Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Front Pharmacol ; 15: 1332036, 2024.
Article in English | MEDLINE | ID: mdl-38835658

ABSTRACT

We previously revealed that Cang-ai volatile oil (CAVO) regulates T-cell activity, enhancing the immune response in people with chronic respiratory diseases. However, the effects of CAVO on allergic rhinitis (AR) have not been investigated. Herein, we established an ovalbumin (OVA)-induced AR rat model to determine these effects. Sprague-Dawley (SD) rats were exposed to OVA for 3 weeks. CAVO or loratadine (positive control) was given orally once daily for 2 weeks to OVA-exposed rats. Behavior modeling nasal allergies was observed. Nasal mucosa, serum, and spleen samples of AR rats were analyzed. CAVO treatment significantly reduced the number of nose rubs and sneezes, and ameliorated several hallmarks of nasal mucosa tissue remodeling: inflammation, eosinophilic infiltration, goblet cell metaplasia, and mast cell hyperplasia. CAVO administration markedly upregulated expressions of interferon-γ, interleukin (IL)-2, and IL-12, and downregulated expressions of serum tumor necrosis factor-α, IL-4, IL-5, IL-6, IL-13, immunoglobulin-E, and histamine. CAVO therapy also increased production of IFN-γ and T-helper type 1 (Th1)-specific T-box transcription factor (T-bet) of the cluster of differentiation-4+ T-cells in splenic lymphocytes, and protein and mRNA expressions of T-bet in nasal mucosa. In contrast, levels of the Th2 cytokine IL-4 and Th2-specific transcription factor GATA binding protein-3 were suppressed by CAVO. These cumulative findings demonstrate that CAVO therapy can alleviate AR by regulating the balance between Th1 and Th2 cells.

2.
Int Immunopharmacol ; 137: 112479, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38901246

ABSTRACT

Shen chan decoction (SCD) as a significant Traditional Chinese medicine (TCM) to treat atopic dermatitis (AD), but its mechanism of action has not been clarified, so we started the present study, first possible effects of SCD on AD were predicted using network pharmacology. Next, dinitrochlorobenzene was used to establish a mouse model of AD. After successful modelling, the SCD were administered intragastrically to treat the mice. Eventually, the KEGG pathway enrichment analysis indicated that SCD improved AD mainly through effects on inflammation and the gut microbiota. The experimental findings revealed that SCD treatment attenuated AD symptoms and downregulate the characteristic immune factors, namely IL-4, IL-6 and IgE. Moreover, it promoted a balance between Th1/Th2 cells. Furthermore, the itch signaling pathways involving H1R/PAR-2/TRPV1 were inhibited. The 16S rRNA sequencing results indicated that SCD administration influenced the Firmicutes/Bacteroidetes ratio at the phylum level by augmenting the relative proportions of Lactobacillaceae and Muribaculaceae at the family and genus levels, while decreasing the abundances of Lactococcus and Ruminococcus. These findings suggest that internal administration of SCD is an effective therapeutic approach for AD. We suggest that SCD may be an alternative therapy for the treatment of AD.Additionally, it could offer valuable insights into the pathogenesis of AD and the development of innovative therapeutic agents.


Subject(s)
Dermatitis, Atopic , Dinitrochlorobenzene , Disease Models, Animal , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Mice, Inbred BALB C , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/immunology , Animals , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Mice , Gastrointestinal Microbiome/drug effects , Immunoglobulin E/blood , Male , Th2 Cells/immunology , Th2 Cells/drug effects , Network Pharmacology , Humans , Female , Th1-Th2 Balance/drug effects , Cytokines/metabolism , Medicine, Chinese Traditional , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology
3.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(6): 605-610, 2024 Jun 15.
Article in Chinese | MEDLINE | ID: mdl-38926377

ABSTRACT

OBJECTIVES: To investigate the expression of microRNA-142 (miR-142) in children with autoimmune thyroid disease (AITD) and its relationship with the imbalance of helper T cell 17 (Th17) and regulatory T cell (Treg). METHODS: A total of 89 children hospitalized for AITD from January 2019 to December 2022 were prospectively selected as the study subjects, including 48 children with Graves' disease (GD group) and 41 children with Hashimoto's thyroiditis (HT group). Additionally, 55 healthy children undergoing physical examinations during the same period were selected as the control group. The differences in serum miR-142, antithyroglobulin antibody (TGAb), antithyroperoxidase antibody (TPOAb), Th17/Treg, and interleukin-17 (IL-17) expression were compared among the groups. RESULTS: The expression of miR-142, TPOAb, TGAb, Th17, Th17/Treg, and IL-17 in the GD group and HT group was higher than that in the control group, while Treg was lower than that in the control group (P<0.05). Pearson correlation analysis revealed that in the GD group, miR-142 was positively correlated with TPOAb, TGAb, Th17, Th17/Treg, and IL-17 (r=0.711, 0.728, 0.785, 0.716, 0.709, respectively; P<0.001) and negatively correlated with Treg (r=-0.725, P<0.001); in the HT group, miR-142 was positively correlated with TPOAb and TGAb (r=0.752, 0.717, respectively; P<0.001). CONCLUSIONS: miR-142 is highly expressed in children with AITD, and its expression may be related to the Th17/Treg imbalance in children with GD.


