangqi-Gancao pair, targeting 69 AR-related genes. Quercetin (QUE) was identified as the hub ingredient of this pair, with 57 targets in AR. The protein-protein interaction (PPI) network analysis and molecular docking revealed IL1B, TNF, STAT1, IL6, PTGS2, RELA, IL2, NFKBIA, IFNG, IL10, IL1A, IRF1, EGFR, and CXCL10 as important targets of QUE in AR treatment. Experimentally, QUE or HQD significantly alleviated the AR-induced histopathological changes, AR symptoms, and IgE level and counteracted AR-induced expression changes of IFNG, IRF1, RELA, and NFKBIA. These effects were promoted by the NF-kB inhibitor helenalin, indicating that HQD and QUE counteracted AR in mice by regulating the IFNG/IRF1 signaling via the NF-κB pathway in AR mice. These findings shed light on the efficacy of the constituents of Huangqi-Gancao pair, their potential targets, and the molecular mechanisms of HQD in treating AR, which could advance the development of tailored therapeutic interventions for this disorder.

6.
Int Immunopharmacol ; 141: 112988, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39213867

ABSTRACT

The establishment and maintenance of a successful pregnancy rely heavily on maternal-fetal immune tolerance. Inflammatory and immune mechanisms during pregnancy bear a resemblance to those observed in tumor progression, with Treg cells exhibiting similar immunoregulatory functions in both contexts. Interferon regulatory factor 1 (IRF1) is implicated in modulating the immune milieu within tumors and influencing regulatory T (Treg) cell differentiation. However, the precise association between IRF1 and the onset of preeclampsia (PE) remains unclear. In our investigation, we identified trophoblasts as a significant source of IRF1 expression at the maternal-fetal interface through immunofluorescence analysis. Moreover, heightened levels of IRF1 expression were detected in both placental tissues and peripheral blood samples obtained from PE patients, concomitant with an imbalance in the Th17/Treg ratio. In the peripheral circulation, a notable inverse correlation was observed between IRF1 mRNA levels and Foxp3 mRNA, a transcription factor specific to Treg cells. IRF1 mRNA expression showed a positive association with systolic blood pressure and a negative association with serum albumin levels. Furthermore, co-culturing naïve T cells with supernatants from HTR-8/SV neo cells overexpressing IRF1 resulted in diminished differentiation of T cells into Treg cells. In summary, our study indicates elevated IRF1 expression in the peripheral blood and trophoblast cells of PE patients. Elevated IRF1 in trophoblast cells hinders the differentiation of maternal Treg cells, disrupting maternal-fetal immune tolerance and contributing to PE pathogenesis. Additionally, IRF1 expression correlates with disease severity, suggesting its potential as a novel sensitive target in PE.


Subject(s)
Cell Differentiation , Interferon Regulatory Factor-1 , Pre-Eclampsia , T-Lymphocytes, Regulatory , Trophoblasts , Humans , Pre-Eclampsia/immunology , Female , Pregnancy , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , T-Lymphocytes, Regulatory/immunology , Adult , Trophoblasts/immunology , Trophoblasts/metabolism , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Placenta/immunology , Placenta/metabolism , Th17 Cells/immunology , Immune Tolerance , Cells, Cultured
7.
Immunity ; 57(8): 1812-1827.e7, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38955184

ABSTRACT

An important property of the host innate immune response during microbial infection is its ability to control the expression of antimicrobial effector proteins, but how this occurs post-transcriptionally is not well defined. Here, we describe a critical antibacterial role for the classic antiviral gene 2'-5'-oligoadenylate synthetase 1 (OAS1). Human OAS1 and its mouse ortholog, Oas1b, are induced by interferon-γ and protect against cytosolic bacterial pathogens such as Francisella novicida and Listeria monocytogenes in vitro and in vivo. Proteomic and transcriptomic analysis showed reduced IRF1 protein expression in OAS1-deficient cells. Mechanistically, OAS1 binds and localizes IRF1 mRNA to the rough endoplasmic reticulum (ER)-Golgi endomembranes, licensing effective translation of IRF1 mRNA without affecting its transcription or decay. OAS1-dependent translation of IRF1 leads to the enhanced expression of antibacterial effectors, such as GBPs, which restrict intracellular bacteria. These findings uncover a noncanonical function of OAS1 in antibacterial innate immunity.


