Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Front Neurosci ; 17: 1120741, 2023.
Article in English | MEDLINE | ID: mdl-37325032

ABSTRACT

Introduction: Default mode network (DMN) is the most involved network in the study of brain development and brain diseases. Resting-state functional connectivity (rsFC) is the most used method to study DMN, but different studies are inconsistent in the selection of seed. To evaluate the effect of different seed selection on rsFC, we conducted an image-based meta-analysis (IBMA). Methods: We identified 59 coordinates of seed regions of interest (ROIs) within the default mode network (DMN) from 11 studies (retrieved from Web of Science and Pubmed) to calculate the functional connectivity; then, the uncorrected t maps were obtained from the statistical analyses. The IBMA was performed with the t maps. Results: We demonstrate that the overlap of meta-analytic maps across different seeds' ROIs within DMN is relatively low, which cautions us to be cautious with seeds' selection. Discussion: Future studies using the seed-based functional connectivity method should take the reproducibility of different seeds into account. The choice of seed may significantly affect the connectivity results.

2.
Hum Brain Mapp ; 44(3): 1094-1104, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36346215

ABSTRACT

Previous studies have explored resting-state functional connectivity (rs-FC) of the amygdala in patients with autism spectrum disorder (ASD). However, it remains unclear whether there are frequency-specific FC alterations of the amygdala in ASD and whether FC in specific frequency bands can be used to distinguish patients with ASD from typical controls (TCs). Data from 306 patients with ASD and 314 age-matched and sex-matched TCs were collected from 28 sites in the Autism Brain Imaging Data Exchange database. The bilateral amygdala, defined as the seed regions, was used to perform seed-based FC analyses in the conventional, slow-5, and slow-4 frequency bands at each site. Image-based meta-analyses were used to obtain consistent brain regions across 28 sites in the three frequency bands. By combining generative adversarial networks and deep neural networks, a deep learning approach was applied to distinguish patients with ASD from TCs. The meta-analysis results showed frequency band specificity of FC in ASD, which was reflected in the slow-5 frequency band instead of the conventional and slow-4 frequency bands. The deep learning results showed that, compared with the conventional and slow-4 frequency bands, the slow-5 frequency band exhibited a higher accuracy of 74.73%, precision of 74.58%, recall of 75.05%, and area under the curve of 0.811 to distinguish patients with ASD from TCs. These findings may help us to understand the pathological mechanisms of ASD and provide preliminary guidance for the clinical diagnosis of ASD.


Subject(s)
Autism Spectrum Disorder , Deep Learning , Humans , Autism Spectrum Disorder/diagnostic imaging , Brain Mapping/methods , Neural Pathways/diagnostic imaging , Brain , Magnetic Resonance Imaging/methods , Amygdala/diagnostic imaging
3.
Front Neurosci ; 16: 927556, 2022.
Article in English | MEDLINE | ID: mdl-35924226

ABSTRACT

Social function impairment is the core deficit of autism spectrum disorder (ASD). Although many studies have investigated ASD through a variety of neuroimaging tools, its brain mechanism of social function remains unclear due to its complex and heterogeneous symptoms. The present study aimed to use resting-state functional magnetic imaging data to explore effective connectivity between the right temporoparietal junction (RTPJ), one of the key brain regions associated with social impairment of individuals with ASD, and the whole brain to further deepen our understanding of the neuropathological mechanism of ASD. This study involved 1,454 participants from 23 sites from the Autism Brain Imaging Data Exchange (ABIDE) public dataset, which included 618 individuals with ASD and 836 with typical development (TD). First, a voxel-wise Granger causality analysis (GCA) was conducted with the RTPJ selected as the region of interest (ROI) to investigate the differences in effective connectivity between the ASD and TD groups in every site. Next, to obtain further accurate and representative results, an image-based meta-analysis was implemented to further analyze the GCA results of each site. Our results demonstrated abnormal causal connectivity between the RTPJ and the widely distributed brain regions and that the connectivity has been associated with social impairment in individuals with ASD. The current study could help to further elucidate the pathological mechanisms of ASD and provides a new perspective for future research.

