Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
J Agric Food Chem ; 72(29): 16449-16460, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38996051

ABSTRACT

Milk fat synthesis has garnered significant attention due to its influence on the quality of milk. Recently, an increasing amount of proofs have elucidated that microRNAs (miRNAs) are important post-transcriptional factor involved in regulating gene expression and play a significant role in milk fat synthesis. MiR-200a was differentially expressed in the mammary gland tissue of dairy cows during different lactation periods, which indicated that miR-200a was a candidate miRNA involved in regulating milk fat synthesis. In our research, we investigated the potential function of miR-200a in regulating milk fat biosynthesis in bovine mammary epithelial cells (BMECs). We discovered that miR-200a inhibited cellular triacylglycerol (TAG) synthesis and suppressed lipid droplet formation; at the same time, miR-200a overexpression suppressed the mRNA and protein expression of milk fat metabolism-related genes, such as fatty acid synthase (FASN), peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), CCAAT enhancer binding protein alpha (CEBPα), etc. However, knocking down miR-200a displayed the opposite results. We uncovered that insulin receptor substrate 2 (IRS2) was a candidate target gene of miR-200a through the bioinformatics online program TargetScan. Subsequently, it was confirmed that miR-200a directly targeted the 3'-untranslated region (3'-UTR) of IRS2 via real-time fluorescence quantitative PCR (RT-qPCR), western blot analysis, and dual-luciferase reporter gene assay. Additionally, IRS2 knockdown in BMECs has similar effects to miR-200a overexpression. Our research set up the mechanism by which miR-200a interacted with IRS2 and discovered that miR-200a targeted IRS2 and modulated the activity of the PI3K/Akt signaling pathway, thereby taking part in regulating milk fat synthesis in BMECs. Our research results provided valuable information on the molecular mechanisms for enhancing milk quality from the view of miRNA-mRNA regulatory networks.


Subject(s)
Epithelial Cells , Insulin Receptor Substrate Proteins , Mammary Glands, Animal , MicroRNAs , Milk , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Cattle/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Milk/metabolism , Milk/chemistry , Epithelial Cells/metabolism , Female , Insulin Receptor Substrate Proteins/metabolism , Insulin Receptor Substrate Proteins/genetics , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Triglycerides/metabolism , Triglycerides/biosynthesis , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Fats/metabolism , Lactation/genetics
2.
Curr Issues Mol Biol ; 46(1): 634-649, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38248343

ABSTRACT

Insulin receptor substrates 1 and 2 (IRS-1 and IRS-2) are signaling adaptor proteins that participate in canonical pathways, where insulin cascade activation occurs, as well as in non-canonical pathways, in which phosphorylation of substrates is carried out by a diverse array of receptors including integrins, cytokines, steroid hormones, and others. IRS proteins are subject to a spectrum of post-translational modifications essential for their activation, encompassing phosphorylation events in distinct tyrosine, serine, and threonine residues. Tyrosine residue phosphorylation is intricately linked to the activation of the insulin receptor cascade and its interaction with SH2 domains within a spectrum of proteins, including PI3K. Conversely, serine residue phosphorylation assumes a different function, serving to attenuate the effects of insulin. In this review, we have identified over 50 serine residues within IRS-1 that have been reported to undergo phosphorylation orchestrated by a spectrum of kinases, thereby engendering the activation or inhibition of different signaling pathways. Furthermore, we delineate the phosphorylation of over 10 distinct tyrosine residues at IRS-1 or IRS-2 in response to insulin, a process essential for signal transduction and the subsequent activation of PI3K.

3.
Lab Med ; 55(2): 215-219, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-37481466

ABSTRACT

OBJECTIVE: Nonalcoholic fatty liver disease (NAFLD), which is an emerging global chronic liver disease, has a close association with insulin resistance. We aimed to determine whether the Gly1057Asp (rs1805097) polymorphism of the insulin receptor substrate 2 (IRS2) gene is associated with NAFLD. METHODS: Using the polymerase chain reaction-restriction fragment length polymorphism method, 135 patients with biopsy-proven NAFLD and 135 controls underwent IRS2 genotype analysis. RESULTS: Genotype and allele distributions of the IRS2 gene Gly1057Asp variant conformed to the Hardy-Weinberg equilibrium in both the case and control groups (P > .05). The Asp/Asp genotype of IRS2 gene Gly1057Asp polymorphism compared with Gly/Gly genotype was associated with a 2.1-fold increased risk for NAFLD after adjustment for confounding factors (P = .029; odds ratio = 2.10, 95% CI = 1.23-3.97). CONCLUSION: Our findings revealed for the first time that the Gly1057Asp Asp/Asp genotype of the IRS2 gene is a marker of increased NAFLD susceptibility; however, studies in other populations are required to confirm the results.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Case-Control Studies , Genetic Predisposition to Disease , Genotype , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Polymorphism, Genetic , Polymorphism, Single Nucleotide/genetics , Risk Factors
4.
Int J Mol Sci ; 24(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37894751