Subject(s)
2',5'-Oligoadenylate Synthetase , Immunity, Innate , Interferon Regulatory Factor-1 , 2',5'-Oligoadenylate Synthetase/metabolism , 2',5'-Oligoadenylate Synthetase/genetics , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Animals , Humans , Mice , Protein Biosynthesis/immunology , Listeria monocytogenes/immunology , Mice, Knockout , Mice, Inbred C57BL , Listeriosis/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology
8.
Cell Commun Signal ; 22(1): 366, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026271

ABSTRACT

BACKGROUND: Z-DNA binding protein 1 (ZBP1) is a nucleic acid sensor that is involved in multiple inflammatory diseases, but whether and how it contributes to osteoarthritis (OA) are unclear. METHODS: Cartilage tissues were harvested from patients with OA and a murine model of OA to evaluate ZBP1 expression. Subsequently, the functional role and mechanism of ZBP1 were examined in primary chondrocytes, and the role of ZBP1 in OA was explored in mouse models. RESULTS: We showed the upregulation of ZBP1 in articular cartilage originating from OA patients and mice with OA after destabilization of the medial meniscus (DMM) surgery. Specifically, knockdown of ZBP1 alleviated chondrocyte damage and protected mice from DMM-induced OA. Mechanistically, tumor necrosis factor alpha induced ZBP1 overexpression in an interferon regulatory factor 1 (IRF1)-dependent manner and elicited the activation of ZBP1 via mitochondrial DNA (mtDNA) release and ZBP1 binding. The upregulated and activated ZBP1 could interact with receptor-interacting protein kinase 1 and activate the transforming growth factor-beta-activated kinase 1-NF-κB signaling pathway, which led to chondrocyte inflammation and extracellular matrix degradation. Moreover, inhibition of the mtDNA-IRF1-ZBP1 axis with Cyclosporine A, a blocker of mtDNA release, could delay the progression of DMM-induced OA. CONCLUSIONS: Our data revealed the pathological role of the mtDNA-IRF1-ZBP1 axis in OA chondrocytes, suggesting that inhibition of this axis could be a viable therapeutic approach for OA.


Subject(s)
Chondrocytes , DNA, Mitochondrial , Interferon Regulatory Factor-1 , Osteoarthritis , RNA-Binding Proteins , Animals , Humans , Male , Mice , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Disease Models, Animal , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Mice, Inbred C57BL , Osteoarthritis/pathology , Osteoarthritis/metabolism , Osteoarthritis/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction
9.
Cells ; 13(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38995016

ABSTRACT

Classical swine fever (CSF) is caused by the classical swine fever virus (CSFV), which poses a threat to swine production. The activation of host innate immunity through linker proteins such as tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) is crucial for the induction of the NF-κB pathway. Recent research has revealed the involvement of mitochondrial antiviral-signaling protein (MAVS) in the interaction with TRAF2, 3, 5, and 6 to activate both the NF-κB and IRF3 pathways. This study revealed that CSFV infection led to the upregulation of TRAF1 mRNA and protein levels; moreover, TRAF1 overexpression inhibited CSFV replication, while TRAF1 knockdown promoted replication, highlighting its importance in the host response to CSFV infection. Additionally, the expression of RIG-I, MAVS, TRAF1, IRF1, and ISG15 were detected in PK-15 cells infected with CSFV, revealing that TRAF1 plays a role in regulating IRF1 and ISG15 within the RIG-I pathway. Furthermore, Co-IP, GST pull-down, and IFA analyses demonstrated that TRAF1 interacted with MAVS and co-localized in the cytoplasm during CSFV infection. Ultimately, TRAF1 acted as a novel member of the TRAF family, bound to MAVS as a linker molecule, and functioned as a mediator downstream of MAVS in the RIG-I/MAVS pathway against CSFV replication.


