Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 773
Filter
1.
Clin Immunol ; : 110288, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950723

ABSTRACT

Interleukin-2 (IL-2) holds promise for the treatment of cancer and autoimmune diseases, but its high-dose usage is associated with systemic immunotoxicity. Differential IL-2 receptor (IL-2R) regulation might impact function of cells upon IL-2 stimulation, possibly inducing cellular changes similar to patients with hypomorphic IL2RB mutations, presenting with multiorgan autoimmunity. Here, we show that sustained high-dose IL-2 stimulation of human lymphocytes drastically reduces IL-2Rß surface expression especially on T cells, resulting in impaired IL-2R signaling which correlates with high IL-2Rα baseline expression. IL-2R signaling in NK cells is maintained. CD4+ T cells, especially regulatory T cells are more broadly affected than CD8+ T cells, consistent with lineage-specific differences in IL-2 responsiveness. Given the resemblance of cellular characteristics of high-dose IL-2-stimulated cells and cells from patients with IL-2Rß defects, impact of continuous IL-2 stimulation on IL-2R signaling should be considered in the onset of clinical adverse events during IL-2 therapy.

2.
J Neurooncol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963658

ABSTRACT

PURPOSE: Central nervous system (CNS) metastases from lung cancers and melanoma, significantly contribute to morbidity and mortality. Despite advances in local therapies, there is a need for effective systemic treatments. Pembrolizumab, a PD-1 inhibitor, has shown promise for some patients with untreated brain metastases from melanoma and non-small cell lung cancer (NSCLC). This study aims to analyze the response of brain metastasis to pembrolizumab and associate characteristics like size and location with treatment outcome. METHODS: This retrospective study used imaging data from a phase II trial of pembrolizumab in melanoma or NSCLC patients with untreated brain metastases. MRI evaluations were conducted at 2 month intervals, with each brain metastasis treated as a distinct tumor for response assessment, based on modified RECIST criteria (maximum 5 lesions, 5 mm target lesions). RESULTS: Of 130 individual target metastases (> 5 mm), in 65 patients with NSCLC (90 metastases) and Melanoma (40 metastases), 32 (24.6%) demonstrated complete resolution, 24 (18.5%) had partial resolution, 32 (24.6%) were SD and 42 (32.3%) demonstrated PD. Those smaller than 10 mm were more likely to show complete resolution (p = 0.0218), while those ≥ 10 mm were more likely to have PR. There was no significant association between size, number or location (supratentorial vs. infratentorial) and lesion progression. The median time to metastatic lesion progression in the brain was 5.7-7 weeks. CONCLUSION: Pembrolizumab is effective in brain metastases from NSCLC and melanoma, showing response (CR + PR) in 43% and progression (PD) in 32% of metastases. With the median time to CNS progression of 5.7-7 weeks, careful radiographic monitoring is essential to guide timely local treatment decisions.

3.
J Inflamm Res ; 17: 4315-4330, 2024.
Article in English | MEDLINE | ID: mdl-38979436

ABSTRACT

Background: Post-translational modifications (PTM) significantly influence the pathogenesis and progression of diverse neoplastic conditions. Nevertheless, there has been limited research focusing on the potential of PTM-related genes (PTMRGs) as tumor biomarkers for predicting the survival of specific patients. Methods: The datasets utilized in this research were obtained from the TARGET and GEO repositories, respectively. The gene signature was constructed through the utilization of LASSO Cox regression method. GSEA and GO was used to identify hub pathways associated with risk genes. The functionality of risk genes in osteosarcoma (OS) cell lines was verified through the implementation of the CCK-8 assay, cell cycle analysis, and immunofluorescence assay. Results: Two distinct PTM patterns and gene clusters were finally determined. Significant differences in the prognosis of patients were found among two different PTM patterns and gene clusters, so were in the function enrichment and the landscape of TME immune cell infiltration. Moreover, we examined two external immunotherapy cohorts and determining that patients in the low-risk group was more likely to profit from immunotherapy. In addition, we mapped the expression of the genes in the signature in distinct cells using single-cell analysis. Finally, CCK-8 assay, cell cycle analysis, and immunofluorescence assay were utilized to confirm that RAD21 was expressed and functioned in OS. Conclusion: In conclusion, this study elucidated the potential link between PTM and immune infiltration landscape of OS for the first time and provided a new assessment protocol for the precise selection of treatment strategies for patients with advanced OS.

