Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 352
Filter
1.
Indian J Surg Oncol ; 15(2): 264-267, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38741632

ABSTRACT

Introduction and Objectives: OSAKA regimen is a novel bladder preservation therapy involving balloon-occluded selective arterial infusion of radio-sensitizing chemotherapeutic agent with concurrent hemodialysis (HD), followed by radiation therapy. Objectives are to study the feasibility of this novel regimen in patients with advanced cancer bladder (Ca Bladder). Methods: Two patients having advanced Ca Bladder with cisplatin ineligibility and poor performance status were managed with OSAKA regimen. Patients undergo super selective catheterisation of the anterior division of the internal iliac artery, followed by concurrent instillation of cisplatin (100 mg) via microcatheters and hemodialysis. Within 72 h, definitive radiation therapy is given. Image-guided radiation therapy (IGRT) with Helical Tomo using an Accuracy Radixact Tomography machine was used. 60 Gray/30 fractions is given to the bladder and nodes (50 Gray to bladder and nodes plus margin, with a boost of 10 Gray to bladder plus margin). Response is monitored by 3 monthly fluorodeoxyglucose positron emission tomography (FDG PET) imaging. Results: Our first patient tolerated the procedure well and showed a complete response at 3 months of FDG PET imaging, but unfortunately, 1 year of FDG PET showed bony metastases, and the patient was managed accordingly. Our second patient also tolerated the regimen well, showed a complete response at 3 and 12 months of FDG PET imaging, and is under follow-up. Conclusions: The OSAKA regimen, as a bladder preservation strategy, is feasible and safe in selective advanced Ca Bladder patients.

2.
Radiol Phys Technol ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38691308

ABSTRACT

In cone-beam computed tomography (CBCT) for image-guided radiation therapy (IGRT) of the head, we evaluated the exposure dose reduction effect to the crystalline lens and position-matching accuracy by narrowing one side (X2) of the X-ray aperture (blade) in the X-direction. We defined the ocular surface dose of the head phantom as the crystalline lens exposure dose and measured using a radiophotoluminescence dosimeter (RPLD, GD-352 M) in the preset field (13.6 cm) and in each of the fields when blade X2 aperture was reduced in 0.5 cm increments from 10.0 to 5.0 cm. Auto-bone matching was performed on CBCT images acquired five times with blade X2 aperture set to 13.6 cm and 5.0 cm at each position when the head phantom was moved from - 5.0 to + 5.0 mm in 1.0 mm increment. The maximum reduction rate in the crystalline lens exposure dose was - 38.7% for the right lens and - 13.2% for the left lens when blade X2 aperture was 5.0 cm. The maximum difference in the amount of position correction between blade X2 aperture of 13.6 cm and 5.0 cm was 1 mm, and the accuracy of auto-bone matching was similar. In CBCT of the head, reduced blade X2 aperture is a useful technique for reducing the crystalline lens exposure dose while ensuring the accuracy of position matching.

3.
Clin Case Rep ; 12(4): e8633, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38585585

ABSTRACT

PET-driven SBRT plus pembrolizumab as first-line therapy against pleomorphic Pancoast cancer appears beneficial, probably due to high equivalent doses of SBRT on photopenic necrotic core and synergic immune system stimulation of immunoradiotherapy.

4.
Phys Med Biol ; 69(8)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38471171

ABSTRACT

Objective.The aim of this study was to reconstruct volumetric computed tomography (CT) images in real-time from ultra-sparse two-dimensional x-ray projections, facilitating easier navigation and positioning during image-guided radiation therapy.Approach.Our approach leverages a voxel-sapce-searching Transformer model to overcome the limitations of conventional CT reconstruction techniques, which require extensive x-ray projections and lead to high radiation doses and equipment constraints.Main results.The proposed XTransCT algorithm demonstrated superior performance in terms of image quality, structural accuracy, and generalizability across different datasets, including a hospital set of 50 patients, the large-scale public LIDC-IDRI dataset, and the LNDb dataset for cross-validation. Notably, the algorithm achieved an approximately 300% improvement in reconstruction speed, with a rate of 44 ms per 3D image reconstruction compared to former 3D convolution-based methods.Significance.The XTransCT architecture has the potential to impact clinical practice by providing high-quality CT images faster and with substantially reduced radiation exposure for patients. The model's generalizability suggests it has the potential applicable in various healthcare settings.