Subject(s)
Adaptor Proteins, Signal Transducing , Classical Swine Fever Virus , Interferon Regulatory Factor-1 , TNF Receptor-Associated Factor 1 , Up-Regulation , Animals , Classical Swine Fever Virus/physiology , TNF Receptor-Associated Factor 1/metabolism , TNF Receptor-Associated Factor 1/genetics , Swine , Up-Regulation/genetics , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Signal Transduction , Classical Swine Fever/virology , Classical Swine Fever/metabolism , Classical Swine Fever/genetics , Virus Replication , Cell Line , Cytokines/metabolism , Protein Binding
10.
Cancer Sci ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989827

ABSTRACT

Reprogramming of cellular energy metabolism, including deregulated lipid metabolism, is a hallmark of head and neck squamous cell carcinoma (HNSCC). However, the underlying molecular mechanisms remain unclear. Long-chain acyl-CoA synthetase 4 (ACSL4), which catalyzes fatty acids to form fatty acyl-CoAs, is critical for synthesizing phospholipids or triglycerides. Despite the differing roles of ACSL4 in cancers, our data showed that ACSL4 was highly expressed in HNSCC tissues, positively correlating with poor survival rates in patients. Knockdown of ACSL4 in HNSCC cells led to reduced cell proliferation and invasiveness. RNA sequencing analyses identified interferon-induced protein 44 (IFI44) and interferon-induced protein 44-like (IFI44L), encoded by two interferon-stimulated genes, as potential effectors of ACSL4. Silencing IFI44 or IFI44L expression in HNSCC cells decreased cell proliferation and invasiveness. Manipulating ACSL4 expression or activity modulated the expression levels of JAK1, tyrosine kinase 2 (TYK2), signal transducer and activator of transcription 1 (STAT1), interferon α (IFNα), IFNß, and interferon regulatory factor 1 (IRF1), which regulate IFI44 and IFI44L expression. Knockdown of IRF1 reduced the expression of JAK1, TYK2, IFNα, IFNß, IFI44, or IFI44L and diminished cell proliferation and invasiveness. Our results suggest that ACSL4 upregulates interferon signaling, enhancing IFI44 and IFI44L expression and promoting HNSCC cell proliferation and invasiveness. Thus, ACSL4 could serve as a novel therapeutic target for HNSCC.

11.
Cell Rep ; 43(6): 114289, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38833371

ABSTRACT

Type I interferon (IFN-I) and IFN-γ foster antitumor immunity by facilitating T cell responses. Paradoxically, IFNs may promote T cell exhaustion by activating immune checkpoints. The downstream regulators of these disparate responses are incompletely understood. Here, we describe how interferon regulatory factor 1 (IRF1) orchestrates these opposing effects of IFNs. IRF1 expression in tumor cells blocks Toll-like receptor- and IFN-I-dependent host antitumor immunity by preventing interferon-stimulated gene (ISG) and effector programs in immune cells. In contrast, expression of IRF1 in the host is required for antitumor immunity. Mechanistically, IRF1 binds distinctly or together with STAT1 at promoters of immunosuppressive but not immunostimulatory ISGs in tumor cells. Overexpression of programmed cell death ligand 1 (PD-L1) in Irf1-/- tumors only partially restores tumor growth, suggesting multifactorial effects of IRF1 on antitumor immunity. Thus, we identify that IRF1 expression in tumor cells opposes host IFN-I- and IRF1-dependent antitumor immunity to facilitate immune escape and tumor growth.


Subject(s)
Interferon Regulatory Factor-1 , Animals , Humans , Mice , B7-H1 Antigen/metabolism , Cell Line, Tumor , Immunity , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , STAT1 Transcription Factor/metabolism , Male , Female
12.
Cell Mol Immunol ; 21(8): 856-872, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38849539

ABSTRACT

The key role of structural cells in immune modulation has been revealed with the advent of single-cell multiomics, but the underlying mechanism remains poorly understood. Here, we revealed that the transcriptional activation of interferon regulatory factor 1 (IRF1) in response to ionizing radiation, cytotoxic chemicals and SARS-CoV-2 viral infection determines the fate of structural cells and regulates communication between structural and immune cells. Radiation-induced leakage of mtDNA initiates the nuclear translocation of IRF1, enabling it to regulate the transcription of inflammation- and cell death-related genes. Novel posttranslational modification (PTM) sites in the nuclear localization sequence (NLS) of IRF1 were identified. Functional analysis revealed that mutation of the acetylation site and the phosphorylation sites in the NLS blocked the transcriptional activation of IRF1 and reduced cell death in response to ionizing radiation. Mechanistically, reciprocal regulation between the single-stranded DNA sensors SSBP1 and IRF1, which restrains radiation-induced and STING/p300-mediated PTMs of IRF1, was revealed. In addition, genetic deletion or pharmacological inhibition of IRF1 tempered radiation-induced inflammatory cell death, and radiation mitigators also suppressed SARS-CoV-2 NSP-10-mediated activation of IRF1. Thus, we revealed a novel cytoplasm-oriented mechanism of IRF1 activation in structural cells that promotes inflammation and highlighted the potential effectiveness of IRF1 inhibitors against immune disorders.