Subject(s)
Interleukin-17 , MicroRNAs , T-Lymphocytes, Regulatory , Th17 Cells , Humans , MicroRNAs/blood , Th17 Cells/immunology , Child , Male , Female , T-Lymphocytes, Regulatory/immunology , Interleukin-17/blood , Hashimoto Disease/immunology , Hashimoto Disease/genetics , Hashimoto Disease/blood , Child, Preschool , Graves Disease/immunology , Graves Disease/genetics , Adolescent , Autoantibodies/blood
4.
Front Immunol ; 15: 1378048, 2024.
Article in English | MEDLINE | ID: mdl-38799426

ABSTRACT

Background: Long-term non-progressors (LTNPs) with HIV infection can naturally control viral replication for up to a decade without antiretroviral therapy (ART), but the underlying mechanisms of this phenomenon remain elusive. Methods: To investigate the relevant immune and inflammatory factors associated with this natural control mechanism, we collected plasma samples from 16 LTNPs, 14 untreated viral progressors (VPs), 17 successfully ART-treated patients (TPs), and 16 healthy controls (HCs). The OLINK immune response panel and inflammation panel were employed to detect critical proteins, and the plasma neutralizing activity against a global panel of pseudoviruses was assessed using TZM-bl cells. Results: The combination of IL17C, IL18, DDX58, and NF2 contributed to discriminating LTNPs and VPs. IL18 and CCL25 were positively associated with CD4+ T cell counts but negatively correlated with viral load. Furthermore, CXCL9 and CXCL10 emerged as potential supplementary diagnostic markers for assessing the efficacy of antiretroviral therapy (ART). Finally, TNFRSF9 displayed positive correlations with neutralization breadth and Geometry Median Titer (GMT) despite the lack of significant differences between LTNPs and VPs. Conclusion: In summary, this study identified a set of biomarkers in HIV-infected individuals at different disease stages. These markers constitute a potential network for immune balance regulation in HIV infection, which is related to the long-term control of HIV by LTNPs. It provides important clues for further exploring the immune regulatory mechanism of HIV.


Subject(s)
Biomarkers , HIV Infections , HIV-1 , Proteomics , Viral Load , Humans , HIV Infections/immunology , HIV Infections/drug therapy , HIV Infections/virology , HIV Infections/blood , HIV-1/immunology , Male , Adult , Proteomics/methods , Female , Biomarkers/blood , Middle Aged , China , CD4 Lymphocyte Count , HIV Long-Term Survivors , Virus Replication/drug effects , East Asian People
5.
Front Immunol ; 15: 1394161, 2024.
Article in English | MEDLINE | ID: mdl-38807586

ABSTRACT

Excessive fluoride intake from residential environments may affect multiple tissues and organs; however, the specific pathogenic mechanisms are unclear. Researchers have recently focused on the damaging effects of fluoride on the immune system. Damage to immune function seriously affects the quality of life of fluoride-exposed populations and increases the incidence of infections and malignant tumors. Probing the mechanism of damage to immune function caused by fluoride helps identify effective drugs and methods to prevent and treat fluorosis and improve people's living standards in fluorosis-affected areas. Here, the recent literature on the effects of fluoride on the immune system is reviewed, and research on fluoride damage to the immune system is summarized in terms of three perspectives: immune organs, immune cells, and immune-active substances. We reviewed that excessive fluoride can damage immune organs, lead to immune cells dysfunction and interfere with the expression of immune-active substances. This review aimed to provide a potential direction for future fluorosis research from the perspective of fluoride-induced immune function impairment. In order to seek the key regulatory indicators of fluoride on immune homeostasis in the future.