Subject(s)
Radiotherapy, Image-Guided , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , X-Rays , Cone-Beam Computed Tomography/methods , Imaging, Three-Dimensional , Algorithms , Image Processing, Computer-Assisted/methods , Phantoms, Imaging
5.
Med Phys ; 51(5): 3619-3634, 2024 May.
Article in English | MEDLINE | ID: mdl-38517359

ABSTRACT

BACKGROUND: This study addresses the technical gap between clinical radiation therapy (RT) and preclinical small-animal RT, hindering the comprehensive validation of innovative clinical RT approaches in small-animal models of cancer and the translation of preclinical RT studies into clinical practices. PURPOSE: The main aim was to explore the feasibility of biologically guided RT implemented within a small-animal radiation therapy (SART) platform, with integrated quad-modal on-board positron emission tomography (PET), single-photon emission computed tomography, photon-counting spectral CT, and cone-beam CT (CBCT) imaging, in a Monte Carlo model as a proof-of-concept. METHODS: We developed a SART workflow employing quad-modal imaging guidance, integrating multimodal image-guided RT and emission-guided RT (EGRT). The EGRT algorithm was outlined using positron signals from a PET radiotracer, enabling near real-time adjustments to radiation treatment beams for precise targeting in the presence of a 2-mm setup error. Molecular image-guided RT, incorporating a dose escalation/de-escalation scheme, was demonstrated using a simulated phantom with a dose painting plan. The plan involved delivering a low dose to the CBCT-delineated planning target volume (PTV) and a high dose boosted to the highly active biological target volume (hBTV) identified by the 18F-PET image. Additionally, the Bayesian eigentissue decomposition method illustrated the quantitative decomposition of radiotherapy-related parameters, specifically iodine uptake fraction and virtual noncontrast (VNC) electron density, using a simulated phantom with Kidney1 and Liver2 inserts mixed with an iodine contrast agent at electron fractions of 0.01-0.02. RESULTS: EGRT simulations generated over 4,000 beamlet responses in dose slice deliveries and illustrated superior dose coverage and distribution with significantly lower doses delivered to normal tissues, even with a 2-mm setup error introduced, demonstrating the robustness of the novel EGRT scheme compared to conventional image-guided RT. In the dose-painting plan, doubling the dose to the hBTV while maintaining a low dose for the PTV resulted in an organ-at-risk (OAR) dose comparable to the low-dose treatment for the PTV alone. Furthermore, the decomposition of radiotherapy-related parameters in Kidney1 and Liver2 inserts, including iodine uptake fractions and VNC electron densities, exhibited average relative errors of less than 1.0% and 2.5%, respectively. CONCLUSIONS: The results demonstrated the successful implementation of biologically guided RT within the proposed quad-model image-guided SART platform, with potential applications in preclinical RT and adaptive RT studies.


Subject(s)
Cone-Beam Computed Tomography , Monte Carlo Method , Radiotherapy, Image-Guided , Radiotherapy, Image-Guided/methods , Animals , Cone-Beam Computed Tomography/methods , Positron-Emission Tomography/methods , Tomography, Emission-Computed, Single-Photon , Multimodal Imaging , Phantoms, Imaging
6.
Phys Eng Sci Med ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536632