Subject(s)
Cell Death , Inflammation , Interferon Regulatory Factor-1 , Protein Processing, Post-Translational , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Humans , Cell Death/radiation effects , Inflammation/pathology , Animals , Mice , SARS-CoV-2 , COVID-19/immunology , Phosphorylation , Radiation, Ionizing , HEK293 Cells , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Nuclear Localization Signals , Transcriptional Activation
13.
Int Immunopharmacol ; 136: 112346, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38850785

ABSTRACT

Myocardial infarction (MI) is an event of heart attack due to the formation of plaques in the interior walls of the arteries. This study is conducted to explore the role of ubiquitin-specific peptidase 47 (USP47) in cardiac function and inflammatory immunity. MI mouse models were established, followed by an appraisal of cardiac functions, infarct size, pathological changes, and USP47 and NLRP3 levels. MI cell models were established in HL-1 cells using anoxia. Levels of cardiac function-associated proteins, USP7, interferon regulatory factor 1 (IRF1), platelet factor-4 (CXCL4), pyroptotic factors, and neutrophil extracellular traps (NETs) were determined. The bindings of IRF1 to USP47 and the CXCL4 promoter and the ubiquitination of IRF1 were analyzed. USP47 was upregulated in myocardial tissues of MI mice. USP47 inhibition alleviated cardiac functions, and decreased infarct size, pro-inflammatory cytokines, NETs, NLRP3, and pyroptosis. The ubiquitination and expression levels of IRF1 were increased by silencing USP47, and IRF1 bound to the CXCL4 promoter to promote CXCL4. Overexpression of IRF1 or CXCL4 in vitro and injection of Nigericin in vivo reversed the effect of silencing USP47 on alleviating pyroptosis and cardiac functions. Collectively, USP47 stabilized IRF1 and promoted CXCL4, further promoting pyroptosis, impairing cardiac functions, and aggravating immune inflammation through NLRP3 pathways.


Subject(s)
Inflammasomes , Mice, Inbred C57BL , Myocardial Infarction , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Myocardial Infarction/immunology , Myocardial Infarction/metabolism , Mice , Inflammasomes/metabolism , Male , Pyroptosis , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Disease Models, Animal , Cell Line , Extracellular Traps/metabolism , Extracellular Traps/immunology , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/genetics , Platelet Factor 4/metabolism , Platelet Factor 4/genetics , Ubiquitination , Humans
14.
Iran J Allergy Asthma Immunol ; 23(2): 197-220, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38822514

ABSTRACT

Systemic sclerosis (SSc) is an autoimmune systemic disease that is characterized by immune dysregulation, inflammation, vasculopathy, and fibrosis. Tissue fibrosis plays an important role in SSc and can affect several organs such as the dermis, lungs, and heart. Dysregulation of interferon (IFN) signaling contributes to the SSc pathogenesis and interferon regulatory factor 1 (IRF1) has been indicated as the main regulator of type I IFN. This study aimed to clarify the effect of IFN-gamma (-γ) and dexamethasone (DEX) on the IRF1, extracellular signal-regulated kinase 1/2 (ERK1/2), and the expression of alpha-smooth muscle actin (α-SMA) in myofibroblasts and genes involved in the inflammation and fibrosis processes in early diffuse cutaneous systemic sclerosis (dcSSc). A total of 10 early dcSSc patients (diffuse cutaneous form) and 10 unaffected control dermis biopsies were obtained to determine IFNγ and DEX effects on inflammation and fibrosis. Fibroblasts were treated with IFNγ and DEX at optimum time and dose. The expression level of genes and proteins involved in the fibrosis and inflammation processes have been quantified by quantitative real-time PCR (RT-qPCR) and western blot, respectively. IFNγ could up-regulate some of the inflammation-related genes (Interleukin-6; IL6) and down-regulate some of the fibrosis-related genes (COL1A1) in cultured fibroblasts of patients with early dcSSc compared to the untreated group. Besides, it has been revealed that IFNγ can induce fibroblast differentiation to the myofibroblast that expresses α-SMA. Concerning the inhibitory effect of IFNγ on some fibrotic genes and its positive effect on the inflammatory genes and myofibroblast differentiation, it seems that IFNγ may play a dual role in SSc.


