Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.721
Filter
1.
J Biochem ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953373

ABSTRACT

In most organs, resources such as nutrients, oxygen, and physiologically active substances are unevenly supplied within the tissue spaces. Consequently, different tissue functions are exhibited in each space. This spatial heterogeneity of tissue environments arises depending on the spatial arrangement of nutrient vessels and functional vessels, leading to continuous changes in the metabolic states and functions of various cell types from regions proximal to these vessels to distant regions. This phenomenon is referred to as "zonation". Traditional analytical methods have made it difficult to investigate this zonation in detail. However, recent advancements in intravital imaging, spatial transcriptomics, and single-cell transcriptomics technologies have facilitated the discovery of "zones" in various organs and elucidated their physiological roles. Here, we outline the spatial differences in the immune system within each zone of organs. This information provides a deeper understanding of organs' immune systems.

2.
Nervenarzt ; 2024 Jul 02.
Article in German | MEDLINE | ID: mdl-38953921

ABSTRACT

BACKGROUND: Neurodegenerative diseases represent an increasing challenge in ageing societies, as only limited treatment options are currently available. OBJECTIVE: New research methods and interdisciplinary interaction of different disciplines have changed the way neurological disorders are viewed and paved the way for the comparatively new field of neuroimmunology, which was established in the early 1980s. Starting from neurological autoimmune diseases, such as multiple sclerosis, knowledge about the involvement of immunological processes in other contexts, such as stroke or traumatic brain injury, has been significantly expanded in recent years. MATERIAL AND METHODS: This review article provides an overview of the role of the immune system and the resulting potential for novel treatment approaches. RESULTS: The immune system plays a central role in fighting infections but is also able to react to the body's own signals under sterile conditions and cause inflammation and subsequent adaptive immune responses through the release of immune mediators and the recruitment and differentiation of certain immune cell types. This can be beneficial in initiating healing processes; however, chronic inflammatory conditions usually have destructive consequences for the tissue and the organism and must be interrupted. CONCLUSION: It is now known that different cells of the immune system play an important role in neurological diseases. Regulatory mechanisms, which are mediated by regulatory T cells or Th2 cells, are usually associated with a good prognosis, whereas inflammatory processes and polarization towards Th1 or Th17 have a destructive character. Novel immunomodulators, which are also increasingly being used in cancer treatment, can now be used in a tissue-specific manner and therefore offer great potential for use in neurological diseases.

3.
Sci Rep ; 14(1): 15101, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956051

ABSTRACT

The etiology of tic disorders (TDs) is not precisely known, although several lines of evidence suggest involvement of the immune system in pathogenesis. Here, we aimed to determine the expression levels of pro-inflammatory and anti-inflammatory cytokines in children with TD and compare them with those of healthy controls. Furthermore, we also evaluated their association with clinical variables in the TD group. Within the study period, 88 children with tic disorders and 111 healthy control children were enrolled. Most children with tic disorders were diagnosed with Tourette's disorder (n = 47, 53.4%) or persistent motor tic disorder (n = 39, 44.3%), while the remainder (n = 2, 2.3%) were diagnosed with persistent vocal tic disorder. We found that children with tic disorders had significantly elevated levels of IL-1ß, TNF-α, IL-6 and IL-4 expression, while we detected lower expression levels of IL-17 in children with tic disorders. Our findings provide a molecular landscape of cytokine expression in children with TD, which may suggest a proinflammatory state not affected by the presence of comorbidity and symptom severity. Delineating the contribution of alterations in the immune system to the pathogenesis of tic disorders may pave the way for better therapeutic interventions.


Subject(s)
Cytokines , Tic Disorders , Humans , Child , Male , Female , Adolescent , Cytokines/metabolism , Case-Control Studies , Child, Preschool
4.
J Reprod Immunol ; 165: 104283, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38991487

ABSTRACT

Genital tract infections can cause a variety of harmful health outcomes, including endometritis, bacterial vaginosis, and pelvic inflammatory disease, in addition to infertility. Anaerobic bacteria, such as Gardnerella vaginalis, Megasphaera spp., and Atopobium vaginae, are more commonly identified in cases of bacterial vaginosis than lactobacilli. It is unknown how the microorganisms that cause pelvic inflammatory diseases and endometritis enter the uterus. Both prospective and retrospective research have connected pelvic inflammatory disorders, chronic endometritis, and bacterial vaginosis to infertility. Similar to bacterial vaginosis, endometritis-related infertility is probably caused by a variety of factors, such as inflammation, immune system recognition of sperm antigens, bacterial toxins, and a higher risk of STDs. Preconception care for symptomatic women may include diagnosing and treating pelvic inflammatory disease, chronic endometritis, and bacterial vaginosis before conception to optimize the results of both natural and assisted reproduction.

5.
Front Cell Infect Microbiol ; 14: 1367566, 2024.
Article in English | MEDLINE | ID: mdl-38983114

ABSTRACT

Humanized mouse models are valuable tools for investigating the human immune system in response to infection and injury. We have previously described the human immune system (HIS)-DRAGA mice (HLA-A2.HLA-DR4.Rag1KO.IL-2RgKO.NOD) generated by infusion of Human Leukocyte Antigen (HLA)-matched, human hematopoietic stem cells from umbilical cord blood. By reconstituting human cells, the HIS-DRAGA mouse model has been utilized as a "surrogate in vivo human model" for infectious diseases such as Human Immunodeficiency Virus (HIV), Influenza, Coronavirus Disease 2019 (COVID-19), scrub typhus, and malaria. This humanized mouse model bypasses ethical concerns about the use of fetal tissues for the humanization of laboratory animals. Here in, we demonstrate the presence of human microglia and T cells in the brain of HIS-DRAGA mice. Microglia are brain-resident macrophages that play pivotal roles against pathogens and cerebral damage, whereas the brain-resident T cells provide surveillance and defense against infections. Our findings suggest that the HIS-DRAGA mouse model offers unique advantages for studying the functions of human microglia and T cells in the brain during infections, degenerative disorders, tumors, and trauma, as well as for testing therapeutics in these pathological conditions.


Subject(s)
Brain , Disease Models, Animal , Microglia , T-Lymphocytes , Animals , Microglia/immunology , Humans , Mice , Brain/immunology , T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/immunology
6.
J Fish Dis ; : e13998, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39001637

ABSTRACT

Exposure to temperatures outside of a fish's optimal range results in suppression of the immune system, ultimately leaving aquaculture stocks susceptible to disease outbreaks. This effect is exacerbated in triploid fishes, which demonstrate greater susceptibility to stress than their diploid counterparts. This study investigates the impacts of acute heat stress on the abundance of immune transcripts and proteins in diploid and triploid Chinook salmon (Oncorhynchus tshawytscha), an important finfish crop. This study also demonstrates that acute heat stress induces significant increases in the abundance hsp70, hsp90 and il1b transcripts in the head kidneys, gills and heart ventricles of both diploid and triploid Chinook salmon. Widespread dysregulation of antigen-presentation transcripts was also observed in fish of both ploidies. These results suggest that acute heat stress activates acute-phase responses in Chinook salmon and dysregulates antigen presentation, potentially leaving fish more susceptible to infection. At the protein level, IL-1ß was differentially expressed in the head kidney and ventricles of diploid and triploid salmon following heat shock. Differential expression of two tapasin-like proteins in diploid and triploid salmon subjected to heat shock was also observed. Altogether, these data indicate that diploid and triploid Chinook salmon respond differently to acute thermal stressors.

8.
Front Immunol ; 15: 1405210, 2024.
Article in English | MEDLINE | ID: mdl-38947315

ABSTRACT

In bone marrow transplantation (BMT), hematopoiesis-reconstituting cells are introduced following myeloablative treatment, which eradicates existing hematopoietic cells and disrupts stroma within the hematopoietic tissue. Both hematopoietic cells and stroma then undergo regeneration. Our study compares the outcomes of a second BMT administered to mice shortly after myeloablative treatment and the first BMT, with those of a second BMT administered to mice experiencing robust hematopoietic regeneration after the initial transplant. We evaluated the efficacy of the second BMT in terms of engraftment efficiency, types of generated blood cells, and longevity of function. Our findings show that regenerating hematopoiesis readily accommodates newly transplanted stem cells, including those endowed with a robust capacity for generating B and T cells. Importantly, our investigation uncovered a window for preferential engraftment of transplanted stem cells coinciding with the resumption of blood cell production. Repeated BMT could intensify hematopoiesis reconstitution and enable therapeutic administration of genetically modified autologous stem cells.


Subject(s)
Bone Marrow Transplantation , Hematopoiesis , Animals , Bone Marrow Transplantation/methods , Mice , Hematopoietic Stem Cells/immunology , Mice, Inbred C57BL , Immune Reconstitution , Regeneration
9.
Front Behav Neurosci ; 18: 1389905, 2024.
Article in English | MEDLINE | ID: mdl-38974836

ABSTRACT

Introduction: Disgust sensitivity to body odors plays a role in a set of psychological mechanisms supposedly evolved to avoid pathogens. To assess individual differences in body odor disgust, we previously developed the body odor disgust scale (BODS) and validated it in English. The BODS presents six scenarios where disgust could be evoked by smells coming from an internal source and an external source. The present study aimed to validate the BODS in the Italian population and to find further evidence for its structural, construct, and criterion validity. Methods: We used two large samples (N = 1,050, F = 527; and N = 402, F = 203, respectively) that were representative of the Italian population for sex and age. Results: Across these two studies, we confirmed the hypothesized bifactor structure, with all the items loading onto a general body odor disgust sensitivity factor, and on two specific factors related to the internal structure. In terms of construct validity, we found that the BODS converged with pathogen disgust sensitivity of the three-domain disgust scale (TDDS) but was distinct from a general propensity to experience negative emotions. The BODS showed criterion validity in predicting the behavioral intentions toward COVID-19 avoidance behavior, although it did not seem to be incrementally valid when compared to the TDDS pathogen subscale. We also established scalar measurement invariance of the BODS regarding gender and found that women display higher levels of BODS. Discussion: Results from the Italian version of the BODS indicate its structural, construct, nomological and criterion validity. Furthermore, our result on sex differences in disgust sensitivity are consistent with previous literature, and we discuss them in the broader context of cross-cultural and primate findings that points toward a possible evolutionary explanation of this difference.

10.
Prep Biochem Biotechnol ; : 1-10, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970798

ABSTRACT

The excessive use of conventional antibiotics has resulted in significant aquatic pollution and a concerning surge in drug-resistant bacteria. Efforts have been consolidated to explore and develop environmentally friendly antimicrobial alternatives to mitigate the imminent threat posed by multi-resistant pathogens. Antimicrobial peptides (AMPs) have gained prominence due to their low propensity to induce bacterial resistance, attributed to their multiple mechanisms of action and synergistic effects. Microalgae, particularly cyanobacteria, have emerged as promising alternatives with antibiotic potential to address these challenges. The aim of this review is to present some AMPs extracted from microalgae, emphasizing their activity against common pathogens and elucidating their mechanisms of action, as well as their potential application in the aquaculture industry. Likewise, the biosynthesis, advantages and disadvantages of the use of AMPs are described. Currently, biotechnology tolls are used to enhance the action of these peptides, such as genetically modified microalgae and recombinant proteins. Cyanobacteria are also mentioned as major producers of peptides, among them, the genus Lyngbya is described as the most important producer of bioactive peptides with potential therapeutic use. The majority of cyanobacterial AMPs are of the cyclic type, meaning that they have cysteine and disulfide bridges, thanks to this, their greater antimicrobial activity and selectivity. Likewise, we found that large hydrophobic aromatic amino acid residues increase specificity, and improve antibacterial efficacy. However, based on the results of this review, it is possible to highlight that while microalgae show potential as a source of AMPs, further research in this field is necessary to achieve safe and competitive production. Therefore, the data presented here can aid in the selection of microalgal species, peptide structures, and target bacteria, with the goal of establishing biotechnological platforms for aquaculture applications.

11.
Foods ; 13(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38998564

ABSTRACT

Immunonutrition, which focuses on specific nutrients in breast milk and post-weaning diets, plays a crucial role in supporting infants' immune system development. This study explored the impact of maternal supplementation with Bifidobacterium breve M-16V and a combination of short-chain galacto-oligosaccharide (scGOS) and long-chain fructo-oligosaccharide (lcFOS) from pregnancy through lactation, extending into the early childhood of the offspring. The synbiotic supplementation's effects were examined at both mucosal and systemic levels. While the supplementation did not influence their overall growth, water intake, or food consumption, a trophic effect was observed in the small intestine, enhancing its weight, length, width, and microscopic structures. A gene expression analysis indicated a reduction in FcRn and Blimp1 and an increase in Zo1 and Tlr9, suggesting enhanced maturation and barrier function. Intestinal immunoglobulin (Ig) A levels remained unaffected, while cecal IgA levels decreased. The synbiotic supplementation led to an increased abundance of total bacteria and Ig-coated bacteria in the cecum. The abundance of Bifidobacterium increased in both the intestine and cecum. Short-chain fatty acid production decreased in the intestine but increased in the cecum due to the synbiotic supplementation. Systemically, the Ig profiles remained unaffected. In conclusion, maternal synbiotic supplementation during gestation, lactation, and early life is established as a new strategy to improve the maturation and functionality of the gastrointestinal barrier. Additionally, it participates in the microbiota colonization of the gut, leading to a healthier composition.

12.
Int J Mol Sci ; 25(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38999978

ABSTRACT

The emotion of disgust protects individuals against pathogens, and it has been found to be elevated during pregnancy. Physiological mechanisms discussed in relation to these changes include immune markers and progesterone levels. This study aimed to assess the association between steroids and disgust sensitivity in pregnancy. Using a prospective longitudinal design, we analyzed blood serum steroid concentrations and measured disgust sensitivity via text-based questionnaires in a sample of 179 pregnant women during their first and third trimesters. We found positive correlations between disgust sensitivity and the levels of C19 steroids (including testosterone) and its precursors in the Δ5 pathway (androstenediol, DHEA, and their sulfates) and the Δ4 pathway (androstenedione). Additionally, positive correlations were observed with 5α/ß-reduced C19 steroid metabolites in both trimesters. In the first trimester, disgust sensitivity was positively associated with 17-hydroxypregnanolone and with some estrogens. In the third trimester, positive associations were observed with cortisol and immunoprotective Δ5 C19 7α/ß-hydroxy-steroids. Our findings show that disgust sensitivity is positively correlated with immunomodulatory steroids, and in the third trimester, with steroids which may be related to potential maternal-anxiety-related symptoms. This study highlights the complex relationship between hormonal changes and disgust sensitivity during pregnancy.


Subject(s)
Disgust , Humans , Female , Pregnancy , Adult , Longitudinal Studies , Pregnancy Trimester, Third/blood , Steroids/blood , Prospective Studies , Pregnancy Trimester, First , Young Adult
13.
Int J Mol Sci ; 25(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39000373

ABSTRACT

Atherosclerotic vascular disease disproportionately affects persons living with HIV (PLWH) compared to those without. The reasons for the excess risk include dysregulated immune response and inflammation related to HIV infection itself, comorbid conditions, and co-infections. Here, we review an updated understanding of immune and inflammatory pathways underlying atherosclerosis in PLWH, including effects of viral products, soluble mediators and chemokines, innate and adaptive immune cells, and important co-infections. We also present potential therapeutic targets which may reduce cardiovascular risk in PLWH.


Subject(s)
Atherosclerosis , HIV Infections , Inflammation , Humans , HIV Infections/immunology , HIV Infections/complications , Atherosclerosis/immunology , Inflammation/immunology , Cardiovascular Diseases/immunology , Cardiovascular Diseases/etiology , Animals , Immunity, Innate
14.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000506

ABSTRACT

Cytokines regulate immune responses and are crucial to MS pathogenesis. This study evaluated pro-inflammatory and anti-inflammatory cytokine concentrations in the CSF of de novo diagnosed RRMS patients compared to healthy controls. We assessed cytokine levels in the CSF of 118 de novo diagnosed RRMS patients and 112 controls, analyzing relationships with time from symptom onset to diagnosis, MRI lesions, and serum vitamin D levels. Elevated levels of IL-2, IL-4, IL-6, IL-13, FGF-basic, and GM-CSF, and lower levels of IL-1ß, IL-1RA, IL-5, IL-7, IL-9, IL-10, IL-12p70, IL-15, G-CSF, PDGF-bb, and VEGF were observed in RRMS patients compared to controls. IL-2, IL-4, IL-12p70, PDGF, G-CSF, GM-CSF, and FGF-basic levels increased over time, while IL-10 decreased. IL-1ß, IL-1RA, IL-6, TNF-α, and PDGF-bb levels negatively correlated with serum vitamin D. TNF-α levels positively correlated with post-contrast-enhancing brain lesions. IL-15 levels negatively correlated with T2 and Gd(+) lesions in C-spine MRI, while TNF-α, PDGF-bb, and FGF-basic correlated positively with T2 lesions in C-spine MRI. IL-6 levels positively correlated with post-contrast-enhancing lesions in Th-spine MRI. Distinct cytokine profiles in the CSF of de novo diagnosed MS patients provide insights into MS pathogenesis and guide immunomodulatory therapy strategies.


Subject(s)
Biomarkers , Cytokines , Multiple Sclerosis, Relapsing-Remitting , Humans , Female , Male , Cytokines/cerebrospinal fluid , Cytokines/blood , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Adult , Multiple Sclerosis, Relapsing-Remitting/cerebrospinal fluid , Multiple Sclerosis, Relapsing-Remitting/blood , Multiple Sclerosis, Relapsing-Remitting/diagnosis , Middle Aged , Magnetic Resonance Imaging , Vitamin D/blood , Vitamin D/cerebrospinal fluid , Inflammation/cerebrospinal fluid , Inflammation/blood , Case-Control Studies , Young Adult
15.
Infect Agent Cancer ; 19(1): 31, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010155

ABSTRACT

Hepatitis B Virus (HBV) is a hepatotropic virus that can establish a persistent and chronic infection in humans. Chronic hepatitis B (CHB) infection is associated with an increased risk of hepatic decompensation, cirrhosis, and hepatocellular carcinoma (HCC). Lactate level, as the end product of glycolysis, plays a substantial role in metabolism beyond energy production. Emerging studies indicate that lactate is linked to patient mortality rates, and HBV increases overall glucose consumption and lactate production in hepatocytes. Excessive lactate plays a role in regulating the tumor microenvironment (TME), immune cell function, autophagy, and epigenetic reprogramming. The purpose of this review is to gather and summarize the existing knowledge of the lactate's functions in the dysregulation of the immune system, which can play a crucial role in the development of HBV-related HCC. Therefore, it is reasonable to hypothesize that lactate with intriguing functions can be considered an immunomodulatory metabolite in immunotherapy.

16.
Semin Immunopathol ; 46(1-2): 1, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990389

ABSTRACT

Activation of the maternal immune system during gestation has been associated with an increased risk for neurodevelopmental disorders in the offspring, particularly schizophrenia and autism spectrum disorder. Microglia, the tissue-resident macrophages of the central nervous system, are implicated as potential mediators of this increased risk. Early in development, microglia start populating the embryonic central nervous system and in addition to their traditional role as immune responders under homeostatic conditions, microglia are also intricately involved in various early neurodevelopmental processes. The timing of immune activation may interfere with microglia functioning during early neurodevelopment, potentially leading to long-term consequences in postnatal life. In this review we will discuss the involvement of microglia in brain development during the prenatal and early postnatal stages of life, while also examining the effects of maternal immune activation on microglia and neurodevelopmental processes. Additionally, we discuss recent single cell RNA-sequencing studies focusing on microglia during prenatal development, and hypothesize how early life microglial priming, potentially through epigenetic reprogramming, may be related to neurodevelopmental disorders.


Subject(s)
Microglia , Neurodevelopmental Disorders , Prenatal Exposure Delayed Effects , Microglia/immunology , Microglia/metabolism , Humans , Pregnancy , Animals , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/immunology , Prenatal Exposure Delayed Effects/immunology , Female , Brain/immunology , Brain/metabolism , Brain/embryology , Epigenesis, Genetic , Disease Susceptibility
17.
Hum Cell ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004663

ABSTRACT

The prevalence of autoimmune diseases ranks as the third most common disease category globally, following cancer and heart disease. Numerous studies indicate that long non-coding RNA (lncRNA) plays a pivotal role in regulating human growth, development, and the pathogenesis of various diseases. It is more than 200 nucleotides in length and is mostly involve in the regulation of gene expression. Furthermore, lncRNAs are crucial in the development and activation of immune cells, with an expanding body of research exploring their association with autoimmune disorders in humans. LncRNA Ifng antisense RNA 1 (IFNG-AS1), a key regulatory factor in the immune system, also named NeST or TMEVPG1, is proximally located to IFNG and participates in the regulation of it. The dysregulation of IFNG-AS1 is implicated in the pathogenesis of several autoimmune diseases. This study examines the role and mechanism of IFNG-AS1 in various autoimmune diseases and considers its potential as a therapeutic target.

18.
Immunology ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005140

ABSTRACT

Inflammatory bowel disease (IBD) and food allergy (FA) increase in tandem, but the potential impact of IBD on FA remains unclear. We sought to determine the role of IBD on FA. We first assessed the changes of FA-related risk factors in dextran sulphate sodium salt (DSS) induced colitis mice model. Then, we evaluated the role of IBD on FA in mice. FA responses were determined using a clinical allergy score, body temperature change, serum antibody levels, cytokines level and mouse mast cell protease 1 (MMCP-1) concentration. Accumulation of regulatory T cells was tested using flow cytometry. Intestinal changes were identified by histology, immunohistochemistry, gene expression and gut microbial community structure. In DSS-induced colitis mice model, we found the intestinal damage, colonic neutrophil infiltration, and downregulation of splenic Th2 cytokines and Tregs in mesenteric lymph nodes (MLN). Moreover, we also found that IBD can alleviate the FA symptoms and lead to the significant downregulation of Th2 cytokines, serum IgE and MMCP-1. However, IBD exacerbates intestinal injury and promotes the gene expression levels of IL-33 and IL-5 in the small intestine, damages the intestinal tissue structure and aggravates intestinal dysbiosis in FA. IBD functions as a double-edged sword in FA. From the perspective of clinical symptoms and humoral immune responses, IBD can reduce FA response by downregulating Th2 cytokines. But from the perspective of the intestinal immune system, IBD potentially disrupts intestinal tolerance to food antigens by damaging intestinal tissue structure and causing intestinal dysbiosis.

19.
World J Gastrointest Oncol ; 16(6): 2394-2403, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38994172

ABSTRACT

Colorectal cancer (CRC) is one of the most common cancers diagnosed in the world. Although environmental and genetic factors play a major role in the pathogenesis of CRC, extensive research has suggested that vitamin D may play a pivotal role in the development of CRC. Vitamin D, primarily obtained through sunlight exposure, dietary sources, and supplements, has long been recognized for its essential functions in maintaining health, including immune regulation. This article delves into the intricate relationship between vitamin D, the immune system, gut flora, and the prevention of CRC. It presents a synthesis of epidemiological data, experimental studies, and clinical trials, highlighting the mechanisms by which vitamin D influences immune cell function, cytokine production, and inflammation. By enhancing the immune system's surveillance and anti-tumor activity, vitamin D may offer a promising avenue for CRC prevention. Furthermore, this comprehensive review delves into the prospective clinical applications of vitamin D supplementation and delineates the forthcoming avenues of research in this dynamic domain. Additionally, the paper tentatively outlines a spectrum of prophylactic impacts of vitamin D on CRC, emphasizing its significant potential in reducing CRC risk through shedding light on its mechanisms, encompassing antineoplastic mechanisms, influences on the immune system, and modulation of the gut microbiome.

20.
Vet Immunol Immunopathol ; 274: 110804, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39002363

ABSTRACT

Sepsis is still one of the most common causes of death of animals and humans. It is marked by an aberrant immune response to infection, resulting in extensive inflammation, organ dysfunction, and, in severe instances, organ failure. Recognizable symptoms and markers of sepsis encompass substantial elevations in body temperature, respiratory rate, hemoglobin levels, and alterations in immune cell counts, including neutrophils, monocytes, and basophils, along with increases in certain acute-phase proteins. In contrast to human medicine, veterinarians must take into account some species differences. This article provides a comprehensive overview of changes in the immune system during sepsis, placing particular emphasis on species variations and exploring potential future drugs and interventions. Hence, understanding the intricate balance of the immune responses during sepsis is crucial to develop effective treatments and interventions to improve the chances of recovery in animals suffering from this serious condition.

SELECTION OF CITATIONS
SEARCH DETAIL
...