ABSTRACT

The kV cone beam computed tomography (CBCT) is one of the most common imaging modalities used for image-guided radiation therapy (IGRT) procedures. Additional doses are delivered to patients, thus assessment and optimization of the imaging doses should be taken into consideration. This study aimed to investigate the influence of using fixed and patient-specific FOVs on the patient dose. Monte Carlo simulations were performed to simulate kV beams of the imaging system integrated into Truebeam linear accelerator using BEAMnrc code. Organ and size-specific effective doses resulting from chest and pelvis scanning protocols were estimated with DOSXYZnrc code using a phantom library developed by the National Cancer Institute (NCI) of the US. The library contains 193 (100 male and 93 female) mesh-type computational human adult phantoms, and it covers a large ratio of patient sizes with heights and weights ranging from 150 to 190 cm and 40 to 125 kg. The imaging doses were assessed using variable FOV of three sizes, small (S), medium (M), and large (L) for each scan region. The results show that the FOV and the patient size played a major role in the scan dose. The average percentage differences (PDs) for doses of organs that were fully inside the different FOVs were relatively low, all within 11% for both protocols. However, doses to organs that were scanned partially or near the FOVs were affected significantly. For the chest protocol, the inclusion of the thyroid in the scan field could give a dose of 1-7 mGy/100 mAs to the thyroid, compared to 0.4-1 mGy/100 mAs when it was excluded. Similarly, on average, testes doses could be 6 mGy/100 mAs for the male pelvis protocol compared to 3 mGy/100 mAs when it did not lie in the field irradiated. These dose differences resulted in an average increase of up to 27% in the size-specific effective dose of the protocols. Since changing the field size is possible for CBCT scans, the results suggest that patient-specific scanning protocols could be applied for each scan area in a manner similar to that used for CT scans. Adjustment of the FOV size should be subject to the clinical needs, and assist in improving the treatment accuracy. The patient's height and weight might be considered as the main factors upon which, the selection of the appropriate patient-specific protocol is based. This approach should optimize the imaging doses used for IGRT procedures by minimizing doses of a large ratio of patients.

7.
Med Dosim ; 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38556401

ABSTRACT

Accurate information on set-up error during radiotherapy is essential for determining the optimal number of treatments in hypofractionated radiotherapy for prostate cancer. This necessitates careful control by the radiotherapy staff to assess the patient's condition. This study aimed to develop an evaluation method of the temporal trends in a patient's specific prostate movement during treatment using image matching and margin values. This study included 65 patients who underwent prostate volumetric modulated arc therapy (mean treatment time, 87.2 s). Set-up errors were assessed using bone, inter-, and intra-fraction marker matching across 39 fractions. The set-up margin was determined by dividing the four periods into 39 fractions using Stroom's formula and correlation coefficient. The intra-fraction set-up error was biased in the anterior-superior (AS) direction during treatment. The temporal trend of set-up errors during radiotherapy slightly increased based on bone matching and inter-fraction marker matching, with a 1.6-mm difference in the set-up margin fractions 11 to 20. The correlation coefficient of the mean prostate movement during treatment significantly decreased in the superior-inferior direction, while remaining high in the left-right and anterior-posterior directions. Image matching contributed significantly to the improvement of set-up errors; however, careful attention is needed for prostate movement in the AS direction, particularly during short treatment times. Understanding the trend of set-up errors during the treatment period is essential in numerical information sharing on patient condition and evaluating the margins for tailored hypo-fractionated radiotherapy, considering the facility's image-guided radiation therapy technology.