4.
Proc Natl Acad Sci U S A ; 121(29): e2408649121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38980909

ABSTRACT

Elevated levels of miR-155 in solid and liquid malignancies correlate with aggressiveness of the disease. In this manuscript, we show that miR-155 targets transcripts encoding IcosL, the ligand for Inducible T-cell costimulator (Icos), thus impairing the ability of T cells to recognize and eliminate malignant cells. We specifically found that overexpression of miR-155 in B cells of Eµ-miR-155 mice causes loss of IcosL expression as they progress toward malignancy. Similarly, in mice where miR-155 expression is controlled by a Cre-Tet-OFF system, miR-155 induction led to malignant infiltrates lacking IcosL expression. Conversely, turning miR-155 OFF led to tumor regression and emergence of infiltrates composed of IcosL-positive B cells and Icos-positive T cells forming immunological synapses. Therefore, we next engineered malignant cells to express IcosL, in order to determine whether IcosL expression would increase tumor infiltration by cytotoxic T cells and reduce tumor progression. Indeed, overexpressing an IcosL-encoding cDNA in MC38 murine colon cancer cells before injection into syngeneic C57BL6 mice reduced tumor size and increased intratumor CD8+ T cell infiltration, that formed synapses with IcosL-expressing MC38 cells. Our results underscore the fact that by targeting IcosL transcripts, miR-155 impairs the infiltration of tumors by cytotoxic T cells, as well as the importance of IcosL on enhancing the immune response against malignant cells. These findings should lead to the development of more effective anticancer treatments based on maintaining, increasing, or restoring IcosL expression by malignant cells, along with impairing miR-155 activity.


Subject(s)
Inducible T-Cell Co-Stimulator Ligand , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Mice , Inducible T-Cell Co-Stimulator Ligand/metabolism , Inducible T-Cell Co-Stimulator Ligand/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Line, Tumor , Mice, Inbred C57BL , Humans , T-Lymphocytes, Cytotoxic/immunology , Gene Expression Regulation, Neoplastic , Inducible T-Cell Co-Stimulator Protein/metabolism , Inducible T-Cell Co-Stimulator Protein/genetics , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/pathology
5.
Eur J Cancer ; 207: 114188, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38954898

ABSTRACT

INTRODUCTION: While available systemic treatments have modest long term efficacy in advanced angiosarcoma, immunotherapy represents an interesting new therapeutic opportunity. To establish its benefit, it is required to conduct a clinical trial assessing its efficacy and toxicity compared to standard treatments. MATERIAL AND METHODS: This is a literature review from PubMed search. RESULTS: Several systemic treatments (chemotherapy and TKI) are currently used in advanced angiosarcoma with ORR ranging from 12.5 to 68 % and PFS from 2 to 7 months. However, few randomized trials, mainly phase II, has been conducted to compare these treatments. While most centers propose doxorubicin containing regimens or paclitaxel in 1st or 2nd line, a high heterogeneity of regimens administered in this setting is observed even across sarcoma specialized centers with no consensual standard treatment. Encouraging signals of immunotherapy activity have been reported in angiosarcoma from several retrospective and phase II studies assessing anti-PD1 either alone or in combination with anti CTLA4 or TKI. Although cutaneous and head and neck location seems to benefit more from immunotherapy, response may be observed in any angiosarcoma subtype. In sarcoma in general and AS in particular, no biomarker has been clearly established to predict the efficacy of immunotherapy: high tumor mutational burden and presence of tertiary lymphoid structures are under assessment. DISCUSSION: Even essential, developing a randomized clinical trial in AS struggles with the heterogeneity of the disease, the lack of consensual standard regimen, the uncertainty on optimal immunotherapy administration and the absence of established predictive biomarkers. CONCLUSION: International collaboration is essential to run randomized trial in advanced AS and asses the efficacy of immune therapy in this rare and heterogeneous disease.

6.
Clin Transl Oncol ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967739

ABSTRACT

BACKGROUND: Proteasome assembly chaperone 3 (PSMG3), a subunit of proteasome, has been found to be associated with lung cancer. However, the role of PSMG3 in other cancers has not been elucidated. The objective of this study was to explore the immune role of PSMG3 in pan-cancer and confirm the oncogenic significance in liver hepatocellular carcinoma (LIHC). METHODS: We examined the differential expression of PSMG3 across various cancer types using data from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. We investigated the prognostic value of PSMG3 and examined its relationship with tumor mutation burden (TMB), microsatellite instability (MSI), and immune infiltration. The functional enrichment analysis was performed to explore the potential molecular mechanism of PSMG3. To elucidate the biological function of PSMG3, we conducted in vitro experiments using liver cancer cell lines. RESULTS: PSMG3 was highly expressed in most cancers. The high PSMG3 expression value of PSMG3 was closely related to poor prognosis. We observed correlations between PSMG3 and TMB, and MSI immune infiltration. PSMG3 may be involved in metabolic reprogramming, cell cycle, and PPAR pathways. The over-expression of PSMG3 promoted the proliferation, migration, and invasion capabilities of liver cancer cells. CONCLUSION: Our study demonstrated that PSMG3 was a pivotal oncogene in multiple cancers. PSMG3 contributed to the progression and immune infiltration in pan-cancer, especially in LIHC.

7.
Transl Cancer Res ; 13(6): 2799-2811, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988942

ABSTRACT

Background: RNA plays an important role in tumorigenesis. Changes in RNA may cause changes in the biological function. The N7-methylguanosine (m7G) methylation modification performs an integral function in tumor progression as the most widely existed RNA modification. Hepatocellular carcinoma (HCC) is among the greatest threats to human health worldwide. Low detection rates remain the main cause of advanced disease progression. Therefore, finding significant biomarkers for prognosis prediction and immune therapy response in HCC is valuable and urgently needed. Methods: RNA expression and clinical data were acquired from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. Different subtypes screening was finished by consensus cluster. Different expression was performed by R software. The results were validated by western blot (WB) methods. Genes with HCC prognostic potential were identified utilizing least absolute shrinkage and selection operator (LASSO) analyses. A prognosis model was established with the help of the risk score that we calculated. Related genes screening and protein-protein interactions (PPI) network construction were performed using the GeneMANIA database. Functional annotation was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) databases. In addition, gene set enrichment analysis (GSEA) of key genes and immune infiltration status were both done by R software. Finally, the immune infiltration was performed by cibersort method and single sample GSEA (ssGSEA) method. The response of immune therapy was validated by Tumor Immune Dysfunction and Exclusion database (TIDE) and the immune therapy cohort in GEO database. Results: We found that two different subtypes related with m7G RNA modification and four genes associated with m7G RNA modification were differentially expressed in the TCGA-Liver Hepatocellular Carcinoma (TCGA-LIHC) database. Additionally, to examine the value of these four genes in the HCC patients' prognoses according to the LASSO, we selected three genes, including WDR4, AGO2, and NCBP2, as prognostic related genes. Premised on the expression of these three genes, a risk score model and nomogram were constructed to provide a prediction of the HCC patients' prognoses. We performed functional annotation and created a PPI network based on the three genes (WDR4, NCBP2, and AGO2). Using R software, we performed the GSEA and immune regulation analyses. Finally, we predicted the relationship between the gene expression and the response of immune therapy. Conclusions: Our study suggests that high expression of m7G RNA modification subtype is related with poor prognosis and immune response. WDR4, AGO2, and NCBP2 are key regulators of m7G RNA modification which can be clinically promising biomarkers that can be used to treat HCC. In addition, our risk score model was shown to have a strong link to OS in patients with HCC.

8.
Front Transplant ; 3: 1353803, 2024.
Article in English | MEDLINE | ID: mdl-38993780

ABSTRACT

Invariant Natural Killer T cell therapy is an emerging platform of immunotherapy for cancer treatment. This unique cell population is a promising candidate for cell therapy for cancer treatment because of its inherent cytotoxicity against CD1d positive cancers as well as its ability to induce host CD8 T cell cross priming. Substantial evidence supports that iNKT cells can modulate myelomonocytic populations in the tumor microenvironment to ameliorate immune dysregulation to antagonize tumor progression. iNKT cells can also protect from graft-versus-host disease (GVHD) through several mechanisms, including the expansion of regulatory T cells (Treg). Ultimately, iNKT cell-based therapy can retain antitumor activity while providing protection against GVHD simultaneously. Therefore, these biological properties render iNKT cells as a promising "off-the-shelf" therapy for diverse hematological malignancies and possible solid tumors. Further the introduction of a chimeric antigen recetor (CAR) can further target iNKT cells and enhance function. We foresee that improved vector design and other strategies such as combinatorial treatments with small molecules or immune checkpoint inhibitors could improve CAR iNKT in vivo persistence, functionality and leverage anti-tumor activity along with the abatement of iNKT cell dysfunction or exhaustion.

9.
Cancers (Basel) ; 16(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38927991

ABSTRACT

In clinical trials, laboratory values are assessed with high frequency. This can be stressful for patients, resource intensive, and difficult to implement, for example in office-based settings. In the prospective, multicentre phase 2 TITAN-RCC trial (NCT02917772), we investigated how many relevant changes in laboratory values would have been missed if laboratory values had been assessed less frequently. Patients with metastatic renal cell carcinoma (n = 207) received a response-based approach with nivolumab and nivolumab+ipilimumab boosts for non-response. We simulated that laboratory values were obtained before every second dose instead of every dose of the study drug(s). We assessed elevated leukocyte counts, alanine aminotransferase, aspartate aminotransferase, bilirubin, creatinine, amylase, lipase, and thyroid-stimulating hormone. Dose delay and discontinuation criteria were defined according to the study protocol. With the reduced frequency of laboratory analyses, dose delay criteria were rarely missed: in a maximum of <0.1% (3/4382) of assessments (1% [2/207] of patients) during nivolumab monotherapy and in a maximum of 0.2% (1/465) of assessments (1% [1/132] of patients) during nivolumab+ipilimumab boosts. An exception was lipase-related dose delay which would have been missed in 0.6% (25/4204) of assessments (7% [15/207] of patients) during nivolumab monotherapy and in 0.8% (4/480) of assessments (3% [4/134] of patients) during nivolumab+ipilimumab boosts, but would have required the presence of symptoms. Discontinuation criteria would have only been missed for amylase (<0.1% [1/3965] of assessments [0.5% (1/207) of patients] during nivolumab monotherapy, none during nivolumab+ipilimumab boosts) and lipase (0.1% [5/4204] of assessments [2% (4/207) of patients] during nivolumab monotherapy; 0.2% [1/480] of assessments [0.7% (1/134) of patients] during nivolumab+ipilimumab boosts). However, only symptomatic patients would have had to discontinue treatment due to amylase or lipase laboratory values. In conclusion, a reduced frequency of laboratory testing appears to be acceptable in asymptomatic patients with metastatic renal cell carcinoma treated with nivolumab or nivolumab+ipilimumab.

10.
Front Immunol ; 15: 1371379, 2024.
Article in English | MEDLINE | ID: mdl-38881888

ABSTRACT

SMARCA4-deficient undifferentiated tumor (SMARCA4-dUT) is a devastating subtype of thoracic tumor with SMARCA4 inactivation and is characterized by rapid progression, poor prognosis, and high risk of postoperative recurrence. However, effective treatments for SMARCA4-dUT are lacking. Herein, we describe a patient with SMARCA4-dUT who exhibited an impressive response to the anti-programmed cell death protein-1 (PD-1) antibody (tislelizumab) in combination with conventional chemotherapy (etoposide and cisplatin). To the best of our knowledge, this is the first case of SMARCA4-dUT treated with chemotherapy, comprising etoposide and cisplatin, combined with anti-PD-1 inhibitors. Immunotherapy combined with etoposide and cisplatin may be a promising strategy to treat SMARCA4-dUT.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , DNA Helicases , Transcription Factors , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , DNA Helicases/genetics , DNA Helicases/deficiency , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Transcription Factors/genetics , Nuclear Proteins/genetics , Nuclear Proteins/deficiency , Etoposide/therapeutic use , Etoposide/administration & dosage , Male , Cisplatin/therapeutic use , Cisplatin/administration & dosage , Treatment Outcome , Female
11.
Front Immunol ; 15: 1334829, 2024.
Article in English | MEDLINE | ID: mdl-38827746