ABSTRACT

Insulin receptor substrate-2 (IRS-2), a substrate of the insulin-like growth factor (IGF)-I receptor, is highly expressed in the prostate cancer cell line, PC3. We recently demonstrated that extracellular signal-regulated kinase (Erk1/2), a kinase downstream of IGF signaling, is activated in PC3 cells under serum starvation, and this activation can be inhibited by IRS-2 knockdown. Here, we observed that adding an IGF-I-neutralizing antibody to the culture medium inhibited the activation of Erk1/2. Suppression of Erk1/2 in IRS-2 knockdown cells was restored by the addition of a PC3 serum-free conditioned medium. In contrast, the IRS-2-silenced PC3 conditioned medium could not restore Erk1/2 activation, suggesting that IRS-2 promotes the secretion of proteins that activate the IGF signaling pathway. Furthermore, gelatin zymography analysis of the conditioned medium showed that matrix metalloproteinase-9 (MMP-9) was secreted extracellularly in an IRS-2 dependent manner when PC3 was cultured under serum starvation conditions. Moreover, MMP-9 knockdown suppressed Erk1/2 activation, DNA synthesis, and migratory activity. The IRS-2 levels were positively correlated with Gleason grade in human prostate cancer tissues. These data suggest that highly expressed IRS-2 activates IGF signaling by enabling the secretion of MMP-9, which is associated with hyperproliferation and malignancy of prostate cancer cell line, PC3.


Subject(s)
Carcinoma , Prostatic Neoplasms , Humans , Male , Carcinoma/metabolism , Cell Line , Culture Media, Conditioned/metabolism , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Insulin-Like Growth Factor I/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , PC-3 Cells , Phosphoproteins/metabolism , Phosphorylation , Prostate/pathology , Prostatic Neoplasms/metabolism
5.
Front Cell Dev Biol ; 11: 1161541, 2023.
Article in English | MEDLINE | ID: mdl-37325570

ABSTRACT

Red blood cells (RBCs) produced in vitro have the potential to alleviate the worldwide demand for blood transfusion. Hematopoietic cell differentiation and proliferation are triggered by numerous cellular physiological processes, including low oxygen concentration (<5%). In addition, hypoxia inducible factor 2α (HIF-2α) and insulin receptor substrate 2 (IRS2) were found to be involved in the progression of erythroid differentiation. However, the function of the HIF-2α-IRS2 axis in the progression of erythropoiesis is not yet fully understood. Therefore, we used an in vitro model of erythropoiesis generated from K562 cells transduced with shEPAS1 at 5% O2 in the presence or absence of the IRS2 inhibitor NT157. We observed that erythroid differentiation was accelerated in K562 cells by hypoxia. Conversely, knockdown of EPAS1 expression reduced IRS2 expression and erythroid differentiation. Intriguingly, inhibition of IRS2 could impair the progression of hypoxia-induced erythropoiesis without affecting EPAS1 expression. These findings indicated that the EPAS1-IRS2 axis may be a crucial pathway that regulates erythropoiesis and that drugs targeting this pathway may become promising agents for promoting erythroid differentiation.