8.
Med Phys ; 51(4): 2941-2954, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38421665

ABSTRACT

BACKGROUND: In spite of the tremendous potential of game-changing biological image- and/or biologically guided radiation therapy (RT) and adaptive radiation therapy for cancer treatment, existing limited strategies for integrating molecular imaging and/or biological information with RT have impeded the translation of preclinical research findings to clinical applications. Additionally, there is an urgent need for a highly integrated small-animal radiation therapy (SART) platform that can seamlessly combine therapeutic and diagnostic capabilities to comprehensively enhance RT for cancer treatment. PURPOSE: We investigated a highly integrated quad-modal on-board imaging configuration combining positron emission tomography (PET), single-photon emission computed tomography (SPECT), photon-counting spectral CT, and cone-beam computed tomography (CBCT) in a SART platform using a Monte Carlo model as a proof-of-concept. METHODS: The quad-modal on-board imaging configuration of the SART platform was designed and evaluated by using the GATE Monte Carlo code. A partial-ring on-board PET imaging subsystem, utilizing advanced semiconductor thallium bromide detector technology, was designed to achieve high sensitivity and spatial resolution. On-board SPECT, photon-counting spectral-CT, and CBCT imaging were performed using a single cadmium zinc telluride flat detector panel. The absolute peak sensitivity and scatter fraction of the PET subsystem were estimated by using simulated phantoms described in the NEMA NU-4 standard. The spatial resolution of the PET image of the platform was evaluated by imaging a simulated micro-Derenzo hot-rod phantom. To evaluate the quantitative imaging capability of the system's spectral CT, the Bayesian eigentissue decomposition (ETD) method was utilized to quantitatively decompose the virtual noncontrast (VNC) electron densities and iodine contrast agent fractions in the Kidney1 inserts mixed with the iodine contrast agent within the simulated phantoms. The performance of the proposed quad-model imaging in the platform was validated by imaging a simulated phantom with multiple imaging probes, including an iodine contrast agent and radioisotopes of 18F and 99mTc. RESULTS: The PET subsystem demonstrated an absolute peak sensitivity of 18.5% at the scanner center, with an energy window of 175-560 KeV, and a scatter fraction of only 3.5% for the mouse phantom, with a default energy window of 480-540 KeV. The spatial resolution of PET on-board imaging exceeded 1.2 mm. All imaging probes were identified clearly within the phantom. The PET and SPECT images agreed well with the actual spatial distributions of the tracers within the phantom. Average relative errors on electron density and iodine contrast agent fraction in the Kidney1 inserts were less than 3%. High-quality PET images, SPECT images, spectral-CT images (including iodine contrast agent fraction images and VNC electron density images), and CBCT images of the simulated phantom demonstrated the comprehensive multimodal imaging capability of the system. CONCLUSIONS: The results demonstrated the feasibility of the proposed quad-modal imaging configuration in a SART platform. The design incorporates anatomical, molecular, and functional information about tumors, thereby facilitating successful translation of preclinical studies into clinical practices.


Subject(s)
Iodine , Spiral Cone-Beam Computed Tomography , Mice , Animals , Contrast Media , Bayes Theorem , Positron-Emission Tomography/methods , Tomography, Emission-Computed, Single-Photon/methods , Phantoms, Imaging , Monte Carlo Method
9.
Curr Oncol ; 31(2): 962-974, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38392066

ABSTRACT

BACKGROUND: Stereotactic Body Radiotherapy (SBRT) is as a standard treatment for prostate cancer (PCa). Tight margins and high dose gradients are needed, and the precise localization of the target is mandatory. Our retrospective study reports our experience regarding the evaluation of intrafraction prostate motion during LINAC-based SBRT evaluated with a novel electromagnetic (EM) tracking device. This device consists of an integrated Foley catheter with a transmitter connected to a receiver placed on the treatment table. METHODS: We analyzed 31 patients who received LINAC-based SBRT using flattening filter-free (FFF) volumetric modulated arc therapy (VMAT). The patients were scheduled to be treated for primary (n = 27) or an intraprostatic recurrent PCa (n = 4). A simulation CT scan was conducted while the patients had a filled bladder (100-150 cc) and an empty rectum, and an EM tracking device was used. The same rectal and bladder conditions were employed during the treatment. The patients received 36.25 Gy delivered over five consecutive fractions on the whole prostate and 40 Gy on the nodule(s) visible via MRI, both delivered with a Simultaneous Integrated Boost approach. The CTV-to-PTV margin was 2 mm for both the identified treatment volumes. Patient positioning was verified with XVI ConeBeam-CT (CBCT) matching before each fraction. When the signals exceeded a 2 mm threshold in any of the three spatial directions, the treatment was manually interrupted. A new XVI CBCT was performed if this offset lasted >20 s. RESULTS: We analyzed data about 155 fractions. The median and mean treatment times, calculated per fraction, were 10 m31 s and 12 m44 s (range: 6 m36 s-65 m28 s), and 95% of the fractions were delivered with a maximum time of 27 m48 s. During treatment delivery, the mean and median number of XVI CBCT operations realized during the treatment were 2 and 1 (range: 0-11). During the treatment, the prostate was outside the CTV-to-PTV margin (2 mm), thus necessitating the stoppage of the delivery +/- a reacquisition of the XVI CBCT for 11.2%, 8.9%, and 3.9% of the delivery time in the vertical, longitudinal, and lateral direction, respectively. CONCLUSIONS: We easily integrated an EM-transmitter-based gating for prostate LINAC-based SBRT into our normal daily workflow. Using this system, a 2 mm CTV-to-PTV margin could be safely applied. A small number of fractions showed a motion exceeding the predefined 2 mm threshold, which would have otherwise gone undetected without intrafraction motion management.