Subject(s)
Actins , Fibroblasts , Interferon-gamma , Interleukin-6 , Scleroderma, Systemic , Adult , Female , Humans , Male , Middle Aged , Actins/metabolism , Actins/genetics , Cells, Cultured , Dexamethasone/pharmacology , Fibroblasts/metabolism , Fibroblasts/pathology , Fibroblasts/drug effects , Fibrosis , Gene Expression Regulation/drug effects , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Interferon-gamma/pharmacology , Interleukin-6/metabolism , Interleukin-6/genetics , Myofibroblasts/metabolism , Myofibroblasts/pathology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Scleroderma, Systemic/immunology
15.
J Zhejiang Univ Sci B ; 25(6): 451-470, 2024 Jun 15.
Article in English, Chinese | MEDLINE | ID: mdl-38910492

ABSTRACT

Interferon regulatory factor 1 (IRF-1) is a member of the IRF family. It is the first transcription factor to be identified that could bind to the interferon-stimulated response element (ISRE) on the target gene and displays crucial roles in the interferon-induced signals and pathways. IRF-1, as an important medium, has all of the advantages of full cell cycle regulation, cell death signaling transduction, and reinforcing immune surveillance, which are well documented. Current studies indicate that IRF-1 is of vital importance to the occurrence and evolution of multifarious liver diseases, including but not limited to inhibiting the replication of the hepatitis virus (A/B/C/E), alleviating the progression of liver fibrosis, and aggravating hepatic ischemia-reperfusion injury (HIRI). The tumor suppression of IRF-1 is related to the clinical characteristics of liver cancer patients, which makes it a potential indicator for predicting the prognosis and recurrence of liver cancer; additionally, the latest studies have revealed other effects of IRF-1 such as protection against alcoholic/non-alcoholic fatty liver disease (AFLD/NAFLD), cholangiocarcinoma suppression, and uncommon traits in other liver diseases that had previously received little attention. Intriguingly, several compounds and drugs have featured a protective function in specific liver disease models in which there is significant involvement of the IRF-1 signal. In this paper, we hope to propose a prospective research basis upon which to help decipher translational medicine applications of IRF-1 in liver disease treatment.


Subject(s)
Interferon Regulatory Factor-1 , Liver Diseases , Liver Neoplasms , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Humans , Liver Diseases/metabolism , Animals , Liver Neoplasms/metabolism , Signal Transduction , Liver Cirrhosis/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Reperfusion Injury , Cholangiocarcinoma/metabolism
16.
Cancers (Basel) ; 16(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927914

ABSTRACT

Smoking is an established risk factor for a variety of malignant tumors, the most well-known of which is lung cancer. Various molecular interactions are known to link tobacco smoke exposure to lung cancer, but new data are still emerging on the effects of smoking on lung cancer development, progression, and tumor response to therapy. In this study, we reveal in further detail the previously established association between smoking and hsa-mir-301a activity in lung squamous cell carcinoma, LUSC. Using different bioinformatic tools, we identified IRF1 as a key smoking-regulated target of hsa-mir-301a in LUSC. We further confirmed this relationship experimentally using clinical LUSC tissue samples and intact lung tissue samples. Thus, increased hsa-mir-301a levels, decreased IRF1 mRNA levels, and their negative correlation were shown in LUSC tumor samples. Additional bioinformatic investigation for potential pathways impacted by such a mechanism demonstrated IRF1's multifaceted role in controlling the antitumor immune response in LUSC. IRF1 was then shown to affect tumor immune infiltration, the expression of immune checkpoint molecules, and the efficacy of immune checkpoint blockade therapy. As a result, here we suggest a smoking-regulated mir301a/IRF1 molecular axis that could modulate the antitumor immune response and immunotherapy efficacy in LUSC, opening up novel opportunities for future research.