Subject(s)
Fluorides , Immune System , Humans , Fluorides/adverse effects , Animals , Immune System/drug effects , Immune System/immunology , Immune System/metabolism , Fluorosis, Dental/immunology , Fluorosis, Dental/etiology , Environmental Exposure/adverse effects
6.
Front Cell Dev Biol ; 12: 1271684, 2024.
Article in English | MEDLINE | ID: mdl-38655063

ABSTRACT

Macrophages, the predominant immune cells in the lungs, play a pivotal role in maintaining the delicate balance of the pulmonary immune microenvironment. However, in chronic inflammatory lung diseases and lung cancer, macrophage phenotypes undergo distinct transitions, with M1-predominant macrophages promoting inflammatory damage and M2-predominant macrophages fostering cancer progression. Exosomes, as critical mediators of intercellular signaling and substance exchange, participate in pathological reshaping of macrophages during development of pulmonary inflammatory diseases and lung cancer. Specifically, in inflammatory lung diseases, exosomes promote the pro-inflammatory phenotype of macrophages, suppress the anti-inflammatory phenotype, and subsequently, exosomes released by reshaped macrophages further exacerbate inflammatory damage. In cancer, exosomes promote pro-tumor tumor-associated macrophages (TAMs); inhibit anti-tumor TAMs; and exosomes released by TAMs further enhance tumor proliferation, metastasis, and resistance to chemotherapy. Simultaneously, exosomes exhibit a dual role, holding the potential to transmit immune-modulating molecules and load therapeutic agents and offering prospects for restoring immune dysregulation in macrophages during chronic inflammatory lung diseases and lung cancer. In chronic inflammatory lung diseases, this is manifested by exosomes reshaping anti-inflammatory macrophages, inhibiting pro-inflammatory macrophages, and alleviating inflammatory damage post-reshaping. In lung cancer, exosomes reshape anti-tumor macrophages, inhibit pro-tumor macrophages, and reshaped macrophages secrete exosomes that suppress lung cancer development. Looking ahead, efficient and targeted exosome-based therapies may emerge as a promising direction for treatment of pulmonary diseases.

7.
Biochem Pharmacol ; 224: 116204, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615920

ABSTRACT

Calcium/calmodulin-dependent protein kinase IV (CaMK4) is a versatile serine/threonine kinase involved in various cellular functions. It regulates T-cell differentiation, podocyte function, tumor cell proliferation/apoptosis, ß cell mass, and insulin sensitivity. However, the underlying molecular mechanisms are complex and remain incompletely understood. The aims of this review are to highlight the latest advances in the regulatory mechanisms of CaMK4 underlying T-cell imbalance and parenchymal cell mass in multiple diseases. The structural motifs and activation of CaMK4, as well as the potential role of CaMK4 as a novel therapeutic target are also discussed.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 4 , Humans , Calcium-Calmodulin-Dependent Protein Kinase Type 4/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 4/antagonists & inhibitors , Animals
8.
J Sci Food Agric ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517196

ABSTRACT

BACKGROUND: With the increasing popularity of plant protein-based diets, soy proteins are favored as the most important source of plant protein worldwide. However, potential food allergy risks limit their use in the food industry. This work aims to reveal the mechanism of ß-conglycinin-induced food allergy, and to explore the regulatory mechanism of heat treatment and high hydrostatic pressure (HHP) treatment in a BALB/c mouse model. RESULTS: Our results showed that oral administration of ß-conglycinin induced severe allergic symptoms in BALB/c mice, but these symptoms were effectively alleviated through heat treatment and HHP treatment. Moreover, ß-conglycinin stimulated lymphocyte proliferation and differentiation; a large number of cytokines interleukin (IL)-4, IL-5, IL-10, IL-12 and IL-13 were released and interferon γ secretion was inhibited, which disrupted the Th1/Th2 immune balance and promoted the differentiation and proliferation of naive T cells into Th2-type cells. CONCLUSION: Heat/non-heat treatment altered the conformation of soybean protein, which significantly reduced allergic reactions in mice. This regulatory mechanism may be associated with Th1/Th2 immune balance. Our results provide data support for understanding the changes in allergenicity of soybean protein within the food industry. © 2024 Society of Chemical Industry.

9.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338744

ABSTRACT

Nowadays, acute respiratory distress syndrome (ARDS) still has a high mortality rate, and the alleviation and treatment of ARDS remains a major research focus. There are various causes of ARDS, among which pneumonia and non-pulmonary sepsis are the most common. Trauma and blood transfusion can also cause ARDS. In ARDS, the aggregation and infiltration of neutrophils in the lungs have a great influence on the development of the disease. Neutrophils regulate inflammatory responses through various pathways, and the release of neutrophils through neutrophil extracellular traps (NETs) is considered to be one of the most important mechanisms. NETs are mainly composed of DNA, histones, and granuloproteins, all of which can mediate downstream signaling pathways that can activate inflammatory responses, generate immune clots, and cause damage to surrounding tissues. At the same time, the components of NETs can also promote the formation and release of NETs, thus forming a vicious cycle that continuously aggravates the progression of the disease. NETs are also associated with cytokine storms and immune balance. Since DNA is the main component of NETs, DNase I is considered a viable drug for removing NETs. Other therapeutic methods to inhibit the formation of NETs are also worthy of further exploration. This review discusses the formation and mechanism of NETs in ARDS. Understanding the association between NETs and ARDS may help to develop new perspectives on the treatment of ARDS.


Subject(s)
Acute Lung Injury , Extracellular Traps , Respiratory Distress Syndrome , Humans , Extracellular Traps/metabolism , Respiratory Distress Syndrome/metabolism , Lung , Neutrophils/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/metabolism , DNA/metabolism
10.
J Nanobiotechnology ; 22(1): 51, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321547

ABSTRACT

BACKGROUND: Allergic rhinitis (AR) is a prevalent immune-related allergic disease, and corticosteroid nasal sprays serve as the primary treatment for this patient population. However, their short duration of efficacy and frequent administration pose challenges, leading to drug wastage and potential adverse effects. To overcome these limitations, we devised a novel approach to formulate DEX-Gel by incorporating dexamethasone (DEX) into a blend of Pluronic F127, stearic acid (SA), and polyethylene glycol 400 (PEG400) to achieve sustained-release treatment for AR. RESULTS: Following endoscopic injection into the nasal mucosa of AR rats, DEX-Gel exhibited sustained release over a 14-day period. In vivo trials employing various assays, such as flow cytometry (FC), demonstrated that DEX-Gel not only effectively managed allergic symptoms but also significantly downregulated helper T-cells (TH) 2 and TH2-type inflammatory cytokines (e.g., interleukins 4, 5, and 13). Additionally, the TH1/TH2 cell ratio was increased. CONCLUSION: This innovative long-acting anti-inflammatory sustained-release therapy addresses the TH1/TH2 immune imbalance, offering a promising and valuable approach for the treatment of AR and other inflammatory nasal diseases.


Subject(s)
Rhinitis, Allergic , Th1 Cells , Humans , Rats , Animals , Mice , Delayed-Action Preparations/pharmacology , Th2 Cells , Rhinitis, Allergic/drug therapy , Cytokines , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal , Ovalbumin , Mice, Inbred BALB C
11.
Discov Med ; 36(181): 372-384, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38409842

ABSTRACT

BACKGROUND: Allergic asthma (AA) is a prevalent chronic airway inflammation disease. In this study, this study aims to investigate the biological functions and potential regulatory mechanisms of the insulin receptor (INSR) in the progression of AA. METHODS: BALB/c mice (n = 48) were randomly divided into the following groups: control group, AA group, AA+Lentivirus (Lv)-vector short hairpin RNA (shRNA) group, AA+Lv-vector group, AA+Lv-INSR shRNA group, and AA+Lv-INSR group. The pulmonary index was calculated. mRNA and protein expression levels of INSR, signal transducer and activator of transcription 3 (STAT3), Janus kinase 2 (JAK2), phosphorylated-STAT3 (p-STAT3), phosphorylated-JAK2 (p-JAK2), alpha-smooth muscle actin (α-SMA), febrile neutropenia (FN), mucin 5AC (MUC5AC), and mucin 5B (MUC5B) were examined using reverse-transcription quantitative PCR (RT-qPCR) and western blot assays. Positive expressions of INSR, retinoic acid-related orphan receptor gamma-t (RORγt), and forkhead box protein P3 (Foxp3) were quantified by immunohistochemistry. Fluorescence intensities of α-SMA and FN were detected by immunofluorescence. Pathological morphology was observed through hematoxylin-eosin (H&E) staining, Masson staining, and Periodic Acid-Schiff (PAS) staining. Contents of immunoglobulin E (IgE), interleukin-6 (IL-6), eotaxin, interleukin-4 (IL-4), interleukin-13 (IL-13), interferon-γ (IFN-γ), interleukin-17 (IL-17), and interleukin-10 (IL-10) were quantified using enzyme-linked immunosorbent assay (ELISA). The percentage of T helper 17 (Th17) and regulatory T (Treg) cells was determined through flow cytometry. RESULTS: Compared to the control group, expression levels of INSR, p-STAT3, p-JAK2, α-SMA, FN, MUC5AC, MUC5B, RORγt, and Foxp3, as well as IgE, IL-6, eotaxin, IL-4, IL-13, and IL-17 contents, pulmonary index, glycogen-positive area (%), and Th17 cell percentage significantly increased (p < 0.05). Additionally, pulmonary histopathological deterioration and collagen deposition were aggravated, while Treg cell percentage and IFN-γ and IL-10 contents remarkably decreased (p < 0.05). The overexpression of INSR further exacerbated the progression of allergic asthma, but the down-regulation of INSR reversed the trends of the above indicators. CONCLUSIONS: The down-regulation of INSR alleviates airway hyperviscosity, inflammatory infiltration, and airway remodeling, restoring Th17/Treg immune balance in AA mice by inactivating the STAT3 pathway.