Subject(s)
Prostate , Radiosurgery , Male , Humans , Radiotherapy Planning, Computer-Assisted , Retrospective Studies , Electromagnetic Phenomena
10.
Biomed Tech (Berl) ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38353097

ABSTRACT

OBJECTIVES: Respiratory motion-induced displacement of internal organs poses a significant challenge in image-guided radiation therapy, particularly affecting liver landmark tracking accuracy. METHODS: Addressing this concern, we propose a self-supervised method for robust landmark tracking in long liver ultrasound sequences. Our approach leverages a Siamese-based context-aware correlation filter network, trained by using the consistency loss between forward tracking and back verification. By effectively utilizing both labeled and unlabeled liver ultrasound images, our model, Siam-CCF , mitigates the impact of speckle noise and artifacts on ultrasonic image tracking by a context-aware correlation filter. Additionally, a fusion strategy for template patch feature helps the tracker to obtain rich appearance information around the point-landmark. RESULTS: Siam-CCF achieves a mean tracking error of 0.79 ± 0.83 mm at a frame rate of 118.6 fps, exhibiting a superior speed-accuracy trade-off on the public MICCAI 2015 Challenge on Liver Ultrasound Tracking (CLUST2015) 2D dataset. This performance won the 5th place on the CLUST2015 2D point-landmark tracking task. CONCLUSIONS: Extensive experiments validate the effectiveness of our proposed approach, establishing it as one of the top-performing techniques on the CLUST2015 online leaderboard at the time of this submission.

11.
Br J Radiol ; 97(1153): 31-40, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263844

ABSTRACT

Recent innovations in image guidance, treatment delivery, and adaptive radiotherapy (RT) have created a new paradigm for planning target volume (PTV) margin design for patients with prostate cancer. We performed a review of the recent literature on PTV margin selection and design for intact prostate RT, excluding post-operative RT, brachytherapy, and proton therapy. Our review describes the increased focus on prostate and seminal vesicles as heterogenous deforming structures with further emergence of intra-prostatic GTV boost and concurrent pelvic lymph node treatment. To capture recent innovations, we highlight the evolution in cone beam CT guidance, and increasing use of MRI for improved target delineation and image registration and supporting online adaptive RT. Moreover, we summarize new and evolving image-guidance treatment platforms as well as recent reports of novel immobilization strategies and motion tracking. Our report also captures recent implementations of artificial intelligence to support image guidance and adaptive RT. To characterize the clinical impact of PTV margin changes via model-based risk estimates and clinical trials, we highlight recent high impact reports. Our report focusses on topics in the context of PTV margins but also showcase studies attempting to move beyond the PTV margin recipes with robust optimization and probabilistic planning approaches. Although guidelines exist for target margins conventional using CT-based image guidance, further validation is required to understand the optimal margins for online adaptation either alone or combined with real-time motion compensation to minimize systematic and random uncertainties in the treatment of patients with prostate cancer.


Subject(s)
Brachytherapy , Prostatic Neoplasms , Male , Humans , Artificial Intelligence , Cone-Beam Computed Tomography , Lymph Nodes
12.
Radiol Med ; 129(1): 133-151, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37740838

ABSTRACT

INTRODUCTION: The advent of image-guided radiation therapy (IGRT) has recently changed the workflow of radiation treatments by ensuring highly collimated treatments. Artificial intelligence (AI) and radiomics are tools that have shown promising results for diagnosis, treatment optimization and outcome prediction. This review aims to assess the impact of AI and radiomics on modern IGRT modalities in RT. METHODS: A PubMed/MEDLINE and Embase systematic review was conducted to investigate the impact of radiomics and AI to modern IGRT modalities. The search strategy was "Radiomics" AND "Cone Beam Computed Tomography"; "Radiomics" AND "Magnetic Resonance guided Radiotherapy"; "Radiomics" AND "on board Magnetic Resonance Radiotherapy"; "Artificial Intelligence" AND "Cone Beam Computed Tomography"; "Artificial Intelligence" AND "Magnetic Resonance guided Radiotherapy"; "Artificial Intelligence" AND "on board Magnetic Resonance Radiotherapy" and only original articles up to 01.11.2022 were considered. RESULTS: A total of 402 studies were obtained using the previously mentioned search strategy on PubMed and Embase. The analysis was performed on a total of 84 papers obtained following the complete selection process. Radiomics application to IGRT was analyzed in 23 papers, while a total 61 papers were focused on the impact of AI on IGRT techniques. DISCUSSION: AI and radiomics seem to significantly impact IGRT in all the phases of RT workflow, even if the evidence in the literature is based on retrospective data. Further studies are needed to confirm these tools' potential and provide a stronger correlation with clinical outcomes and gold-standard treatment strategies.


Subject(s)
Radiation Oncology , Radiotherapy, Image-Guided , Humans , Radiotherapy, Image-Guided/methods , Artificial Intelligence , Retrospective Studies , Radiotherapy Planning, Computer-Assisted/methods , Radiation Oncology/methods , Italy
13.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 80(2): 207-215, 2024 Feb 20.
Article in Japanese | MEDLINE | ID: mdl-38148020

ABSTRACT

PURPOSE: We created a phantom and analysis program for the assessment of IGRT positional accuracy. We verified the accuracy of analysis and the practicality of this evaluation method at several facilities. METHOD: End-to-end test was performed using an in-house phantom, and EPID images were acquired after displacement by an arbitrary amount using a micrometer, with after image registration as the reference. The difference between the center of the target and the irradiated field was calculated using our in-house analysis program and commercial software. The end-to-end test was conducted at three facilities, and the IGRT positional accuracy evaluation was verified. RESULT: The maximum difference between the displacement of the target determined from the EPID image and the arbitrary amount of micrometer displacement was 0.24 mm for the in-house analysis program and 0.30 mm for the commercial software. The maximum difference between the center of the target and the irradiation field on EPID images acquired at the three facilities was 0.97 mm. CONCLUSION: The proposed evaluation method using our in-house phantom and analysis program can be used for the assessment of IGRT positional accuracy.


Subject(s)
Radiotherapy, Image-Guided , Radiotherapy, Image-Guided/methods , Phantoms, Imaging , Software
14.
Radiat Oncol ; 18(1): 186, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37950314

ABSTRACT

Intraoperative radiation therapy (IORT) is a radiation technique applying a single fraction with a high dose during surgery. We report the first abdomino-pelvic application of an image-guided intraoperative electron radiation therapy with intraoperative real time dose calculation based on the individual intraoperative patient anatomy. A patient suffering from locoregionally recurrent rectal cancer after treatment with neoadjuvant re-chemoradiation was chosen for this approach. After surgical removal of the recurrence, an adequate IORT applicator was placed as usual. A novel mobile imaging device (ImagingRing, MedPhoton) was positioned around the patient covering the region to be treated with the IORT-applicator in place. It allowed the acquisition of three-dimensional intraoperative cone-beam computed tomography images suitable for dose calculation using an automated scaling (heuristic object and head scatter as well as hardening corrections) of Hounsfield units. After image acquisition confirmed the correct applicator position, the images were transferred to our treatment planning system for intraoperative dose calculation. Treatment could be accomplished using the calculated dose distribution. We herein describe the details of the procedure including necessary adjustments in the typically used IORT equipment and work flow. We further discuss the pros and cons of this new approach generally overcoming a decade long limitation of IORT procedures as well as future perspectives regarding IORT treatments.