ABSTRACT

Infectious diseases continue to pose significant global health challenges. In addition to the enduring burdens of ailments like malaria and HIV, the emergence of nosocomial outbreaks driven by antibiotic-resistant pathogens underscores the ongoing threats. Furthermore, recent infectious disease crises, exemplified by the Ebola and SARS-CoV-2 outbreaks, have intensified the pursuit of more effective and efficient diagnostic and therapeutic solutions. Among the promising options, antibodies have garnered significant attention due to their favorable structural characteristics and versatile applications. Notably, nanobodies (Nbs), the smallest functional single-domain antibodies of heavy-chain only antibodies produced by camelids, exhibit remarkable capabilities in stable antigen binding. They offer unique advantages such as ease of expression and modification and enhanced stability, as well as improved hydrophilicity compared to conventional antibody fragments (antigen-binding fragments (Fab) or single-chain variable fragments (scFv)) that can aggregate due to their low solubility. Nanobodies directly target antigen epitopes or can be engineered into multivalent Nbs and Nb-fusion proteins, expanding their therapeutic potential. This review is dedicated to charting the progress in Nb research, particularly those derived from camelids, and highlighting their diverse applications in treating infectious diseases, spanning both human and animal contexts.


Subject(s)
Camelidae , Single-Domain Antibodies , Animals , Single-Domain Antibodies/immunology , Single-Domain Antibodies/therapeutic use , Humans , Camelidae/immunology , Communicable Diseases/immunology , Communicable Diseases/therapy , Camelids, New World/immunology , COVID-19/immunology , COVID-19/therapy
12.
Front Genet ; 15: 1403907, 2024.
Article in English | MEDLINE | ID: mdl-38911294

ABSTRACT

Breast cancer (BRCA) is one of the most common malignant tumors affecting women worldwide. DNA methylation modifications can influence oncogenic pathways and provide potential diagnostic and therapeutic targets for precision oncology. In this study, we used non-parametric permutation tests to identify differentially methylated positions (DMPs) between paired tumor and normal BRCA tissue samples from the Cancer Genome Atlas (TCGA) database. Then, we applied non-negative matrix factorization (NMF) to the DMPs to derive eight distinct DNA methylation signatures. Among them, signatures Hyper-S3 and Hypo-S4 signatures were associated with later tumor stages, while Hyper-S1 and Hypo-S3 exhibited higher methylation levels in earlier stages. Signature Hyper-S3 displayed an effect on overall survival. We further validated the four stage-associated signatures using an independent BRCA DNA methylation dataset from peripheral blood samples. Results demonstrated that 24 commonly hypomethylated sites in Hypo-S4 showed lower methylation in BRCA patients compared to healthy individuals, suggesting its potential as an early diagnostic biomarker. Furthermore, we found that methylation of 23 probes from four stage-related signatures exhibited predictive power for immune therapy response. Notably, methylation levels of all three probes from the Hypo-S4 and activity of the Hypo-S4 demonstrated highly positive relevance to PD-L1 gene expression, implying their significant predictive values for immunotherapy outcomes. GO and KEGG pathway enrichment analysis revealed that genes with these 23 immunotherapy-related methylation probes are mainly involved in glycan degradation or protein deglycosylation. These methylation signatures and probes may serve as novel epigenetic biomarkers for predicting tumor immunotherapy response. Our findings provide new insights into precision oncology approaches for BRCA.

13.
Front Immunol ; 15: 1393451, 2024.
Article in English | MEDLINE | ID: mdl-38903502

ABSTRACT

Dendritic cells (DCs) play a central role in the orchestration of effective T cell responses against tumors. However, their functional behavior is context-dependent. DC type, transcriptional program, location, intratumoral factors, and inflammatory milieu all impact DCs with regard to promoting or inhibiting tumor immunity. The following review introduces important facets of DC function, and how subset and phenotype can affect the interplay of DCs with other factors in the tumor microenvironment. It will also discuss how current cancer treatment relies on DC function, and survey the myriad ways with which immune therapy can more directly harness DCs to enact antitumor cytotoxicity.


Subject(s)
Dendritic Cells , Immunotherapy , Neoplasms , Tumor Microenvironment , Humans , Dendritic Cells/immunology , Neoplasms/therapy , Neoplasms/immunology , Tumor Microenvironment/immunology , Immunotherapy/methods , Animals
14.
Front Allergy ; 5: 1360073, 2024.
Article in English | MEDLINE | ID: mdl-38903704

ABSTRACT

Background: Birch pollen-related food allergy (BPFA) is the most common type of food allergy in birch-endemic areas such as Western and Central Europe. Currently, there is no treatment available for BPFA. Due to the cross-reactivity between birch pollen and a range of implicated plant foods, birch pollen allergen immunotherapy (AIT) may be effective in the treatment of BPFA. In this study, we systematically evaluate the effectiveness of birch pollen-specific subcutaneous or sublingual immunotherapy in treating BPFA. Methods: A search was performed in the PubMed, Embase, and Cochrane libraries. Studies were independently screened by two reviewers against predefined eligibility criteria. The outcomes of interest were changes in (1) severity of symptoms during food challenge, (2) eliciting dose (ED), and (3) food allergy quality of life (FA-QoL). The validity of the selected articles was assessed using the revised Cochrane risk of bias tool. We focused on studies with the lowest risk of bias and considered studies with a high risk of bias as supportive. Data were descriptively summarized. Results: Ten studies were selected that included 475 patients in total. Seven studies were categorized into "high risk of bias" and three into "moderate risk of bias." The three moderate risk of bias studies, with a total of 98 patients, reported on severity of symptoms during challenge and on the ED. All three studies had a control group. Compared to the control group, improvement in severity of symptoms was observed during challenge in two out of the three studies and on the eliciting dose in one out of three. Only one study investigated the effect of birch pollen AIT on FA-QoL, showing that there was no significant difference between patients receiving subcutaneous immunotherapy or a placebo. Of the seven supportive studies, four had a control group and of those, three showed improvement on both severity of symptoms and ED. None of the supportive studies investigated the effect of the therapy on FA-QoL. Conclusion: This systematic review shows that there is not enough evidence to draw firm conclusions about the effect of AIT on BPFA. Future research is warranted that uses robust clinical studies that include long-term effects, QoL, and multiple BPFA-related foods.

15.
J Cell Mol Med ; 28(12): e18503, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38896112

ABSTRACT

Takotsubo syndrome (TTS) is a particular form of acute heart failure that can be challenging to distinguish from acute coronary syndrome at presentation. TTS was previously considered a benign self-limiting condition, but it is now known to be associated with substantial short- and long-term morbidity and mortality. Because of the poor understanding of its underlying pathophysiology, there are few evidence-based interventions to treat TTS. The hypotheses formulated so far can be grouped into endogenous adrenergic surge, psychological stress or preexisting psychiatric illness, coronary vasospasm with microvascular dysfunction, metabolic and energetic alterations, and inflammatory mechanisms. Current evidence demonstrates that the infiltration of immune cells such as macrophages and neutrophils play a pivotal role in TTS. At baseline, resident macrophages were the dominant subset in cardiac macrophages, however, it underwent a shift from resident macrophages to monocyte-derived infiltrating macrophages in TTS. Depletion of macrophages and monocytes in mice strongly protected them from isoprenaline-induced cardiac dysfunction. It is probable that immune cells, especially macrophages, may be new targets for the treatment of TTS.


Subject(s)
Inflammation , Macrophages , Takotsubo Cardiomyopathy , Takotsubo Cardiomyopathy/metabolism , Takotsubo Cardiomyopathy/etiology , Humans , Inflammation/pathology , Animals , Macrophages/metabolism
16.
Small ; : e2400741, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837655

ABSTRACT

The accumulation of excessive reactive oxygen species (ROS) and recurrent infections with drug-resistant bacteria pose significant challenges in diabetic wound infections, often leading to impediments in wound healing. Addressing this, there is a critical demand for novel strategies dedicated to treating and preventing diabetic wounds infected with drug-resistant bacteria. Herein, 2D tantalum carbide nanosheets (Ta4C3 NSs) have been synthesized through an efficient and straightforward approach, leading to the development of a new, effective nanoplatform endowed with notable photothermal properties, biosafety, and diverse ROS scavenging capabilities, alongside immunogenic attributes for diabetic wound treatment and prevention of recurrent drug-resistant bacterial infections. The Ta4C3 NSs exhibit remarkable photothermal performance, effectively eliminating methicillin-resistant Staphylococcus aureus (MRSA) and excessive ROS, thus promoting diabetic wound healing. Furthermore, Ta4C3 NSs enhance dendritic cell activation, further triggering T helper 1 (TH1)/TH2 immune responses, leading to pathogen-specific immune memory against recurrent MRSA infections. This nanoplatform, with its significant photothermal and immunomodulatory effects, holds vast potential in the treatment and prevention of drug-resistant bacterial infections in diabetic wounds.

17.
ACS Nano ; 18(26): 17267-17281, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38871478

ABSTRACT

Intrinsic or acquired resistance to chemical drugs severely limits their therapeutic efficacy in cancer treatment. Various intracellular antioxidant molecules, particularly glutathione (GSH), play a crucial role in maintaining intracellular redox homeostasis by mitigating the overproduced reactive oxygen species (ROS) due to rapid cell proliferation. Notably, these antioxidants also eliminate chemical-drug-induced ROS, eventually diminishing their cytotoxicity and rendering them less effective. In this study, we combined erastin, a GSH biosynthesis inhibitor, with 2'-deoxy-5-fluorouridine 5'-monophosphate sodium salt (FdUMP), an ROS-based drug, to effectively disrupt intracellular redox homeostasis and reverse chemotherapy resistance. Therefore, efficient ferroptosis and apoptosis were simultaneously induced for enhanced antitumor effects. Additionally, we employed small interfering RNA targeting PD-L1 (siPD-L1) as a third agent to block immune-checkpoint recognition by CD8+ T cells. The highly immunogenic cell peroxidates or damage-associated molecular patterns (DAMPs) induced by erastin acted synergistically with downregulated PD-L1 to enhance the antitumor effects. To codeliver these three drugs simultaneously and efficiently, we designed GE11 peptide-modified lipid nanoparticles (LNPs) containing calcium phosphate cores to achieve high encapsulation efficiencies. In vitro studies verified its enhanced cytotoxicity, efficient intracellular ROS induction and GSH/GPX4 downregulation, substantial lipid peroxidation product accumulation, and mitochondrial depolarization. In vivo, this formulation effectively accumulated at tumor sites and achieved significant tumor inhibition in subcutaneous colon cancer (CRC) mouse models with a maximum tumor inhibition rate of 83.89% at a relatively low dose. Overall, a strategy to overcome clinical drug resistance was verified in this study by depleting GSH and activating adaptive immunity.


Subject(s)
Antineoplastic Agents , Apoptosis , B7-H1 Antigen , Down-Regulation , Ferroptosis , Nanoparticles , Ferroptosis/drug effects , Animals , Humans , Mice , Nanoparticles/chemistry , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Down-Regulation/drug effects , Reactive Oxygen Species/metabolism , Lipids/chemistry , Cell Proliferation/drug effects , Female , Drug Screening Assays, Antitumor , Cell Line, Tumor , Liposomes
18.
ACS Nano ; 18(27): 17852-17868, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38939981

ABSTRACT

The discovery of cuproptosis, a copper-dependent mechanism of programmed cell death, has provided a way for cancer treatment. However, cuproptosis has inherent limitations, including potential cellular harm, the lack of targeting, and insufficient efficacy as a standalone treatment. Therefore, exogenously controlled combination treatments have emerged as key strategies for cuproptosis-based oncotherapy. In this study, a Cu2-xSe@cMOF nanoplatform was constructed for combined sonodynamic/cuproptosis/gas therapy. This platform enabled precise cancer cotreatment, with external control allowing the selective induction of cuproptosis in cancer cells. This approach effectively prevented cancer metastasis and recurrence. Furthermore, Cu2-xSe@cMOF was combined with the antiprogrammed cell death protein ligand-1 antibody (aPD-L1), and this combination maximized the advantages of cuproptosis and immune checkpoint therapy. Additionally, under ultrasound irradiation, the H2Se gas generated from Cu2-xSe@cMOF induced cytotoxicity in cancer cells. Further, it generated reactive oxygen species, which hindered cell survival and proliferation. This study reports an externally controlled system for cuproptosis induction that combines a carbonized metal-organic framework with aPD-L1 to enhance cancer treatment. This precision and reinforced cuproptosis cancer therapy platform could be valuable as an effective therapeutic agent to reduce cancer mortality and morbidity in the future.


Subject(s)
Copper , Immune Checkpoint Inhibitors , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/chemistry , Mice , Animals , Copper/chemistry , Copper/pharmacology , Cell Survival/drug effects , Cell Proliferation/drug effects , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/therapy , Female , Carbon/chemistry , Carbon/pharmacology , Mice, Inbred BALB C
19.
Int J Mol Sci ; 25(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38928307

ABSTRACT

In oral squamous cell carcinoma (OSCC) tissues, an immunotolerant situation triggered by immune checkpoints (ICPs) can be observed. Immune checkpoint inhibitors (ICIs) against the PD1/PD-L axis are used with impressive success. However, the response rate is low and the development of acquired resistance to ICI treatment can be observed. Therefore, new treatment strategies especially involving immunological combination therapies need to be developed. The novel negative immune checkpoint BTLA has been suggested as a potential biomarker and target for antibody-based immunotherapy. Moreover, improved response rates could be displayed for tumor patients when antibodies directed against BTLA were used in combination with anti-PD1/PD-L1 therapies. The aim of the study was to check whether the immune checkpoint BTLA is overexpressed in OSCC tissues compared to healthy oral mucosa (NOM) and could be a potential diagnostic biomarker and immunological target in OSCC. In addition, correlation analyses with the expression of other checkpoints should clarify more precisely whether combination therapies are potentially useful for the treatment of OSCC. A total of 207 tissue samples divided into 2 groups were included in the study. The test group comprised 102 tissue samples of OSCC. Oral mucosal tissue from 105 healthy volunteers (NOM) served as the control group. The expression of two isoforms of BTLA (BTLA-1/2), as well as PD1, PD-L1/2 and CD96 was analyzed by RT-qPCR. Additionally, BTLA and CD96 proteins were detected by IHC. Expression levels were compared between the two groups, the relative differences were calculated, and statistical relevance was determined. Furthermore, the expression rates of the immune checkpoints were correlated to each other. BTLA expression was significantly increased in OSCC compared to NOM (pBTLA_1 = 0.003; pBTLA_2 = 0.0001, pIHC = 0.003). The expression of PD1, its ligands PD-L1 and PD-L2, as well as CD96, were also significantly increased in OSCC (p ≤ 0.001). There was a strong positive correlation between BTLA expression and that of the other checkpoints (p < 0.001; ρ ≥ 0.5). BTLA is overexpressed in OSCC and appears to be a relevant local immune checkpoint in OSCC. Thus, antibodies directed against BTLA could be potential candidates for immunotherapies, especially in combination with ICI against the PD1/PD-L axis and CD96.


Subject(s)
Biomarkers, Tumor , Mouth Neoplasms , Receptors, Immunologic , Humans , Mouth Neoplasms/immunology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Male , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Female , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Aged , Adult , Gene Expression Regulation, Neoplastic , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/drug therapy , Immune Checkpoint Proteins/metabolism , Immune Checkpoint Proteins/genetics
20.
Cancer Lett ; 597: 217021, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38876388

ABSTRACT

The purpose of this study was to present the preliminary results of the PLATFORM Study, which aimed to evaluate the effectiveness of precision treatment for rare tumors in China. This study involved a phase II, open-label, non-randomized, multi-arm, single-center clinical trial. Patients with advanced rare solid tumors, who had not responded to standard treatment, were enrolled. The primary objective was to assess the safety and efficacy of targeted therapies in patients with actionable genetic alterations and immune checkpoint inhibitors in patients lacking actionable genetic alterations. Out of the 922 cases screened, 107 patients underwent mutation detection, with a final enrollment of 64 cases for the study. Among these, 26 cases received targeted therapy, and 38 cases underwent immunotherapy. The study encompassed over 40 types of rare tumors. The overall objective response rate (ORR) was 7.0%, with a disease control rate (DCR) of 70%. Targeted therapy showed a higher ORR of 17.8% and a DCR of 100%. The median progression-free survival (PFS) was 4 months overall, with targeted therapy showing a median PFS of 5 months and immunotherapy showing a median PFS of 3 months. In conclusion, from this preliminary analysis, targeted therapy within the precision medicine framework demonstrated promising therapeutic potential for rare tumors. However, monotherapy immunotherapy exhibited limited efficacy, highlighting the challenges in overcoming tumor-specific variations. These findings underscore the importance of further research and the exploration of combination therapies to improve outcomes for patients with rare tumors.

SELECTION OF CITATIONS
SEARCH DETAIL
...