17.
Front Cell Infect Microbiol ; 14: 1383811, 2024.
Article in English | MEDLINE | ID: mdl-38808062

ABSTRACT

Introduction: While astrocytes participate in the CNS innate immunity against herpes simplex virus type 1 (HSV-1) infection, they are the major target for the virus. Therefore, it is of importance to understand the interplay between the astrocyte-mediated immunity and HSV-1 infection. Methods: Both primary human astrocytes and the astrocyte line (U373) were used in this study. RT-qPCR and Western blot assay were used to measure IFNs, the antiviral IFN-stimulated genes (ISGs), IFN regulatory factors (IRFs) and HSV-1 DNA. IRF1 knockout or knockdown was performed with CRISPR/Cas9 and siRNA transfection techniques. Results: Poly(dA:dT) could inhibit HSV-1 replication and induce IFN-ß/IFN-λs production in human astrocytes. Poly(dA:dT) treatment of astrocytes also induced the expression of the antiviral ISGs (Viperin, ISG56 and MxA). Among IRFs members examined, poly(dA:dT) selectively unregulated IRF1 and IRF9, particularly IRF1 in human astrocytes. The inductive effects of poly(dA:dT) on IFNs and ISGs were diminished in the IRF1 knockout cells. In addition, IRF1 knockout attenuated poly(dA:dT)-mediated HSV-1 inhibition in the cells. Conclusion: The DNA sensors activation induces astrocyte intracellular innate immunity against HSV-1. Therefore, targeting the DNA sensors has potential for immune activation-based HSV-1 therapy.


Subject(s)
Astrocytes , Herpesvirus 1, Human , Interferon Regulatory Factor-1 , Virus Replication , Humans , Astrocytes/virology , Astrocytes/metabolism , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/physiology , Immunity, Innate , Poly dA-dT , Herpes Simplex/immunology , Herpes Simplex/virology , Cytosol/metabolism , Cell Line , Cells, Cultured , DNA, Viral/genetics , Gene Knockout Techniques
18.
Heliyon ; 10(10): e31137, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38778969

ABSTRACT

Background: The prevalence of breast cancer (BRCA), which is common among women, is on the rise. This study applied network pharmacology to explore the potential mechanism of action of herba sarcandrae in BRCA and construct a prognostic signature composed of inflammation-related genes. Methods: The active ingredients of herba sarcandrae were screened using the SymMap, TCMID, and TCMSP platforms, and the molecular targets were determined in the UniProt database. The "drug-active compound-potential target" network was established with Cytoscape 3.7.2. The molecular targets were subjected to disease ontology, gene ontology (GO), and Kyoto Encyclopedia of Genes (KEGG) analyses. AutoDock software was used for molecular docking. Differentially expressed genes (DEGs) related to inflammation were obtained from the BRCA Cancer Genome Atlas (TCGA) database. In the training cohort, the univariate Cox regression model was applied to preliminarily screen prognostic genes. A multigene signature was built by the least absolute shrinkage and selection operator (LASSO) regression model, followed by validation through Kaplan‒Meier, Cox, and receiver operating characteristic (ROC) analyses. Results: Forty-one active compounds were identified, and 265 therapeutic targets for herba sarcandrae were predicted. GO enrichment results revealed significant enrichment of biological processes, such as response to xenobiotic stimuli, response to nutrient levels, and response to lipopolysaccharide. KEGG analysis revealed significant enrichment of pathways such as AGE-RAGE and chemical carcinogenesis receptor activation signaling pathways. In addition, the herbs Marc-Andre and rutin were shown to mediate BRCA cell proliferation and apoptosis via the interferon regulatory factor 1 (IRF1)/signal transducer and activator of transcription 3 (STAT3)/programmed death-ligand 1 (PD-L1) pathway. Sixteen inflammatory signatures, including BST2, GPR132, IL12B, IL18, IL1R1, IL2RB, IRF1, and others, were constructed, and the risk score was found to be a strong independent prognostic factor for overall survival in BRCA patients. The 16-inflammation signature was associated with several clinical features (age, clinical stage, T, and N classifications) and could reflect immune cell infiltration in tumor microenvironments with different immune cells. Conclusions: Herba sarcandrae and rutin were shown to mediate BRCA cell proliferation and apoptosis via the IRF1/STAT3/PD-L1 pathway, and the 16-member inflammatory signature might be a novel biomarker for predicting BRCA patient prognosis, providing more accurate guidance for clinical treatment prognosis evaluation and having important reference value for individualized treatment selection.