4.
J Affect Disord ; 312: 69-77, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35710036

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is associated with altered brain connectivity. Previous studies have focused on the static functional connectivity pattern from amygdala subregions in ASD while ignoring its dynamics. Considering that dynamic functional connectivity (dFC) can provide different perspectives, the present study aims to investigate the dFC pattern of the amygdala subregions in ASD patients. METHODS: Data of 618 ASD patients and 836 typical controls (TCs) of 30 sites were obtained from the Autism Brain Imaging Data Exchange (ABIDE) database. The sliding window approach was applied to conduct seed-based dFC analysis. The seed regions were bilateral basolateral (BLA) and centromedial-superficial amygdala (CSA). A two-sample t-test was done at each site. Image-based meta-analysis (IBMA) based on the results from all sites was performed. Correlation analysis was conducted between the dFC values and the clinical scores. RESULTS: The ASD patients showed lower dFC between the left BLA and the bilateral inferior temporal (ITG)/left superior frontal gyrus, between the right BLA and right ITG/right thalamus/left superior temporal gyrus, and between the right CSA and middle temporal gyrus. The ASD patients showed higher dFC between the left BLA and temporal lobe/right supramarginal gyrus, between the right BLA and left calcarine gyrus, and between the left CSA and left calcarine gyrus. Correlation analysis revealed that the symptom severity was positively correlated with the dFC between the bilateral BLA and ITG in ASD. CONCLUSIONS: Abnormal dFC of the specific amygdala subregions may provide new insights into the pathological mechanisms of ASD.


Subject(s)
Autism Spectrum Disorder , Magnetic Resonance Imaging , Amygdala , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/pathology , Brain , Brain Mapping/methods , Humans , Magnetic Resonance Imaging/methods
5.
Brain Topogr ; 34(5): 598-607, 2021 09.
Article in English | MEDLINE | ID: mdl-33970388

ABSTRACT

The current state of label conventions used to describe brain networks related to executive functions is highly inconsistent, leading to confusion among researchers regarding network labels. Visually similar networks are referred to by different labels, yet these same labels are used to distinguish networks within studies. We performed a literature review of fMRI studies and identified nine frequently-used labels that are used to describe topographically or functionally similar neural networks: central executive network (CEN), cognitive control network (CCN), dorsal attention network (DAN), executive control network (ECN), executive network (EN), frontoparietal network (FPN), working memory network (WMN), task positive network (TPN), and ventral attention network (VAN). Our aim was to meta-analytically determine consistency of network topography within and across these labels. We hypothesized finding considerable overlap in the spatial topography among the neural networks associated with these labels. An image-based meta-analysis was performed on 158 group-level statistical maps (SPMs) received from authors of 69 papers listed on PubMed. Our results indicated that there was very little consistency in the SPMs labeled with a given network name. We identified four clusters of SPMs representing four spatially distinct executive function networks. We provide recommendations regarding label nomenclature and propose that authors looking to assign labels to executive function networks adopt this template set for labeling networks.


Subject(s)
Brain Mapping , Executive Function , Brain/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Nerve Net/diagnostic imaging , Neural Pathways/diagnostic imaging
6.
Brain Res ; 1757: 147299, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33516816

ABSTRACT

Autism spectrum disorder (ASD) patients are often reported altered patterns of functional connectivity (FC) on resting-state functional magnetic resonance imaging (rsfMRI) scans. However, the results in similar brain regions were inconsistent. In this study, we first investigated statistical differences in large-scale resting-state networks (RSNs) on 192 healthy controls (HCs) and 103 ASD patients by using independent component analysis (ICA). Second, an image-based meta-analysis (IBMA) was applied to discover the consistency of spatial patterns from different sites. Last, utilizing these patterns as features, we used Support Vector Machine (SVM) classifier to identify whether a subject was suffering from ASD or not. As a result, six RSNs were obtained with ICA. In each RSN, we identified altered functional connectivity between ASD and HC across the multi-site data. We calculated the area under the receiver operating characteristic curve plots (AUC) to determine the classification performance. The AUC value of classification reaches 0.988. In conclusion, the present study indicates that intrinsic connectivity patterns produced from rsfMRI data could yield a possible biomarker of ASD and contributed to the neurobiology of ASD.


Subject(s)
Autism Spectrum Disorder/physiopathology , Brain Mapping , Brain/physiopathology , Machine Learning , Magnetic Resonance Imaging , Autism Spectrum Disorder/diagnosis , Brain Mapping/methods , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Pathways/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL