Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Biofabrication ; 15(4)2023 08 08.
Article in English | MEDLINE | ID: mdl-37406632

ABSTRACT

Cell-laden hydrogel microstructures have been used in broad applications in tissue engineering, translational medicine, and cell-based assays for pharmaceutical research. However, the construction of cell-laden hydrogel microstructuresin vitroremains challenging. The technologies permitting generation of multicellular structures with different cellular compositions and spatial distributions are needed. Herein, we propose a laser-guided programmable hydrogel-microstructures-construction platform, allowing controllable and heterogeneous assembly of multiple cellular spheroids into spatially organized multicellular structures with good bioactivity. And the cell-laden hydrogel microstructures could be further leveraged forin vitrodrug evaluation. We demonstrate that cells within hydrogels exhibit significantly higher half-maximal inhibitory concentration values against doxorubicin compared with traditional 2D plate culture. Moreover, we reveal the differences in drug responses between heterogeneous and homogeneous cell-laden hydrogel microstructures, providing valuable insight intoin vitrodrug evaluation.


Subject(s)
Hydrogels , Tissue Engineering , Hydrogels/pharmacology , Hydrogels/chemistry , Lasers
2.
Microbiol Spectr ; 10(6): e0349022, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36314907

ABSTRACT

We newly generated two human induced pluripotent stem cell (hiPSC)-derived spheroid lines, termed Spheroids_4MACE2-TMPRSS2 and Spheroids_15M63ACE2-TMPRSS2, both of which express angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2), which are critical for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Both spheroids were highly susceptible to SARS-CoV-2 infection, and two representative anti-SARS-CoV-2 agents, remdesivir and 5h (an inhibitor of SARS-CoV-2's main protease), inhibited the infectivity and replication of SARS-CoV-2 in a dose-dependent manner, suggesting that these human-derived induced spheroids should serve as valuable target cells for the evaluation of anti-SARS-CoV-2 activity. IMPORTANCE The hiPSC-derived spheroids we generated are more expensive to obtain than the human cell lines currently available for anti-SARS-CoV-2 drug evaluation, such as Calu-3 cells; however, the spheroids have better infection susceptibility than the existing human cell lines. Although we are cognizant that there are human lung (and colonic) organoid models for the study of SARS-CoV-2, the production of those organoids is greatly more costly and time consuming than the generation of human iPSC-derived spheroid cells. Thus, the addition of human iPSC-derived spheroids for anti-SARS-CoV-2 drug evaluation studies could provide the opportunity for more comprehensive interpretation of the antiviral activity of compounds against SARS-CoV-2.


Subject(s)
Induced Pluripotent Stem Cells , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , COVID-19 , Drug Evaluation , Induced Pluripotent Stem Cells/metabolism , SARS-CoV-2/drug effects , Serine
3.
Mem. Inst. Oswaldo Cruz ; 106(4): 475-478, June 2011. tab
Article in English | LILACS | ID: lil-592191

ABSTRACT

The in vitro leishmanicidal activity of miltefosine® (Zentaris GmbH) was assessed against four medically relevant Leishmania species of Brazil: Leishmania (Leishmania) amazonensis, Leishmania (Viannia) braziliensis, Leishmania (Viannia) guyanensis and Leishmania (Leishmania) chagasi. The activity of miltefosine against these New World species was compared to its activity against the Old World strain, Leishmania (Leishmania) donovani, which is known to be sensitive to the effects of miltefosine. The IC50 and IC90 results suggested the New World species harboured similar in vitro susceptibilities to miltefosine; however, miltefosine was approximately 20 times more active against the Old World L. (L.) donovani than against the New World L. (L.) chagasi species. The selectivity index varied from 17.2-28.9 for the New World Leishmania species and up to 420.0 for L. (L.) donovani. The differences in susceptibility to miltefosine suggest that future clinical trials with this drug should include a laboratory pre-evaluation and a dose-defining step.


Subject(s)
Animals , Mice , Antiprotozoal Agents , Leishmania , Phosphorylcholine/analogs & derivatives , Antiprotozoal Agents , Mice, Inbred BALB C , Macrophages , Parasitic Sensitivity Tests , Phosphorylcholine
SELECTION OF CITATIONS
SEARCH DETAIL
...