19.
Vet Res ; 55(1): 45, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589958

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine enteric coronavirus that causes acute watery diarrhea, vomiting, and dehydration in newborn piglets. The type III interferon (IFN-λ) response serves as the primary defense against viruses that replicate in intestinal epithelial cells. However, there is currently no information available on how SADS-CoV modulates the production of IFN-λ. In this study, we utilized IPI-FX cells (a cell line of porcine ileum epithelium) as an in vitro model to investigate the potential immune evasion strategies employed by SADS-CoV against the IFN-λ response. Our results showed that SADS-CoV infection suppressed the production of IFN-λ1 induced by poly(I:C). Through screening SADS-CoV-encoded proteins, nsp1, nsp5, nsp10, nsp12, nsp16, E, S1, and S2 were identified as antagonists of IFN-λ1 production. Specifically, SADS-CoV nsp1 impeded the activation of the IFN-λ1 promoter mediated by MAVS, TBK1, IKKε, and IRF1. Both SADS-CoV and nsp1 obstructed poly(I:C)-induced nuclear translocation of IRF1. Moreover, SADS-CoV nsp1 degraded IRF1 via the ubiquitin-mediated proteasome pathway without interacting with it. Overall, our study provides the first evidence that SADS-CoV inhibits the type III IFN response, shedding light on the molecular mechanisms employed by SADS-CoV to evade the host immune response.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Swine Diseases , Animals , Swine , Proteasome Endopeptidase Complex , Interferon Lambda , Alphacoronavirus/physiology , Ubiquitins , Coronavirus Infections/veterinary
20.
J Orthop Translat ; 45: 211-225, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38586591

ABSTRACT

Background: Osteoarthritis (OA) is a degenerative joint disease characterized by the breakdown of joint cartilage and underlying bone. Macrophages are a type of white blood cell that plays a critical role in the immune system and can be found in various tissues, including joints. Research on the relationship between OA and macrophages is essential to understand the mechanisms underlying the development and progression of OA. Objective: This study was performed to analyze the functions of the IRF1-GCN5-SETD2-SMARCC1 axis in osteoarthritis (OA) development. Methods: A single-cell RNA sequencing (scRNA-seq) dataset, was subjected to a comprehensive analysis aiming to identify potential regulators implicated in the progression of osteoarthritis (OA). In order to investigate the role of IRF1 and SMARCC1, knockdown experiments were conducted in both OA-induced rats and interleukin (IL)-1ß-stimulated chondrocytes, followed by the assessment of OA-like symptoms, secretion of inflammatory cytokines, and polarization of macrophages. Furthermore, the study delved into the identification of aberrant epigenetic modifications and functional enzymes responsible for the regulation of SMARCC1 by IRF1. To evaluate the clinical significance of the factors under scrutiny, a cohort comprising 13 patients diagnosed with OA and 7 fracture patients without OA was included in the analysis. Results: IRF1 was found to exert regulatory control over the expression of SMARCC1, thus playing a significant role in the development of osteoarthritis (OA). The knockdown of either IRF1 or SMARCC1 disrupted the pro-inflammatory effects induced by IL-1ß in chondrocytes, leading to a mitigation of OA-like symptoms, including inflammatory infiltration, cartilage degradation, and tissue injury, in rat models. Additionally, this intervention resulted in a reduction in the predominance of M1 macrophages both in vitro and in vivo. Significant epigenetic modifications, such as abundant H3K27ac and H3K4me3 marks, were observed near the SMARCC1 promoter and 10 kb upstream region. These modifications were attributed to the recruitment of GCN5 and SETD2, which are functional enzymes responsible for these modifications. Remarkably, the overexpression of either GCN5 or SETD2 restored SMARCC1 expression in rat cartilages or chondrocytes, consequently exacerbating the OA-like symptoms. Conclusion: This research postulates that the transcriptional activity of SMARCC1 can be influenced by IRF1 through the recruitment of GCN5 and SETD2, consequently regulating the H3K27ac and H3K4me3 modifications in close proximity to the SMARCC1 promoter and 10 kb upstream region. These modifications, in turn, facilitate the M1 skewing of macrophages and contribute to the progression of osteoarthritis (OA). The Translational Potential of this Article: The study demonstrated that the regulation of SMARCC1 by IRF1 plays a crucial role in the development of OA. Knocking down either IRF1 or SMARCC1 disrupted the pro-inflammatory effects induced by IL-1ß in chondrocytes, leading to a mitigation of OA-like symptoms in rat models. These symptoms included inflammatory infiltration, cartilage degradation, and tissue injury. These findings suggest that targeting the IRF1-SMARCC1 regulatory axis, as well as the associated epigenetic modifications, could potentially be a novel approach in the development of OA therapies, offering new opportunities for disease management and improved patient outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL