Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 423
Filter
1.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891839

ABSTRACT

Alopecia areata (AA) is an autoimmune-mediated disorder in which the proximal hair follicle (HF) attack results in non-scarring partial to total scalp or body hair loss. Despite the growing knowledge about AA, its exact cause still needs to be understood. However, immunity and genetic factors are affirmed to be critical in AA development. While the genome-wide association studies proved the innate and acquired immunity involvement, AA mouse models implicated the IFN-γ- and cytotoxic CD8+ T-cell-mediated immune response as the main drivers of disease pathogenesis. The AA hair loss is caused by T-cell-mediated inflammation in the HF area, disturbing its function and disrupting the hair growth cycle without destroying the follicle. Thus, the loss of HF immune privilege, autoimmune HF destruction mediated by cytotoxic mechanisms, and the upregulation of inflammatory pathways play a crucial role. AA is associated with concurrent systemic and autoimmune disorders such as atopic dermatitis, vitiligo, psoriasis, and thyroiditis. Likewise, the patient's quality of life (QoL) is significantly impaired by morphologic disfigurement caused by the illness. The patients experience a negative impact on psychological well-being and self-esteem and may be more likely to suffer from psychiatric comorbidities. This manuscript aims to present the latest knowledge on the pathogenesis of AA, which involves genetic, epigenetic, immunological, and environmental factors, with a particular emphasis on immunopathogenesis.


Subject(s)
Alopecia Areata , Hair Follicle , Alopecia Areata/immunology , Alopecia Areata/genetics , Humans , Animals , Hair Follicle/immunology , Hair Follicle/pathology
2.
Microbes Infect ; : 105378, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880233

ABSTRACT

Antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is one of the mechanisms contributing to increased severity during heterotypic, secondary infection. The complement protein C1q has been shown to reduce the magnitude of ADE in vitro. Therefore, we investigated the mechanisms of C1q modulation of ADE, focusing on processes of viral entry. Using a model of ADE of DENV-1 infection in human myeloid cell lines in the presence of monoclonal antibodies, 4G2 and 2H2, we found that C1q produced nearly a 40-fold reduction of ADE of DENV-1 in K562 cells, but had no effect in U937 cells. In K562 cells, C1q reduced adsorption of DENV-1/4G2 and exerted a dual inhibitory effect on adsorption and internalization of DENV-1/2H2. Distinct endocytic pathways in the presence of antibody corresponded to conditions where C1q produced a differential action. Also, C1q did not affect the intrinsic cell response mediated by FcγR in human myeloid cells. The modulation of ADE of DENV-1 by C1q is dependent on the FcγR expressed on immune cells and the specificity of the antibody comprising the immune complex. Understanding protective and pathogenic mechanisms in the humoral response to DENV infections is crucial for the successful design of antivirals and vaccines.

3.
J Autoimmun ; : 103247, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38734536

ABSTRACT

Sarcoidosis is a granulomatous multiorgan disease, thought to result from exposure to yet unidentified antigens in genetically susceptible individuals. The exaggerated inflammatory response that leads to granuloma formation is highly complex and involves the innate and adaptive immune system. Consecutive immunological studies using advanced technology have increased our understanding of aberrantly activated immune cells, mediators and pathways that influence the formation, maintenance and resolution of granulomas. Over the years, it has become increasingly clear that disease immunopathogenesis can only be understood if the clinical heterogeneity of sarcoidosis is taken into consideration, along with the distribution of immune cells in peripheral blood and involved organs. Most studies offer an immunological snapshot during disease course, while the cellular composition of both the circulation and tissue microenvironment may change over time. Despite these challenges, novel insights on the role of the immune system are continuously published, thus bringing the field forward. This review highlights current knowledge on the innate and adaptive immune responses involved in sarcoidosis pathogenesis, as well as the pathways involved in non-resolving disease and fibrosis development. Additionally, we describe proposed immunological mechanisms responsible for drug-induced sarcoid like reactions. Although many aspects of disease immunopathogenesis remain to be unraveled, the identification of crucial immune reactions in sarcoidosis may help identify new treatment targets. We therefore also discuss potential therapies and future strategies based on the latest immunological findings.

4.
Heliyon ; 10(10): e31558, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38818168

ABSTRACT

Toxoplasma gondii (T. gondii) is a cosmopolitan protozoan parasite in humans and animals. It infects about 30 % of the human population worldwide and causes potentially fatal diseases in immunocompromised hosts and neonates. For this study, five English-language databases (ScienceDirect, ProQuest, Web of Science, PubMed, and Scopus) and the internet search engine Google Scholar were searched. This review was accomplished to draw a global perspective of what is known about the pathogenesis of T. gondii and various factors affecting it. Virulence and immune responses can influence the mechanisms of parasite pathogenesis and these factors are in turn influenced by other factors. In addition to the host's genetic background, the type of Toxoplasma strain, the routes of transmission of infection, the number of passages, and different phases of parasite life affect virulence. The identification of virulence factors of the parasite could provide promising insights into the pathogenesis of this parasite. The results of this study can be an incentive to conduct more intensive research to design and develop new anti-Toxoplasma agents (drugs and vaccines) to treat or prevent this infection. In addition, further studies are needed to better understand the key agents in the pathogenesis of T. gondii.

5.
Hum Immunol ; 85(4): 110814, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38768527

ABSTRACT

Psoriasis is a multifactorial disease that affects 0.84% of the global population and it can be associated with disabling comorbidities. As patients present with thick scaly lesions, psoriasis was long believed to be a disorder of keratinocytes. Psoriasis is now understood to be the outcome of the interaction between immunological and environmental factors in individuals with genetic predisposition. While it was initially thought to be solely mediated by cytokines of type-1 immunity, namely interferon-γ, interleukin-2, and interleukin-12 because it responds very well to cyclosporine, a reversible IL-2 inhibitor; the discovery of Th-17 cells advanced the understanding of the disease and helped the development of biological therapy. This article aims to provide a comprehensive review of the role of cytokines in psoriasis, highlighting areas of controversy and identifying the connection between cytokine imbalance and disease manifestations. It also presents the approved targeted treatments for psoriasis and those currently under investigation.

6.
Parasit Vectors ; 17(1): 203, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38711063

ABSTRACT

BACKGROUND: The role of pathogen genotype in determining disease severity and immunopathology has been studied intensively in microbial pathogens including bacteria, fungi, protozoa and viruses but is poorly understood in parasitic helminths. The medically important blood fluke Schistosoma mansoni is an excellent model system to study the impact of helminth genetic variation on immunopathology. Our laboratory has demonstrated that laboratory schistosome populations differ in sporocyst growth and cercarial production in the intermediate snail host and worm establishment and fecundity in the vertebrate host. Here, we (i) investigate the hypothesis that schistosome genotype plays a significant role in immunopathology and related parasite life history traits in the vertebrate mouse host and (ii) quantify the relative impact of parasite and host genetics on infection outcomes. METHODS: We infected BALB/c and C57BL/6 mice with four different laboratory schistosome populations from Africa and the Americas. We quantified disease progression in the vertebrate host by measuring body weight and complete blood count (CBC) with differential over a 12-week infection period. On sacrifice, we assessed parasitological (egg and worm counts, fecundity), immunopathological (organ measurements and histopathology) and immunological (CBC with differential and cytokine profiles) characteristics to determine the impact of parasite and host genetics. RESULTS: We found significant variation between parasite populations in worm numbers, fecundity, liver and intestine egg counts, liver and spleen weight, and fibrotic area but not in granuloma size. Variation in organ weight was explained by egg burden and intrinsic parasite factors independent of egg burden. We found significant variation between infected mouse lines in cytokine levels (IFN-γ, TNF-α), eosinophils, lymphocytes and monocyte counts. CONCLUSIONS: This study showed that both parasite and host genotype impact the outcome of infection. While host genotype explains most of the variation in immunological traits, parasite genotype explains most of the variation in parasitological traits, and both host and parasite genotypes impact immunopathology outcomes.


Subject(s)
Genotype , Mice, Inbred BALB C , Mice, Inbred C57BL , Schistosoma mansoni , Schistosomiasis mansoni , Animals , Schistosoma mansoni/immunology , Schistosoma mansoni/genetics , Mice , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/pathology , Female , Host-Parasite Interactions/immunology , Host-Parasite Interactions/genetics , Cytokines/genetics , Cytokines/blood , Cytokines/immunology
7.
Expert Opin Ther Targets ; 28(5): 345-356, 2024 May.
Article in English | MEDLINE | ID: mdl-38714500

ABSTRACT

INTRODUCTION: Mayaro fever is an emerging viral disease that manifests as an acute febrile illness. The disease is self-limiting, however joint pain can persist for months leading to chronic arthralgia. There is no specific treatment available, which ultimately leads to socioeconomic losses in populations at risk as well as strains to the public health systems. AREAS COVERED: We reviewed the candidate treatments proposed for Mayaro virus (MAYV) infection and disease, including antiviral compounds targeting viral or host mechanisms, and pathways involved in disease development and pathogenicity. We assessed compound screening technologies and experimental infection models used in these studies and indicated the advantages and limitations of available technologies and intended therapeutic strategies. EXPERT OPINION: Although several compounds have been suggested as candidate treatments against MAYV infection, notably those with antiviral activity, most compounds were assessed only in vitro. Compounds rarely progress toin vivo or preclinical studies, and such difficulty may be associated with limited experimental models. MAYV biology is largely inferred from related alphaviruses and reflected by few studies focusing on target proteins or mechanisms of action for MAYV. Therapeutic strategies targeting pathogenic inflammatory responses have shown potential against MAYV-induced disease in vivo, which might reduce long-term sequelae.


Subject(s)
Alphavirus Infections , Antiviral Agents , Drug Discovery , Animals , Antiviral Agents/pharmacology , Humans , Alphavirus Infections/drug therapy , Alphavirus Infections/virology , Alphavirus , Arthralgia/drug therapy , Drug Development , Molecular Targeted Therapy , Disease Models, Animal
8.
Front Immunol ; 15: 1395018, 2024.
Article in English | MEDLINE | ID: mdl-38799434

ABSTRACT

Background: Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a major public health problem worldwide. The human immunodeficiency virus (HIV) is another equally important life-threatening pathogen. HIV infection decreases CD4+ T cell levels markedly increasing Mtb co-infections. An appropriate animal model for HIV/Mtb co-infection that can recapitulate the diversity of the immune response in humans during co-infection would facilitate basic and translational research in HIV/Mtb infections. Herein, we describe a novel humanized mouse model. Methods: The irradiated NSG-SGM3 mice were transplanted with human CD34+ hematopoietic stem cells, and the humanization was monitored by staining various immune cell markers for flow cytometry. They were challenged with HIV and/or Mtb, and the CD4+ T cell depletion and HIV viral load were monitored over time. Before necropsy, the live mice were subjected to pulmonary function test and CT scan, and after sacrifice, the lung and spleen homogenates were used to determine Mtb load (CFU) and cytokine/chemokine levels by multiplex assay, and lung sections were analyzed for histopathology. The mouse sera were subjected to metabolomics analysis. Results: Our humanized NSG-SGM3 mice were able to engraft human CD34+ stem cells, which then differentiated into a full-lineage of human immune cell subsets. After co-infection with HIV and Mtb, these mice showed decrease in CD4+ T cell counts overtime and elevated HIV load in the sera, similar to the infection pattern of humans. Additionally, Mtb caused infections in both lungs and spleen, and induced granulomatous lesions in the lungs. Distinct metabolomic profiles were also observed in the tissues from different mouse groups after co-infections. Conclusion: The humanized NSG-SGM3 mice are able to recapitulate the pathogenic effects of HIV and Mtb infections and co-infection at the pathological, immunological and metabolism levels and are therefore a reproducible small animal model for studying HIV/Mtb co-infection.


Subject(s)
Coinfection , Disease Models, Animal , HIV Infections , Mycobacterium tuberculosis , Tuberculosis , Animals , Coinfection/immunology , Coinfection/microbiology , HIV Infections/immunology , HIV Infections/complications , Humans , Mice , Tuberculosis/immunology , Mycobacterium tuberculosis/immunology , CD4-Positive T-Lymphocytes/immunology , Hematopoietic Stem Cell Transplantation , Viral Load , HIV-1/immunology , Lung/immunology , Lung/pathology , Lung/virology , Hematopoietic Stem Cells/immunology , Mice, SCID
9.
BMC Genomics ; 25(1): 534, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816794

ABSTRACT

BACKGROUND: Maedi-visna virus (MVV) is a lentivirus that infects monocyte/macrophage lineage cells in sheep, goats, and wild ruminants and causes pneumonia, mastitis, arthritis, and encephalitis. The immune response to MVV infection is complex, and a complete understanding of its infection and pathogenesis is lacking. This study investigated the in vivo transcriptomic patterns of lung tissues in sheep exposed to MVV using the RNA sequencing technology. RESULT: The results indicated that 2,739 genes were significantly differentially expressed, with 1,643 downregulated genes and 1,096 upregulated genes. Many variables that could be unique to MVV infections were discovered. Gene Ontology analysis revealed that a significant proportion of genes was enriched in terms directly related to the immune system and biological responses to viral infections. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the most enriched pathways were related to virus-host cell interactions and inflammatory responses. Numerous immune-related genes, including those encoding several cytokines and interferon regulatory factors, were identified in the protein-protein interaction network of differentially expressed genes (DEGs). The expression of DEGs was evaluated using real-time polymerase chain reaction and western blot analysis. CXCL13, CXCL6, CXCL11, CCR1, CXCL8, CXCL9, CXCL10, TNFSF8, TNFRSF8, IL7R, IFN-γ, CCL2, and MMP9 were upregulated. Immunohistochemical analysis was performed to identify the types of immune cells that infiltrated MVV-infected tissues. B cells, CD4+ and CD8+ T cells, and macrophages were the most prevalent immune cells correlated with MVV infection in the lungs. CONCLUSION: Overall, the findings of this study provide a comprehensive understanding of the in vivo host response to MVV infection and offer new perspectives on the gene regulatory networks that underlie pathogenesis in natural hosts.


Subject(s)
Lung , Visna-maedi virus , Animals , Visna-maedi virus/genetics , Lung/virology , Lung/immunology , Lung/pathology , Sheep , Gene Expression Profiling , Transcriptome , Pneumonia, Progressive Interstitial, of Sheep/genetics , Pneumonia, Progressive Interstitial, of Sheep/virology , Pneumonia, Progressive Interstitial, of Sheep/immunology , Protein Interaction Maps , Gene Expression Regulation , Gene Ontology
10.
Mol Immunol ; 171: 66-76, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795686

ABSTRACT

Chronic inflammation has long been considered the characteristic feature of type II diabetes mellitus (T2DM) Immunopathogenesis. Pro-inflammatory cytokines are considered the central drivers of the inflammatory cascade leading to ß-cell dysfunction and insulin resistance (IR), two major pathologic events contributing to T2DM. Analyzing the cytokine profile of T2DM patients has also introduced interleukin-17 (IL-17) as an upstream regulator of inflammation, regarding its role in inducing the nuclear factor-kappa B (NF-κB) pathway. In diabetic tissues, IL-17 induces the expression of inflammatory cytokines and chemokines. Hence, IL-17 can deteriorate insulin signaling and ß-cell function by activating the JNK pathway and inducing infiltration of neutrophils into pancreatic islets, respectively. Additionally, higher levels of IL-17 expression in patients with diabetic complications compared to non-complicated individuals have also proposed a role for IL-17 in T2DM complications. Here, we highlight the role of IL-17 in the Immunopathogenesis of T2DM and corresponding pathways, recent advances in preclinical and clinical studies targeting IL-17 in T2DM, and corresponding challenges and possible solutions.


Subject(s)
Diabetes Mellitus, Type 2 , Interleukin-17 , Humans , Diabetes Mellitus, Type 2/immunology , Interleukin-17/immunology , Animals , Inflammation/immunology , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Diabetes Complications/immunology , Insulin Resistance/immunology , Signal Transduction/immunology
11.
Int Rev Immunol ; : 1-18, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38618863

ABSTRACT

Cerebral malaria (CM) is a severe complication of Plasmodium falciparum (P. falciparum) infection, with complex pathogenesis involving multiple factors, including the host's immunological response. T lymphocytes, specifically CD4+ T helper cells and CD8+ cytotoxic T cells, are crucial in controlling parasite growth and activating cells for parasite clearance via cytokine secretion. Contrary to this, reports also suggest the pathogenic nature of T lymphocytes as they are often involved in disease progression and severity. CD8+ cytotoxic T cells migrate to the host's brain vasculature, disrupting the blood-brain barrier and causing neurological manifestations. CD4+ T helper cells on the other hand play a variety of functions as they differentiate into different subtypes which may function as pro-inflammatory or anti-inflammatory. The excessive pro-inflammatory response in CM can lead to multi-organ failure, necessitating a check mechanism to maintain immune homeostasis. This is achieved by regulatory T cells and their characteristic cytokines, which counterbalance the pro-inflammatory immune response. Maintaining a critical balance between pro and anti-inflammatory responses is crucial for determining disease outcomes in CM. A slight change in this balance may contribute to a disease severity owing to an extreme inflammatory response or unrestricted parasite growth, a potential target for designing immunotherapeutic treatment approaches. The review briefly discusses the pathogenesis of CM and various mechanisms responsible for the disruption of the blood-brain barrier. It also highlights the role of different T cell subsets during infection and emphasizes the importance of balance between pro and anti-inflammatory T cells that ultimately decides the outcome of the disease.


CM is potentially fatal complication of P. falciparum infection that presents with high mortality and morbidity. Vaccines are extensively being developed against the Plasmodium parasite but very few of them are effective. Artemisinin Combination Therapy (ACT) is a major treatment for malaria, but its effectiveness is declining due to Plasmodium sp. developing resistance to it, necessitating the need for development of new drugs and treatments. During infection, the parasite is responsible for causing infected red blood cell (RBC) sequestration and cytoadherence in brain vasculature and extreme pro-inflammatory response that ultimately causes endothelial dysfunction and bloodbrain barrier (BBB) disruption. The host initiates a pro-inflammatory response against the parasite which includes activation of cells of both innate and adaptive immune response. These cells control the parasite growth and aid in parasite clearance from host's body. The inflammatory response generally targets foreign pathogens and provides protection against possible infection but can also cause harm to the self when left unchecked. It has been reported that activated immune cells, mainly T-lymphocytes often migrate to brain vasculature and ultimately results in neuronal damage characteristic CM. To counteract the overwhelming pro-inflammatory response, the host immune system deploys an anti-inflammatory response, which often involves regulatory cells and cytokines that help the body maintain immunological homeostasis. The review briefly highlights the necessity of balancing the pro- and anti-inflammatory responses for successful parasite clearance without the deleterious effects to the host that might increase disease severity in CM.

12.
J Infect Dis ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38591239

ABSTRACT

BACKGROUND: Borna disease virus 1 (BoDV-1) causes rare but severe zoonotic infections in humans, presenting as severe encephalitis. The case-fatality risk is very high and no effective countermeasures have been established so far. An immunopathology is presumed, while data on immune responses in humans are limited. Evidence of a role of the complement system in various neurological disorders and central nervous viral infections is increasing and specific inhibitors are available as therapeutic options. METHODS: In this study, we investigated factors of the complement system in the cerebrospinal fluid (CSF) of patients with BoDV-1 infections (n = 17) in comparison to non-inflammatory control CSF samples (n = 11), using a bead-based multiplex assay. In addition, immunohistochemistry was performed using post-mortem brain tissue samples. RESULTS: We found an intrathecal elevation of complement factors of all complement pathways and an active cascade during human BoDV-1 infections. The increase of certain complement factors such as C1q was persistent and C3 complement deposits were detected in post-mortem brain sections. Intrathecal complement levels were negatively correlated with survival. CONCLUSION: Further investigations are warranted to clarify, whether targeting the complement cascade by specific inhibitors might be beneficial for patients suffering from severe BoDV-1 encephalitis.

14.
Immune Netw ; 24(1): e11, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38455459

ABSTRACT

IL-15 belongs to the common gamma chain cytokine family and has pleiotropic immunological functions. IL-15 is a homeostatic cytokine essential for the development and maintenance of NK cells and memory CD8+ T cells. In addition, IL-15 plays a critical role in the activation, effector functions, tissue residency, and senescence of CD8+ T cells. IL-15 also activates virtual memory T cells, mucosal-associated invariant T cells and γδ T cells. Recently, IL-15 has been highlighted as a major trigger of TCR-independent activation of T cells. This mechanism is involved in T cell-mediated immunopathogenesis in diverse diseases, including viral infections and chronic inflammatory diseases. Deeper understanding of IL-15-mediated T-cell responses and their underlying mechanisms could optimize therapeutic strategies to ameliorate host injury by T cell-mediated immunopathogenesis. This review highlights recent advancements in comprehending the role of IL-15 in relation to T cell responses and immunopathogenesis under various host conditions.

15.
Expert Opin Ther Targets ; 28(3): 131-143, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38470316

ABSTRACT

INTRODUCTION: Guillain-Barré syndrome (GBS) is a group of acute immune-mediated disorders in the peripheral nervous system. Both infectious and noninfectious factors are associated with GBS, which may act as triggers of autoimmune responses leading to neural damage and dysfunction. AREAS COVERED: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its vaccines as well as flaviviruses have been associated with GBS, although a robust conclusion has yet to be reached. Immunomodulatory treatments, including intravenous immunoglobulins (IVIg) and plasma exchange (PE), have long been the first-line therapies for GBS. Depending on GBS subtype and severity at initial presentation, the efficacy of IVIg and PE can be variable. Several new therapies showing benefits to experimental animals merit further investigation before translation into clinical practice. We review the state-of-the-art knowledge on the immunopathogenesis of GBS in the context of coronavirus disease 2019 (COVID-19). Immunomodulatory therapies in GBS, including IVIg, PE, corticosteroids, and potential therapies, are summarized. EXPERT OPINION: The association with SARS-CoV-2 remains uncertain, with geographical differences that are difficult to explain. Evidence and guidelines are lacking for the decision-making of initiating immunomodulatory therapies in mildly affected patients or patients with regional subtypes of GBS.


Subject(s)
COVID-19 , Guillain-Barre Syndrome , Immunoglobulins, Intravenous , Plasma Exchange , Guillain-Barre Syndrome/therapy , Guillain-Barre Syndrome/immunology , Guillain-Barre Syndrome/physiopathology , Guillain-Barre Syndrome/drug therapy , Humans , COVID-19/immunology , COVID-19/therapy , Animals , Plasma Exchange/methods , Immunomodulating Agents/pharmacology , SARS-CoV-2/immunology
16.
Parasitol Res ; 123(3): 149, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38433167

ABSTRACT

Scabies is an itchy skin disease caused by the burrowing mite Sarcoptes scabiei. During their lifespan, the female mites invade the stratum corneum and create tunnels, in which they reside, move, feed, deposit fecal pellets, and lay eggs. Recently, scabies was included in the World Health Organization roadmap for neglected tropical diseases 2021-2030. This review attempts to summarize our knowledge about the mite's biology and the disease pathogenesis, pathological changes, and complications. Generally, the host-parasite interaction in scabies is highly complex and involves different mechanisms, some of which are yet largely unknown. Elucidation of the nature of such interaction as well as the underlying mechanisms could allow a better understanding of the mite's biology and the development of novel diagnostic and therapeutic options for scabies control programs. Moreover, identification of the molecular basis of such interaction could unveil novel targets for acaricidal agents and vaccines.


Subject(s)
Acaricides , Scabies , Female , Animals , Sarcoptes scabiei , Eggs , Epidermis
17.
bioRxiv ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38496484

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a major public health problem worldwide. The human immunodeficiency virus (HIV) is another equally important life-threatening pathogen. Further, co-infections with HIV and Mtb have severe effects in the host, with people infected with HIV being fifteen to twenty-one times more likely to develop active TB. The use of an appropriate animal model for HIV/Mtb co-infection that can recapitulate the diversity of the immune response in humans would be a useful tool for conducting basic and translational research in HIV/Mtb infections. The present study was focused on developing a humanized mouse model for investigations on HIV-Mtb co-infection. Using NSG-SGM3 mice that can engraft human stem cells, our studies showed that they were able to engraft human CD34+ stem cells which then differentiate into a full-lineage of human immune cell subsets. After co-infection with HIV and Mtb, these mice showed decrease in CD4+ T cell counts overtime and elevated HIV load in the sera, similar to the infection pattern of humans. Additionally, Mtb caused infections in both lungs and spleen, and induced the development of granulomatous lesions in the lungs, detected by CT scan and histopathology. Distinct metabolomic profiles were also observed in the tissues from different mouse groups after co-infections. Our results suggest that the humanized NSG-SGM3 mice are able to recapitulate the effects of HIV and Mtb infections and co-infection in the human host at pathological, immunological and metabolism levels, providing a dependable small animal model for studying HIV/Mtb co-infection.

18.
Front Biosci (Landmark Ed) ; 29(2): 84, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38420827

ABSTRACT

Atopic dermatitis (AD) is a recurrent, chronic, inflammatory, itchy skin disorder that affects up to 20% of the pediatric population and 10% of the adult population worldwide. Onset typically occurs early in life, and although cardinal disease features are similar across all ages, different age groups and ethnicities present distinct clinical characteristics. The disease imposes a significant burden in all health-related quality of life domains, both in children and adults, and a substantial economic cost both at individual and national levels. The pathophysiology of AD includes a complex and multifaceted interplay between the impaired dysfunctional epidermal barrier, genetic predisposition, and environmental contributors, such as chemical and/or biological pollutants and allergens, in the context of dysregulated TH2 and TH17 skewed immune response. Regarding the genetic component, the loss of function mutations encoding structural proteins such as filaggrin, a fundamental epidermal protein, and the more recently identified variations in the epidermal differentiation complex are well-established determinants resulting in an impaired skin barrier in AD. More recently, epigenetic factors have facilitated AD development, including the dysbiotic skin microbiome and the effect of the external exposome, combined with dietary disorders. Notably, the interleukin (IL)-31 network, comprising several cell types, including macrophages, basophils, and the generated cytokines involved in the pathogenesis of itch in AD, has recently been explored. Unraveling the specific AD endotypes, highlighting the implicated molecular pathogenetic mechanisms of clinically relevant AD phenotypes, has emerged as a crucial step toward targeted therapies for personalized treatment in AD patients. This review aims to present state-of-the-art knowledge regarding the multifactorial and interactive pathophysiological mechanisms in AD.


Subject(s)
Dermatitis, Atopic , Child , Adult , Humans , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Quality of Life , Skin/metabolism , Cytokines/metabolism , Genetic Predisposition to Disease
19.
EMBO Mol Med ; 16(3): 641-663, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38332201

ABSTRACT

Communications between immune cells are essential to ensure appropriate coordination of their activities. Here, we observed the infiltration of activated macrophages into the joint-footpads of chikungunya virus (CHIKV)-infected animals. Large numbers of CD64+MHCII+ and CD64+MHCII- macrophages were present in the joint-footpad, preceded by the recruitment of their CD11b+Ly6C+ inflammatory monocyte precursors. Recruitment and differentiation of these myeloid subsets were dependent on CD4+ T cells and GM-CSF. Transcriptomic and gene ontology analyses of CD64+MHCII+ and CD64+MHCII- macrophages revealed 89 differentially expressed genes, including genes involved in T cell proliferation and differentiation pathways. Depletion of phagocytes, including CD64+MHCII+ macrophages, from CHIKV-infected mice reduced disease pathology, demonstrating that these cells play a pro-inflammatory role in CHIKV infection. Together, these results highlight the synergistic dynamics of immune cell crosstalk in driving CHIKV immunopathogenesis. This study provides new insights in the disease mechanism and offers opportunities for development of novel anti-CHIKV therapeutics.


Subject(s)
Chikungunya Fever , Chikungunya virus , Animals , Mice , T-Lymphocytes/metabolism , Chikungunya virus/genetics , Macrophages , CD4-Positive T-Lymphocytes
20.
Res Sq ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38313261

ABSTRACT

Background: The role of pathogen genotype in determining disease severity and immunopathology has been studied intensively in microbial pathogens including bacteria, fungi, protozoa, and viruses, but is poorly understood in parasitic helminths. The medically important blood fluke Schistosoma mansoni is an excellent model system to study the impact of helminth genetic variation on immunopathology. Our laboratory has demonstrated that laboratory schistosome populations differ in sporocyst growth and cercarial production in the intermediate snail host and worm establishment and fecundity in the vertebrate host. Here, we (i) investigate the hypothesis that schistosome genotype plays a significant role in immunopathology and related parasite life history traits in the vertebrate mouse host and (ii) quantify the relative impact of parasite and host genetics on infection outcomes. Methods: We infected BALB/c and C57BL/6 mice with four different laboratory schistosome populations from Africa and the Americas. We quantified disease progression in the vertebrate host by measuring body weight and complete blood count (CBC) with differential over an infection period of 12 weeks. On sacrifice, we assessed parasitological (egg and worm counts, fecundity), immunopathological (organ measurements and histopathology), and immunological (CBC with differential and cytokine profiles) characteristics to determine the impact of parasite and host genetics. Results: We found significant variation between parasite populations in worm numbers, fecundity, liver and intestine egg counts, liver and spleen weight, and fibrotic area, but not in granuloma size. Variation in organ weight was explained by egg burden and by intrinsic parasite factors independent of egg burden. We found significant variation between infected mouse lines in cytokines (IFN-γ, TNF-α), eosinophil, lymphocyte, and monocyte counts. Conclusions: This study showed that both parasite and host genotype impact the outcome of infection. While host genotype explains most of the variation in immunological traits, parasite genotype explains most of the variation in parasitological traits, and both host and parasite genotype impact immunopathology outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...