6.
Article in English | MEDLINE | ID: mdl-37173295

ABSTRACT

Background: Insulin Receptor Substrate (IRS) molecules play a major role in insulin signalling, and single nucleotide polymorphisms in the IRS-1 (rs1801278) and IRS-2 (rs1805097) gene has been associated with the predisposition to the development of type-2 diabetes (T2D) in some population. However, the observations remain contradictory. Discrepancies in the results have been attributed to several factors, and consideration of a smaller sample size is one of them. To reach a valid conclusion, we performed a meta-analysis of the genetic association between IRS-1 (rs1801278) and IRS-2 (rs1805097) polymorphism with a predisposition to T2D. Materials and Methods: The literature search was performed in different databases such as PubMed, Science Direct, and Scopus. All relevant articles were screened and based in inclusion and exclusion criteria eligible reports were identified. Baseline characteristics, genotype and allele frequencies were extracted from the eligible reports. The meta-analysis was performed by comprehensive meta-analysis software v3.3.070 and odds ratios, 95% confidence interval and probability values were calculated to find out association of IRS-1 and IRS-2 polymorphisms with rhinitis. Results: A total of seven studies comprising 1287 cases and 1638 control were considered for the present meta-analysis for the association of IRS-1 (rs1801278) polymorphism with T2D, and no significant association was observed. For IRS-2 (rs1805097) polymorphism, data from eight cohorts (cases: 1824, controls: 1786) were considered. The heterozygous genetic comparison models revealed a significant protective association against T2D predisposition (p = 0.017, OR = 0.841, 95% CI = 0.729 to 0.970). The trial sequential analysis revealed the requirement of additional case-control studies to draw a definitive conclusion for IRS-1 polymorphism. Conclusions: IRS-2 rs1805097 heterozygotes are protected from T2D development. However, IRS-1 (rs1801278) is not associated with a subject's proclivity for T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Genetic Predisposition to Disease , Humans , Genotype , Diabetes Mellitus, Type 2/genetics , Polymorphism, Single Nucleotide , Gene Frequency , Case-Control Studies
7.
Curr Issues Mol Biol ; 45(3): 2296-2308, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36975518

ABSTRACT

Insulin signaling plays an important role in the development and progression of cancer since it is involved in proliferation and migration processes. It has been shown that the A isoform of the insulin receptor (IR-A) is often overexpressed, and its stimulation induces changes in the expression of the insulin receptor substrates (IRS-1 and IRS-2), which are expressed differently in the different types of cancer. We study the participation of the insulin substrates IRS-1 and IRS-2 in the insulin signaling pathway in response to insulin and their involvement in the proliferation and migration of the cervical cancer cell line. Our results showed that under basal conditions, the IR-A isoform was predominantly expressed. Stimulation of HeLa cells with 50 nM insulin led to the phosphorylation of IR-A, showing a statistically significant increase at 30 min (p ≤ 0.05). Stimulation of HeLa cells with insulin induces PI3K and AKT phosphorylation through the activation of IRS2, but not IRS1. While PI3K reached the highest level at 30 min after treatment (p ≤ 0.05), AKT had the highest levels from 15 min (p ≤ 0.05) and remained constant for 6 h. ERK1 and ERK2 expression was also observed, but only ERK2 was phosphorylated in a time-dependent manner, reaching a maximum peak 5 min after insulin stimulation. Although no effect on cell proliferation was observed, insulin stimulation of HeLa cells markedly promoted cell migration.

8.
Zygote ; 31(3): 237-239, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36919849

ABSTRACT

Polycystic ovary syndrome is an endocrine disorder commonly found among females of reproductive age. Different factors have been correlated with this syndrome, although the aetiology of the disease is still unrecognized with both environmental and hereditary factors leading to the progression. Hormonal effects of the AKT pathway have made it an interesting study unit for PCOS cases. The aim of this study was to investigate the expression patterns of genes involved in the AKT pathway, including IRS1, IRS2, AKT1 and AKT2. In total, 13 human oocytes were collected for this study at the meiosis II stage, in which seven of them were collected from individuals with polycystic ovaries and the rest formed the control group of individuals with no signs of polycystic ovaries. RNA was extracted from oocytes and then the RNA was converted into cDNA for the real-time PCR process. Expression levels of four genes in the AKT pathway, in addition to housekeeping gene (ACTB), were evaluated. Expression levels of each gene were quantified using real-time PCR and statistical analysis was performed. The results of this study showed that there was no significant correlation between the expression of genes in oocyte samples obtained from patients with polycystic ovaries and the control group. This study is the first to evaluate the expression levels of genes involved in the AKT pathway in human oocyte samples. Therefore, it provides crucial information to form the basis of further studies.


Subject(s)
Polycystic Ovary Syndrome , Female , Humans , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Oocytes/metabolism , RNA/metabolism
9.
Genes (Basel) ; 14(2)2023 02 20.
Article in English | MEDLINE | ID: mdl-36833456

ABSTRACT

Several microRNAs (miRNAs) are known to participate in adipogenesis. However, their role in this process, especially in the differentiation of bovine preadipocytes, remains to be elucidated. This study was intended to clarify the effect of microRNA-33a (miR-33a) on the differentiation of bovine preadipocytes by cell culture, real-time fluorescent quantitative PCR (qPCR), Oil Red staining, BODIPY staining, and Western blotting. The results indicate that overexpression of miR-33a significantly inhibited lipid droplet accumulation and decreased the mRNA and protein expression of adipocyte differentiation marker genes such as peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), and fatty acid-binding protein 4 (FABP4). In contrast, the interference expression of miR-33a promoted lipid droplet accumulation and increased the expression of marker genes. Additionally, miR-33a directly targeted insulin receptor substrate 2 (IRS2) and regulated the phosphorylation level of serine/threonine kinase (Akt). Furthermore, miR-33a inhibition could rescue defects in the differentiation of bovine preadipocytes and the Akt phosphorylation level caused by small interfering IRS2 (si-IRS2). Collectively, these results indicate that miR-33a could inhibit the differentiation of bovine preadipocytes, possibly through the IRS2-Akt pathway. These findings might help develop practical means to improve the quality of beef.


Subject(s)
MicroRNAs , Proto-Oncogene Proteins c-akt , Cattle , Animals , Proto-Oncogene Proteins c-akt/metabolism , Insulin Receptor Substrate Proteins , Cell Differentiation , MicroRNAs/genetics , Adipogenesis/genetics
10.
Biochem Genet ; 61(1): 69-86, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35727487

ABSTRACT

Single-Nucleotide Polymorphisms (SNPs) are common genetic variations implicated in human diseases. The non-synonymous SNPs (nsSNPs) affect the proteins' structures and their molecular interactions with other interacting proteins during the accomplishment of biochemical processes. This ultimately causes proteins functional perturbation and disease phenotypes. The Insulin receptor substrate-2 (IRS-2) protein promotes glucose absorption and participates in the biological regulation of glucose metabolism and energy production. Several IRS-2 SNPs are reported in association with type 2 diabetes and obesity in human populations. However, there are no comprehensive reports about the protein structural consequences of these nsSNPs. Keeping in view the pathophysiological consequences of the IRS-2 nsSNPs, we designed the current study to understand their possible structural impact on coding protein. The prioritized list of the deleterious IRS-2 nsSNPs was acquired from multiple bioinformatics resources, including VEP (SIFT, PolyPhen, and Condel), PROVEAN, SNPs&GO, PMut, and SNAP2. The protein structure stability assessment of these nsSNPs was performed by MuPro and I-Mutant-3.0 servers via structural modeling approaches. The atomic-level structural and molecular dynamics (MD) impact of these nsSNPs were examined using GROMACS 2019.2 software package. The analyses initially predicted 8 high-risk nsSNPs located in the highly conserved regions of IRS-2. The MD simulation analysis eventually prioritized the N232Y, R218C, and R104H nsSNPs that predicted to significantly compromise the structure stability and may affect the biological function of IRS-2. These nsSNPs are predicted as high-risk candidates for diabetes and obesity. The validation of protein structural impact of these shortlisted nsSNPs may provide biochemical insight into the IRS-2-mediated type-2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Polymorphism, Single Nucleotide , Humans , Insulin Receptor Substrate Proteins/genetics , Diabetes Mellitus, Type 2/genetics , Computational Biology , Protein Stability
11.
Endocr Regul ; 58(1): 1-10, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-38345493

ABSTRACT

Objective. Glucocorticoids are important stress-responsive regulators of insulin-dependent metabolic processes realized through specific changes in genome function. The aim of this study was to investigate the impact of cortisol on insulin receptor and related genes expression in HEK293 cells upon induction the endoplasmic reticulum (ER) stress by tunicamycin and hypoxia. Methods. The human embryonic kidney cell line HEK293 was used. Cells were exposed to cortisol (10 µM) as well as inducers of hypoxia (dimethyloxalylglycine, DMOG; 0.5 mM) and ER stress (tunicamycin; 0.2 µg/ml) for 4 h. The RNA from these cells was extracted and reverse transcribed. The expression level of INSR, IRS2, and INSIG2 and some ER stress responsive genes encoding XBP1n, non-spliced variant, XBP1s, alternatively spliced variant of XBP1, and DNAJB9 proteins, was measured by quantitative polymerase chain reaction and normalized to ACTB. Results. We showed that exposure of HEK293 cells to cortisol elicited up-regulation in the expression of INSR and DNAJB9 genes and down-regulation of XBP1s, XBP1n, IRS2, and INSIG2 mRNA levels. At the same time, induction of hypoxia by DMOG led to an up-regulation of the expression level of most studied mRNAs: XBP1s and XBP1n, IRS2 and INSIG2, but did not change significantly INSR and DNAJB9 gene expression. We also showed that combined impact of cortisol and hypoxia introduced the up-regulation of INSR and suppressed XBP1n mRNA expression levels. Furthermore, the exposure of HEK293 cells to tunicamycin affected the expression of IRS2 gene and increased the level of XBP1n mRNA. At the same time, the combined treatment of these cells with cortisol and inductor of ER stress had much stronger impact on the expression of all the tested genes: strongly increased the mRNA level of ER stress dependent factors XBP1s and DNAJB9 as well as INSR and INSIG2, but down-regulated IRS2 and XBP1n. Conclusion. Taken together, the present study indicates that cortisol may interact with ER stress and hypoxia in the regulation of ER stress dependent XBP1 and DNAJB9 mRNA expression as well as INSR and its signaling and that this corticosteroid hormone modified the impact of hypoxia and especially tunicamycin on the expression of most studied genes in HEK293 cells. These data demonstrate molecular mechanisms of glucocorticoids interaction with ER stress and insulin signaling at the cellular level.