Subject(s)
Radiotherapy, Image-Guided , Rectal Neoplasms , Humans , Electrons , Radiotherapy, Image-Guided/methods , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/radiotherapy , Rectal Neoplasms/surgery , Combined Modality Therapy , Cone-Beam Computed Tomography , Intraoperative Period , Intraoperative Care
15.
Med Phys ; 50(11): 7093-7103, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37782071

ABSTRACT

BACKGROUND: Proton therapy is an effective treatment for ocular melanoma, and other tumors of the eye. The fixed horizontal beamline dedicated to ocular treatments at Massachusetts General Hospital was originally commissioned in 2002, with much of the equipment, safety features, and practices dating back to an earlier implementation at Harvard Cyclotron in the 1970s. PURPOSE: To describe the experience of reevaluation and enhancement of the safety environment for one of the longest continuously operating proton therapy programs. METHODS: Several enhancements in quality control had been introduced throughout the years of operation, as described in this manuscript, to better align the practice with the evolving standards of proton therapy and the demands of a modern hospital. We spotlight the design and results of the failure mode and effect analysis (FMEA), and subsequent actions introduced to mitigate the modes associated with elevated risk. The findings of the FMEA informed the specifications for the new software application, which facilitated the improved management of the treatment workflow and the image-guidance aspects of ocular treatments. RESULTS: Eleven failure modes identified as having the highest risk are described. Six of these were mitigated with the clinical roll-out of a new application for image-guided radiation therapy (IGRT). Others were addressed through task automation, the broader introduction of checklists, and enhancements in pre-treatment staff-led time-out. CONCLUSIONS: Throughout the task of modernizing the safety system of our dedicated ocular beamline, FMEA proved to be an effective instrument in soliciting inputs from the staff about safety and workflow concerns, helping to identify steps associated with elevated failure risks. Risks were reduced with the clinical introduction of a new IGRT application, which integrates quality management tools widely recognized for their role in risk mitigation: automation of the data transfer and workflow steps, and with the introduction of checklists and redundancy cross-checks.


Subject(s)
Eye Neoplasms , Proton Therapy , Humans , Protons , Synchrotrons , Eye Neoplasms/radiotherapy , Cyclotrons
16.
Methods Cell Biol ; 180: 1-13, 2023.
Article in English | MEDLINE | ID: mdl-37890924

ABSTRACT

Image-guided radiation therapy (IGRT) platforms for preclinical research represent an important advance for radiation research. IGRT-based platforms more accurately model the delivery of therapeutic ionizing radiation as delivered in clinical practice which permits more translationally and clinically relevant radiation biology research. Fundamentally, IGRT allows for precise delivery of ionizing radiation in order to (1) ensure that the tumor and/or target of interest is adequately covered by the prescribed radiation dose, and (2) to minimize the radiation dose delivered to adjacent nontargeted or normal tissues. Here, we describe the techniques and outline a general workflow employed for IGRT in preclinical in vivo tumor models.


Subject(s)
Neoplasms , Radiotherapy, Image-Guided , Humans , Radiotherapy, Image-Guided/methods , Neoplasms/radiotherapy , Workflow
17.
Phys Med ; 115: 103161, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37847953

ABSTRACT

PURPOSE: In contemporary radiotherapy, patient positioning accuracy relies on kV imaging. This study aims at optimizing planar kV image acquisition protocols regarding patient dose without degrading image quality. MATERIALS AND METHODS: An image quality test-object was placed in-between PMMA plates, suitably arranged to model head or pelvis. Constructed phantoms were imaged using default protocols, the resultant image quality was assessed and the corresponding radiation dose was measured. The process was repeated using numerous kV/mAs combinations to identify those acquisition settings providing images at lower dose than the default protocols but without deterioration in image quality. Default and dose-optimized protocols were then tested on an anthropomorphic phantom and on 51 patients during two successive treatment sessions. Image quality was independently assessed by two readers. Organ and effective doses were estimated using a Monte Carlo simulation software. RESULTS: Low-contrast detectability exhibited a stronger dependence on kV/mAs settings, compared to high-contrast resolution. Dose-optimized protocols resulted in significant dose reductions (anteroposterior-head 48.0 %, lateral-head 30.0 %, anteroposterior-pelvis 28.4 %, lateral-pelvis 27.0 %) compared to the default ones, without compromising image quality. Optimized protocols decreased effective doses by 54 % and 29.6 % in head and pelvic acquisitions, respectively. Regarding image quality, anthropomorphic and patient images acquired using the dose-optimized protocols were subjectively evaluated equivalent to those obtained with the corresponding default settings, indicating that the proposed protocols may be routinely used. CONCLUSIONS: Given the potentially large number of radiotherapy fractions and the pertinent image acquisitions, dose-optimized protocols could significantly reduce patient dose associated with planar imaging without compromising positioning accuracy.


Subject(s)
Radiotherapy, Image-Guided , Humans , Radiotherapy, Image-Guided/methods , X-Rays , Phantoms, Imaging , Software , Computer Simulation , Radiation Dosage
18.
Front Oncol ; 13: 1174675, 2023.
Article in English | MEDLINE | ID: mdl-37711202

ABSTRACT

Introduction: Intermediate-high and high-risk endometrial cancer often require adjuvant treatments such as radiotherapy (RT) or brachitherapy (BT) to reduce the risk of loco-regional relapse. Inter- and intra-fraction variability of internal pelvic anatomy are possibly the largest source of error affecting pelvic RT. The implantation of Fiducial Makers (FMs) in the vaginal cuff of patients receiving RT or BT could help patient daily setup, image guidance and intra-fraction detection of the radiation targets. Clinical case: We have evaluated the case of an 80-year-old woman treated with surgery for endometrioid adenocarcinoma G2 (stage pT1b Nx LVSI+) who underwent adjuvant pelvic IMRT after the implantation of vaginal cuff FMs. CT-simulation Treatment Planning and IGRT strategy: Patient underwent planning CT scan 10 days after FMs implantation. RT consisted of 45Gy in 25 daily fractions to pelvic lymph nodes and surgical bed with simultaneous integrated boost up to 52.5Gy to the vaginal cuff and the upper two-thirds of the vagina. Cone beam Computed Tomography (CBCT) was acquired prior to every RT fraction for IGRT. Bladder and rectum were re-contoured on every CBCTs. Bladder and rectal volumes and median shifts were reported on a prospective database to quantify the impact of the pelvic organ variations. Results: The patient reported no discomfort during the FMs implantation, and no complications were seen. No evidence of FMs migration was reported. Bladder and rectal volumes planned contours were 245 and 55.3cc. Median bladder volumes for approved and "not acceptable" CBCTs were 222cc (range: 130-398) and 131cc (range: 65-326), respectively. Median rectal volumes for approved and "not acceptable" CBCTs were 75cc (range: 58-117) and 90cc (range: 54-189), respectively. The median values of the anterior-posterior, superior-inferior, lateral direction shifts were 3.4, 1.8 and 2.11 mm, respectively. Conclusion: In our clinical case, the implantation of FMs in the vaginal cuff of a patient who underwent pelvic adjuvant RT was well tolerated and reported no complications. The use of IGRT procedures based on FMs surrogating the vaginal vault may reduce inter-observer variability and pave the way for adaptive strategies or stereotactic treatments as external beam pelvic boost in gynecological field.

19.
Phys Imaging Radiat Oncol ; 27: 100472, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37720461

ABSTRACT

Background and purpose: Magnetic Resonance Imaging (MRI)-only planning workflows offer many advantages but raises challenges regarding image guidance. The study aimed to assess the viability of MRI to Cone Beam Computed Tomography (CBCT) based image guidance for MRI-only planning treatment workflows. Materials and methods: An MRI matching training package was developed. Ten radiation therapists, with a range of clinical image guidance experience and experience with MRI, completed the training package prior to matching assessment. The matching assessment was performed on four match regions: prostate gold seed, prostate soft tissue, rectum/anal canal and gynaecological. Each match region consisted of five patients, with three CBCTs per patient, resulting in fifteen CBCTs for each match region. The ten radiation therapists performed the CBCT image matching to CT and to MRI for all regions and recorded the match values. Results: The median inter-observer variation for MRI-CBCT matching and CT-CBCT matching for all regions were within 2 mm and 1 degree. There was no statistically significant association in the inter-observer variation in mean match values and radiation therapist image guidance experience levels. There was no statistically significant association in inter-observer variation in mean match values for MRI experience levels for prostate soft tissue and gynaecological match regions, while there was a statistically significant difference for prostate gold seed and rectum match regions. Conclusion: The results of this study support the concept that with focussed training, an MRI to CBCT image guidance approach can be successfully implemented in a clinical planning workflow.

SELECTION OF CITATIONS
SEARCH DETAIL
...