Subject(s)
Asthma , Interleukin-10 , Pulmonary Disease, Chronic Obstructive , Mice , Animals , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-4/genetics , Interleukin-4/metabolism , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology , Interleukin-13/genetics , Interleukin-13/metabolism , Interleukin-6/metabolism , Down-Regulation , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Asthma/metabolism , Asthma/pathology , Immunoglobulin E/genetics , Immunoglobulin E/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , RNA, Small Interfering
12.
Zhen Ci Yan Jiu ; 49(1): 37-46, 2024 Jan 25.
Article in English, Chinese | MEDLINE | ID: mdl-38239137

ABSTRACT

OBJECTIVES: To investigate the effects of graphene-based warm uterus acupoint paste on uterine Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear transcription factor-kappa B p65 (NF-κB p65) signaling pathway and Th1/Th2 immune balance in primary dysmenorrhea ( PD ) model rats, so as to reveal its immunological mechanisms of relieving dysmenorrhea. METHODS: Thirty SD female rats were randomly divided into 3 groups:normal group, model group and acupoint paste group, with 10 rats in each group. PD rat model was established by subcutaneous injection of estradiol benzoate for 10 consecutive days. At the same time of modeling, graphene-based warm uterus acupoint paste was applied to the acupoints of "Guanyuan" (CV4), bilateral "Zigong" (EX-CA1) and "Sanyinjiao" (SP6) of rats in the acupoint paste group. The application was continuously applied once daily for 10 d, 5 h each time. On the 11th day, oxytocin was injected intraperitoneally to observe the writhing latency, writhing times within 30 min and writhing score of rats in each group. The spleen and thymus indexes were calculated. The pathological changes of spleen and thymus tissue were observed after HE staining. The contents of serum immunoglobulin (Ig) A, IgG, tumor necrosis factor-α (TNF-α), interleukin (IL)-2, interferon-γ (IFN-γ), IL-4 and IL-10 were detected by ELISA . The protein and mRNA expression levels of TLR4, MyD88 and NF-κB p65 in rat uterine tissue were detected by Western blot and real-time quantitative PCR, respectively. RESULTS: Compared with the normal group, the writhing times and writhing scores within 30 min of rats in the model group were significantly increased(P<0.001), and the rats showed writhing reaction (P<0.01). The spleen index and thymus index were significantly decreased(P<0.01, P<0.05). The spleen and thymus had obvious pathological changes. The contents of IgA, IgG, TNF-α, IL-2 and IFN-γ in serum were significantly increased, while the contents of serum IL-4 and IL-10 were significantly decreased(P<0.001, P<0.01). The expression levels of TLR4, MyD88, NF-κB p65 protein and corresponding mRNA in uterine tissue were significantly increased(P<0.001). Following intervention, compared with the model group, the writhing latency time of rats in the acupoint paste group was prolonged, and the writhing times and writhing scores within 30 min were significantly decreased (P<0.001). The spleen index and thymus index were significantly increased(P<0.01, P<0.05). The pathological changes of spleen and thymus were improved. The contents of serum IgA, IgG, TNF-α, IL-2 and IFN-γ were significantly decreased, while the contents of IL-4 and IL-10 were significantly increased(P<0.001, P<0.05, P<0.01). The expression of TLR4, MyD88, NF-κB p65 protein and the corresponding mRNA levels in uterine tissue were decreased(P<0.001, P<0.01). CONCLUSIONS: Graphene-based warm uterus acupoint paste can regulate the immune balance of Th1/ Th2 by regulating TLR4/ MyD88/ NF-κB p65 signaling pathway, repair the pathological damage of immune tissue, improve immune function, and effectively relieve the pain symptoms of PD rats.


Subject(s)
Dysmenorrhea , Graphite , Humans , Rats , Female , Animals , Rats, Sprague-Dawley , Dysmenorrhea/genetics , Dysmenorrhea/therapy , NF-kappa B/genetics , Myeloid Differentiation Factor 88/genetics , Acupuncture Points , Toll-Like Receptor 4/genetics , Interleukin-2 , Interleukin-10 , Tumor Necrosis Factor-alpha , Interleukin-4 , Signal Transduction , RNA, Messenger , Immunity , Immunoglobulin A , Immunoglobulin G
13.
Cell Mol Life Sci ; 81(1): 40, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38216734

ABSTRACT

Here we critically discuss data supporting the view that microbial agents (pathogens, pathobionts or commensals alike) play a relevant role in the pathogenesis of multifactorial diseases, but their role is concealed by the rules presiding over T cell antigen recognition and trafficking. These rules make it difficult to associate univocally infectious agents to diseases' pathogenesis using the paradigm developed for canonical infectious diseases. (Cross-)recognition of a variable repertoire of epitopes leads to the possibility that distinct infectious agents can determine the same disease(s). There can be the need for sequential infection/colonization by two or more microorganisms to develop a given disease. Altered spreading of infectious agents can determine an unwanted activation of T cells towards a pro-inflammatory and trafficking phenotype, due to differences in the local microenvironment. Finally, trans-regulation of T cell trafficking allows infectious agents unrelated to the specificity of T cell to modify their homing to target organs, thereby driving flares of disease. The relevant role of microbial agents in largely prevalent diseases provides a conceptual basis for the evaluation of more specific therapeutic approaches, targeted to prevent (vaccine) or cure (antibiotics and/or Biologic Response Modifiers) multifactorial diseases.


Subject(s)
Host Microbial Interactions , Host-Pathogen Interactions , T-Lymphocytes
14.
Clin Immunol ; 258: 109861, 2024 01.
Article in English | MEDLINE | ID: mdl-38065370

ABSTRACT

With increasing stress in daily life and work, subhealth conditions induced by "Shi-Re Shanghuo" syndrome was gradually universal. "Huanglian Jiedu Wan" (HLJDW) was the first new syndrome Chinese medicine approved for the treatment of "Shi-Re Shanghuo" with promising clinical efficacy. Preliminary small-sample clinical studies have identified some notable biomarkers (succinate, 4-hydroxynonenal, etc.). However, the correlation and underlying mechanism between these biomarkers of HLJDW intervention on "Shi-Re Shanghuo" syndrome remained ambiguous. Therefore, this study was designed as a randomized, double-blind, multicenter, placebo-controlled Phase II clinical trial, employing integrated analysis techniques such as non-targeted and targeted metabolomics, salivary microbiota, proteomics, parallel peaction monitoring, molecular docking and surface plasmon resonance (SPR). The results of the correlation analysis indicated that HLJDW could mediate the balance between inflammation and immunity through succinate produced via host and microbial source to intervene "Shi-Re Shanghuo" syndrome. Further through the HIF1α/MMP9 pathway, succinate regulated downstream arachidonic acid metabolism, particularly the lipid peroxidation product 4-hydroxynonenal. Finally, an animal model of recurrent oral ulcers induced by "Shi-Re Shang Huo" was established and HLJDW was used for intervention, key essential indicators (succinate, glutamine, 4-hydroxynonenal, arachidonic acid metabolism) essential in the potential pathway HIF1α/MMP9 discovered in clinical practice were validated. The results were found to be consistent with our clinical findings. Taken together, succinate was observed as an important signal that triggered immune responses, which might serve as a key regulatory metabolic switch or marker of "Shi-Re Shanghuo" syndrome treated with HLJDW.


Subject(s)
Drugs, Chinese Herbal , Matrix Metalloproteinase 9 , Animals , Arachidonic Acid , Biomarkers , Molecular Docking Simulation , Succinates/therapeutic use , Succinic Acid , Humans
15.
Exp Dermatol ; 33(1): e14926, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37702410

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disease in which defective T cells, immune complex deposition and other immune system alterations contribute to pathological changes of multiple organ systems. The vitamin D metabolite c is a critical immunomodulator playing pivotal roles in the immune system. Epidemiological evidence indicates that vitamin D deficiency is correlated with the severity of SLE. Our aim is to investigate the effects of 1,25(OH)2D3 (VitD3) on the activation of myeloid dendritic cells (mDCs) by autologous DNA-containing immune complex (DNA-ICs), and the effects of VitD3 on immune system balance during SLE. We purified DNA-ICs from the serum of SLE patients and isolated mDCs from normal subjects. In vitro studies showed that DNA-ICs were internalized and consumed by mDCs. VitD3 blocked the effects of DNA-ICs on RelB, IL-10 and TNF-α in mDCs. Further analysis indicated that DNA-ICs stimulated histone acetylation in the RelB promoter region, which was inhibited by VitD3. Knockdown of the histone deacetylase 3 gene (HDAC3) blocked these VitD3-mediated effects. Co-culture of mDCs and CD4+ T cells showed that VitD3 inhibited multiple processes mediated by DNA-ICs, including proliferation, downregulation of IL-10, TGF-ß and upregulation of TNF-α. Moreover, VitD3 could also reverse the effects of DNA-IC-induced imbalance of CD4+ CD127- Foxp3+ T cells and CD4+ IL17+ T cells. Taken together, our results indicated that autologous DNA-ICs stimulate the activation of mDCs in the pathogenesis of SLE, and VitD3 inhibits this stimulatory effects of DNA-ICs by negative transcriptional regulation of RelB gene and maintaining the Treg/Th17 immune cell balance. These results suggest that vitamin D may have therapeutic value for the treatment of SLE.