Subject(s)
Endoplasmic Reticulum Stress , Hydrocortisone , Receptor, Insulin , Humans , Endoplasmic Reticulum Stress/drug effects , HEK293 Cells , HSP40 Heat-Shock Proteins , Hydrocortisone/pharmacology , Hypoxia , Insulin/pharmacology , Membrane Proteins/genetics , Molecular Chaperones , RNA, Messenger/metabolism , Tunicamycin/pharmacology
12.
Cell Rep ; 41(10): 111759, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36476848

ABSTRACT

Despite the strong association of the insulin/insulin-like growth factor (IGF) signaling (IIS) pathway with tumor initiation, recurrence, and metastasis, the mechanism by which this pathway regulates cancer progression is not well understood. Here, we report that IIS supports breast cancer stem cell (CSC) self-renewal in an IRS2-phosphatidylinositol 3-kinase (PI3K)-dependent manner that involves the activation and stabilization of MYC. IRS2-PI3K signaling enhances MYC expression through the inhibition of GSK3ß activity and suppression of MYC phosphorylation on threonine 58, thus reducing proteasome-mediated degradation of MYC and sustaining active pS62-MYC function. A stable T58A-Myc mutant rescues CSC function in Irs2-/- cells, supporting the role of this MYC stabilization in IRS2-dependent CSC regulation. These findings establish a mechanistic connection between the IIS pathway and MYC and highlight a role for IRS2-dependent signaling in breast cancer progression.


Subject(s)
Neoplasms , Somatomedins , Insulin , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases , Neoplastic Stem Cells , Signal Transduction
13.
Biochemistry (Mosc) ; 87(11): 1243-1251, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36509718

ABSTRACT

Memory formation is a complex process involving changes in the synaptic activity and gene expression encoding the insulin-like growth factors. We analyzed changes in the expression of genes encoding the insulin/insulin-like growth factors' proteins at the early period of learning in the CA1 region and dentate gyrus of the dorsal and ventral hippocampus in mice 1 hour after presentation of a new context (contextual fear conditioning) with and without negative reinforcement. It was found that in addition to changes in the expression of immediate early genes c-Fos (in all studied hippocampal fields) and Arc (in dorsal and ventral CA1, as well as in dorsal dentate gyrus), exposure to a new context significantly altered expression of the insulin receptor substrate 2 gene (Irs2) in dorsal CA1 and ventral dentate gyrus irrespectively of the negative reinforcement, which suggests participation of the insulin/IGF system in the early stages of neural activation during learning.


Subject(s)
Hippocampus , Somatomedins , Mice , Animals , Hippocampus/physiology , Fear/physiology , Learning , Insulin/genetics , Insulin Receptor Substrate Proteins/genetics
14.
Front Immunol ; 13: 931087, 2022.
Article in English | MEDLINE | ID: mdl-36177037

ABSTRACT

Aim: Numerous reports have demonstrated the key importance of macrophage-elicited metabolic inflammation in insulin resistance (IR). Our previous studies confirmed that hyperuricemia or high uric acid (HUA) treatment induced an IR state in several peripheral tissues to promote the development of type 2 diabetes mellitus (T2DM). However, the effect of HUA on glucose uptake and the insulin sensitivity of macrophages and its mechanism is unclear. Methods: To assess systemic IR, we generated hyperuricemic mice by urate oxidase knockout (UOX-KO). Then, glucose/insulin tolerance, the tissue uptake of 18F-fluorodeoxyglucose, body composition, and energy balance were assessed. Glucose uptake of circulating infiltrated macrophages in the liver was evaluated by glucose transporter type 4 (GLUT-4) staining. Insulin sensitivity and the insulin signaling pathway of macrophages were demonstrated using the 2-NBDG kit, immunoblotting, and immunofluorescence assays. The immunoprecipitation assay and LC-MS analysis were used to determine insulin receptor substrate 2 (IRS2) levels and its interacting protein enrichment under HUA conditions. Results: Compared to WT mice (10 weeks old), serum uric acid levels were higher in UOX-KO mice (WT, 182.3 ± 5.091 µM versus KO, 421.9 ± 45.47 µM). Hyperuricemic mice with metabolic disorders and systemic IR showed inflammatory macrophage recruitment and increased levels of circulating proinflammatory cytokines. HUA inhibited the nuclear translocation of GLUT-4 in hepatic macrophages, restrained insulin-induced glucose uptake and glucose tolerance, and blocked insulin IRS2/PI3K/AKT signaling. Meanwhile, HUA mediated the IRS2 protein degradation pathway and activated AMPK/mTOR in macrophages. LC-MS analysis showed that ubiquitination degradation could be involved in IRS2 and its interacting proteins to contribute to IR under HUA conditions. Conclusion: The data suggest that HUA-induced glucose intolerance in hepatic macrophages contributed to insulin resistance and impaired the insulin signaling pathway via IRS2-proteasome degradation.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose Intolerance , Hyperuricemia , Insulin Resistance , AMP-Activated Protein Kinases/metabolism , Animals , Cytokines/metabolism , Fluorodeoxyglucose F18 , Glucose/metabolism , Glucose Intolerance/metabolism , Glucose Transporter Type 4/metabolism , Hyperuricemia/metabolism , Insulin/metabolism , Insulin Receptor Substrate Proteins/metabolism , Kupffer Cells/metabolism , Mice , Phosphatidylinositol 3-Kinases/metabolism , Proteasome Endopeptidase Complex/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Urate Oxidase , Uric Acid/pharmacology
15.
Int J Biol Sci ; 18(10): 3944-3960, 2022.
Article in English | MEDLINE | ID: mdl-35844799

ABSTRACT

Our understanding of coding gene functions in lung cancer leads to the development of multiple generations of targeted drugs. Noncoding RNAs, including circular RNAs (circRNAs), have been demonstrated to play a vital role in tumorigenesis. Uncovering the functions of circRNAs in tumorigenesis and their underlying regulatory mechanisms may shed new light on the development of novel diagnostic and therapeutic strategies for human cancer. Here we report the important role of circFAT1 in lung adenocarcinoma (LUAD) progression and the potential impact of circFAT1 on LUAD treatment. We found that circFAT1 was one of the top expressed circRNAs in A549 cells by circRNA-seq and was significantly upregulated in human LUAD tissues. Multiple cellular assays with A549 and PC9 LAUD cell lines under both gain-of-function and loss-of-function conditions demonstrated that circFAT1 promoted proliferation of LUAD cells in vitro and in vivo. At molecular level, circFAT1 sequestered miR-7 to upregulate IRS2, which in turn regulated downstream ERK1/2 phosphorylation and CCND1 expression, ultimately promoting tumor progression. In addition, we showed that DDP treatment was much more effective in circFAT1 knockdown tumor cells in vitro and in a xenograft tumor model. Our results indicate that circFAT1 promote tumorigenesis in LUAD through sequestering miR-7, consequently upregulating IRS2-ERK1/2-mediated CCND1 expression, and can be a valuable therapeutic target and an important parameter for precision treatment in LUAD patients.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Adenocarcinoma of Lung/metabolism , Carcinogenesis/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Transformation, Neoplastic , Cyclin D1/genetics , Cyclin D1/metabolism , Gene Expression Regulation, Neoplastic , Humans , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Lung Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics
16.
Antioxidants (Basel) ; 11(7)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35883786

ABSTRACT

Thyroid hormones are normally involved in glycaemic control, but their excess can lead to altered glucose metabolism and insulin resistance (IR). Since hyperthyroidism-linked increase in ROS results in tissue oxidative stress that is considered a hallmark of conditions leading to IR, it is conceivable a role of ROS in the onset of IR in hyperthyroidism. To verify this hypothesis, we evaluated the effects of vitamin E on thyroid hormone-induced oxidative damage, insulin resistance, and on gene expression of key molecules involved in IR in the rat liver. The factors involved in oxidative damage, namely the total content of ROS, the mitochondrial production of ROS, the activity of antioxidant enzymes, the in vitro susceptibility to oxidative stress, have been correlated to insulin resistance indices, such as insulin activation of hepatic Akt and plasma level of glucose, insulin and HOMA index. Our results indicate that increased levels of oxidative damage ROS content and production and susceptibility to oxidative damage, parallel increased fasting plasma level of glucose and insulin, reduced activation of Akt and increased activation of JNK. This last result suggests a role for JNK in the insulin resistance induced by hyperthyroidism. Furthermore, the variation of the genes Pparg, Ppara, Cd36 and Slc2a2 could explain, at least in part, the observed metabolic phenotypes.

17.
J Cell Biochem ; 123(8): 1327-1339, 2022 08.
Article in English | MEDLINE | ID: mdl-35644013

ABSTRACT

Gluconeogenesis is one of the key processes through which the kidney contributes to glucose homeostasis. Urinary exosomes (uE) have been used to study renal gene regulation noninvasively in humans and rodents. Recently, we demonstrated fast-fed regulation of phosphoenolpyruvate carboxykinase (PEPCK), the rate-limiting enzyme for gluconeogenesis, in human uE. The regulation was impaired in subjects with early insulin resistance. Here, we studied primary human proximal tubule cells (hPT) and human uE to elucidate a potential link between insulin resistance and fast-fed regulation of renal PEPCK. We demonstrate that fasted hPTs had higher PEPCK and insulin receptor substrate-2 (IRS2) mRNA and protein levels, relative to fed cells. The fast-fed regulation was, however, attenuated in insulin receptor knockdown (IRKO) hPTs. The IRKO was confirmed by the blunted insulin-induced response on PEPCK, PGC1α, p-IR, and p-AKT expression in IRKO cells. Exosomes secreted by the wild-type or IRKO hPT showed similar regulation to the respective hPT. Similarly, in human uE, the relative abundance of IRS-2 mRNA (to IRS1) was higher in the fasted state relative to the fed condition. However, the fast-fed difference was absent in subjects with early insulin resistance. These subjects had higher circulating glucagon levels relative to subjects with optimal insulin sensitivity. Furthermore, in hPT cells, glucagon significantly induced PEPCK and IRS2 gene, and gluconeogenesis. IR knockdown in hPT cells further increased the gene expression levels. Together the data suggest that reduced insulin sensitivity and high glucagon in early insulin resistance may impair renal gluconeogenesis via IRS2 regulation.


Subject(s)
Gluconeogenesis , Insulin Resistance , Glucagon/metabolism , Gluconeogenesis/physiology , Humans , Insulin/metabolism , Kidney/metabolism , Liver/metabolism , Phosphoenolpyruvate Carboxykinase (ATP)/genetics , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , RNA, Messenger/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/metabolism
18.
Biochem Genet ; 60(6): 2364-2382, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35397054

ABSTRACT

Non-small cell lung cancer (NSCLC) is a common histological subtype of lung cancer, which occupies 80-85% of the proportion in all lung cancer cases. Therefore, this study was designed to clarify the role and underlying molecular mechanisms of circFAM126A in NSCLC. The real-time quantitative polymerase chain reaction (RT-qPCR) assay was conducted to assess circFAM126A, FAM126A, miR-613, and IRS2 expression in NSCLC tissues and cells. The proliferation ability of cells was measured by MTT, EdU, and colony-forming assays. The flow cytometry assay was performed to evaluate cell cycle distribution and apoptosis of NSCLC cells. The migration and invasion were determined by wound healing and transwell matrigel assays, respectively. The interaction relationship between miR-613 and circFAM126A or IRS2 was analyzed by dual-luciferase reporter and RNA pull-down assays. Tumorigenesis in nude mice was conducted to clarify the functional roles of circFAM126A inhibition in vivo. CircFAM126A was obviously overexpressed in NSCLC tissues and cells when compared with controls. The loss-of-functional experiments suggested that knockdown of circFAM126A suppressed proliferation, migration and invasion, as well as caused apoptosis and cell cycle arrest in NSCLC cells, which was abolished by silencing of miR-613. In addition, IRS2 was a target gene of miR-613. Overexpression of miR-613 exerted carcinoma inhibitor role in NSCLC by inhibition of IRS2 expression. Consistently, the silencing of circFAM126A also functioned anti-tumorigenic roles in nude mice in vivo. Mechanistically, circFAM126A could function as a miRNA sponge for miR-613 to regulate the expression of IRS2, thereby regulating proliferation, migration, invasion, apoptosis, and cell cycle arrest in NSCLC cells.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Insulin Receptor Substrate Proteins , Lung Neoplasms , MicroRNAs , RNA, Circular , Animals , Mice , Carcinogenesis/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Movement/genetics , Cell Proliferation/genetics , Cell-Free Nucleic Acids , Gene Expression Regulation, Neoplastic , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Lung Neoplasms/pathology , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , RNA, Circular/genetics
19.
Technol Health Care ; 30(S1): 71-80, 2022.
Article in English | MEDLINE | ID: mdl-35124585

ABSTRACT

BACKGROUND: The etiology of polycystic ovary syndrome (PCOS) remains unclear with highly heterogeneous clinical manifestations, recently growing evidence revealing genetic variants play a crucial part in its pathogenesis. OBJECTIVE: This study aimed to examine the correlation between SNPs in miRNA-135a's binding site of targeted gene IRS2 and clinical manifestations of PCOS in Chinese females. METHOD: A total of 126 Chinese women with PCOS and 109 healthy women were enrolled, divided into 4 groups based on different clinical features of hyperandrogenemia (HA), insulin resistance (IR), polycystic ovary morphology (PCOM) and obesity. We analyzed 2 single nucleotide polymorphisms (SNPs) of the IRS2 gene (rs2289046 and rs1865434) and clinical features' laboratory measurements such as sex hormone, fasting plasma glucose (FPG), fasting plasma insulin (FINS). RESULTS: Located in miRNA-135a binding site of IRS2 gene, the rs2289046's triple genotypes distribution showed a significant difference between PCOS/control group and PCOM/non-PCOM group (P< 0.05) while the rs1865434's triple genotype distribution showed a significant difference between obesity/non-obesity group (P< 0.05). CONCLUSION: The results revealed the two SNPs as rs2289046 and rs1865434 in the IRS-2 binding region of miRNA-135a have correlations with the clinical features of PCOS in Chinese population.


Subject(s)
MicroRNAs , Polycystic Ovary Syndrome , Binding Sites , Case-Control Studies , China , Female , Genetic Predisposition to Disease , Humans , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , MicroRNAs/genetics , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Polymorphism, Single Nucleotide
20.
Free Radic Biol Med ; 178: 42-53, 2022 01.
Article in English | MEDLINE | ID: mdl-34848368

ABSTRACT

Insulin resistance (IR) promotes atherosclerosis and increases the risk of diabetes and cardiovascular diseases. Our previous studies have demonstrated that high uric acid (HUA) increased oxidative stress, leading to IR in cardiomyocytes and pancreatic ß cells. However, whether HUA can induce IR in monocytes/macrophages, which play critical roles in all stages of atherosclerosis, is unclear. Recent findings revealed that thioredoxin-interacting protein (TXNIP) negatively regulates insulin signaling; however, the roles and mechanisms of TXNIP in HUA-induced IR remain unclear. Therefore, in this study, we investigated the function of TXNIP in macrophages treated with UA. Transcriptomic profiling revealed TXNIP as one of the most upregulated genes, and subsequent RT-PCR and Western blot analyses confirmed that TXNIP was upregulated by HUA. HUA treatment significantly increased mitochondrial reactive oxygen species (MtROS) levels and decreased insulin-stimulated glucose uptake. Silencing TXNIP by RNA interference significantly diminished HUA-induced oxidative stress and IR. Mechanistically, silencing TXNIP reversed the inhibition of the phosphorylation of insulin receptor substrate 2 (IRS2)/protein kinase B (AKT) pathway induced by HUA. Additional study revealed that HUA induced the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) signaling pathway, but silencing TXNIP abolished it. Moreover, Nrf2 inhibitor (ML385) ameliorated HUA-induced IR independent of IRS2/AKT signaling. Probenecid, a well-known UA-lowering drug, significantly suppressed the activation of TXNIP and Nrf2/HO-1 signaling. Furthermore, RNA-seq revealed that activation of the TXNIP-related redox pathway may be a key regulator in patients with asymptomatic hyperuricemia. These data suggest that silencing TXNIP could ameliorate HUA-induced IR via the IRS2/AKT and Nrf2/HO-1 pathways in macrophages. Additionally, TXNIP might be a promising therapeutic target for preventing and treating oxidative stress and IR induced by HUA.


Subject(s)
Insulin Resistance , Uric Acid , Carrier Proteins/genetics , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Macrophages/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...