Subject(s)
Cholecalciferol , Lupus Erythematosus, Systemic , Humans , Cholecalciferol/pharmacology , Interleukin-10 , Antigen-Antibody Complex , Tumor Necrosis Factor-alpha , Inflammation , Vitamin D/pharmacology , Dendritic Cells/metabolism , DNA
16.
China Pharmacy ; (12): 379-384, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1006627

ABSTRACT

Gastric cancer (GC) is a common malignant tumor of the digestive tract. T helper cells 17 (Th17) and T regulatory cells (Treg) are differentiated subsets of CD4+T cells. Th17/Treg imbalance has been shown to be closely related to the progression of GC. Traditional Chinese medicine (TCM) can not only improve the survival prognosis of GC patients, but also play a role in enhancing the efficacy and reducing the toxicity of postoperative chemotherapy for GC. This paper systematically sorted out the action rules of TCM in the intervention of GC by regulating Th17/Treg balance. The results showed that the TCM compound could regulate the balance of GC Th17/Treg by invigorating the spleen and invigorating Qi, warming Yang, removing blood stasis and detoxifying. The mechanism of regulating Th17/Treg balance in the intervention of GC is mainly to inhibit the excessive differentiation of Th17 and Treg and the overexpression of transcription factors and cytokines, reverse the excessive drift of GC Th17/Treg balance to Th17 or Treg, and thus restore the immune balance of GC Th17/Treg.

17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1006286

ABSTRACT

Cough variant asthma (CVA) is a chronic respiratory disease with cough as its main symptom. The occurrence of CVA is closely related to non-specific airway inflammation, and its pathogenesis involves environmental, genetic, immune, and other factors. In recent years, the advantages of traditional Chinese medicine (TCM) in the treatment of CVA have attracted the attention of experts and scholars in China and abroad, especially its prominent role in regulating immune balance, relieving cough symptoms in CVA patients, and reducing recurrence. T Helper cells 1 (Th1), T helper cells 2 (Th2), T helper cells 17 (Th17), and regulatory T cells (Treg) are derived from CD4+ T cells. Immune imbalance of Th1/Th2 and Th17/Treg is a new hotspot in the pathogenesis of CVA and a potential key target in the treatment of CVA by TCM. Th cell subsets are in dynamic balance under physiological conditions, maintaining respiratory immune homeostasis in which pro-inflammatory cytokines and anti-inflammatory cytokines are balanced. Immature helper T cells (Th0) can be differentiated into Th1, Th2, Th17, Treg, and other cell subsets due to cytokine types in the microenvironment in the stage of CVA maturation. The proliferation of Th2 cells leads to eosinophilic airway inflammation. Excessive differentiation of Th17 cells induces neutrophil airway inflammation. Th1/Th2 and Th17/Treg cells are mutually restricted in number and function, and the immune imbalance of Th1/Th2 and Th17/Treg is easy to aggravate the generation of inflammatory response. Restoring immune balance is particularly important for the airway anti-inflammatory therapy of CVA. In this paper, the imbalance of Th1/Th2 and Th17/Treg and the pathogenesis of CVA were systematically expounded. Meanwhile, the latest research on the regulation of immune imbalance by TCM compound, single TCM, and its effective ingredients in the treatment of CVA was reviewed. It provides ideas and references for revealing the scientific connotation of TCM regulating immune balance therapy of CVA, as well as the development of clinical treatment and basic research of CVA.

18.
Metabolites ; 13(11)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37999261

ABSTRACT

Tryptophan metabolism and gut microbiota form an integrated regulatory axis that impacts immunity, metabolism, and cancer. This review consolidated current knowledge on the bidirectional interactions between microbial tryptophan processing and the host. We focused on how the gut microbiome controls tryptophan breakdown via the indole, kynurenine, and serotonin pathways. Dysbiosis of the gut microbiota induces disruptions in tryptophan catabolism which contribute to disorders like inflammatory conditions, neuropsychiatric diseases, metabolic syndromes, and cancer. These disruptions affect immune homeostasis, neurotransmission, and gut-brain communication. Elucidating the mechanisms of microbial tryptophan modulation could enable novel therapeutic approaches like psychobiotics and microbiome-targeted dietary interventions. Overall, further research on the microbiota-tryptophan axis has the potential to revolutionize personalized diagnostics and treatments for improving human health.

19.
Zhongguo Zhen Jiu ; 43(10): 1128-33, 2023 Oct 12.
Article in Chinese | MEDLINE | ID: mdl-37802518

ABSTRACT

OBJECTIVE: To compare the clinical efficacy between the combined therapy of fire needling and cupping, and western medication on herpes zoster of acute stage, as well as the effects on Th17 and Treg cells and inflammatory factors, i.e. IL-10 and IL-17 in the peripheral blood. METHODS: Eighty patients with herpes zoster of acute stage were randomly divided into a combined therapy (fire needling plus cupping) group and a western medication group, 40 cases in each one. In the combined therapy group, the pricking and scattering techniques with fire needle were used at ashi points and Jiaji (EX-B 2) corresponding to the affected spinal segments; afterwards, cupping therapy was delivered. The combined treatment was given once daily. In the western medication group, valaciclovir hydrochloride tablet and vitamin B1 tablet were administered orally. The duration of treatment in each group was 10 days. Before each treatment from day 1 to day 10 and on day 11 , the score of symptoms and physical signs was observed in the two groups separately. Before each treatment from day 1 to day 10 and on day 11, 30, 60, the score of visual analogue scale (VAS) and skin lesion indexes were observed in the two groups. On day 60, the incidence of postherpetic neuralgia was recorded in the two groups. The levels of Th17 and Treg cells, Th17/Treg ratio in the peripheral blood, as well as serum levels of IL-10 and IL-17 were detected before and after treatment in the two groups. The clinical efficacy was compared between the two groups. RESULTS: From day 6 to day 10 during treatment and on day 11, the scores of symptoms and physical signs in the combined therapy group were lower than those of the western medication group (P<0.05, P<0.01). On day 3, day 6 to day 10 during treatment and day 11, day 30, VAS scores in the combined therapy group were lower than those of the western medication group (P<0.05, P<0.01). On day 60, the incidence of postherpetic neuralgia in the combined therapy group was lower compared with that in the western medication group (P<0.05). The blister arresting time and scabbing time in the combined therapy group were shorter than those of the western medication group (P<0.05). After treatment, the level of Th17, and Th17/Treg ratio in the peripheral blood, as well as the serum levels of IL-10 and IL-17 were all lower in comparison with those in the western medication group (P<0.05). The curative and remarkably effective rate was 82.5% (33/40) in the combined therapy group, higher than 62.5% (25/40) in the western medication group (P<0.05). CONCLUSION: The early application of fire needling combined with cupping therapy can effectively treat herpes zoster of acute stage, relieve pain, and reduce the incidence of postherpetic neuralgia, which may be related to reducing the levels of Th17 and Treg cells, and Th17/Treg ratio in the peripheral blood, as well as the serum levels of IL-10 and IL-17 so that the cellular immune balance is modulated.


Subject(s)
Acupuncture Therapy , Cupping Therapy , Herpes Zoster , Neuralgia, Postherpetic , Humans , Acupuncture Therapy/methods , Interleukin-10 , Interleukin-17 , T-Lymphocytes, Regulatory , Th17 Cells , Herpes Zoster/therapy , Treatment Outcome , Tablets
20.
J Hazard Mater ; 460: 132392, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37657325

ABSTRACT

Epidemiological evidence indicates a significant relationship between exposure to diisononyl phthalate and allergic asthma. Despite this, the mechanism underlying this association remains unclear. Previous toxicological researches have suggested that the development of allergic asthma may involve the activation of endoplasmic reticulum stress (ERS) and the nuclear factor κ-B (NF-κB) pathways. Nevertheless, it is currently unknown whether these specific signaling pathways are implicated in diisononyl phthalate (DINP)-induced allergic asthma. The objective of this research was to understand how DINP exacerbates allergic asthma in Balb/c mice through ERS and NF-κB pathways. To systematically examine the aggravated effects of DINP in Balb/c mice, we measured airway hyperresponsiveness (AHR), lung tissue pathology, cytokines, and ERS and NF-κB pathway biomarkers. Additionally, we applied the ERS antagonist phenylbutyric acid (4-PBA) or the NF-κB antagonist pyrrolidine dithiocarbamate (PDTC) to verify the mediating effects of ERS and NF-κB on DINP-exacerbated allergic asthma. The results of our experiment show that oral DINP exposure may exacerbate airway hyperresponsiveness and airway remodeling. This deterioration is accompanied by an imbalance in immunoglobulin levels, Th17/Treg cells, ERS, and NF-κB biomarkers, leading to the activation of pro-inflammatory pathways. Furthermore, our study found that the blocking effect of 4-PBA or PDTC can inhibit the Th17/Treg imbalance and effectively alleviate symptoms resembling allergic asthma. In conclusion, ERS and NF-κB signaling pathways play an important role in regulating DINP-induced allergic asthma exacerbations.


Subject(s)
Asthma , Respiratory Hypersensitivity , Animals , Mice , NF-kappa B , Mice, Inbred BALB C , Asthma/chemically induced , Signal Transduction , Endoplasmic Reticulum Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...