Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Arch Microbiol ; 206(4): 173, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38492040

ABSTRACT

Using microalgal growth-promoting bacteria (MGPB) to improve the cultured microalga metabolism during biotechnological processes is one of the most promising strategies to enhance their benefits. Nonetheless, the culture condition effect used during the biotechnological process on MGPB growth and metabolism is key to ensure the expected positive bacterium growth and metabolism of microalgae. In this sense, the present research study investigated the effect of the synthetic biogas atmosphere (75% CH4-25% CO2) on metabolic and physiological adaptations of the MGPB Azospirillum brasilense by a microarray-based transcriptome approach. A total of 394 A. brasilense differentially expressed genes (DEGs) were found: 201 DEGs (34 upregulated and 167 downregulated) at 24 h and 193 DEGs (140 upregulated and 53 downregulated) under the same conditions at 72 h. The results showed a series of A. brasilense genes regulating processes that could be essential for its adaptation to the early stressful condition generated by biogas. Evidence of energy production is shown by nitrate/nitrite reduction and activation of the hypothetical first steps of hydrogenotrophic methanogenesis; signal molecule modulation is observed: indole-3-acetic acid (IAA), riboflavin, and vitamin B6, activation of Type VI secretion system responding to IAA exposure, as well as polyhydroxybutyrate (PHB) biosynthesis and accumulation. Moreover, an overexpression of ipdC, ribB, and phaC genes, encoding the key enzymes for the production of the signal molecule IAA, vitamin riboflavin, and PHB production of 2, 1.5 and 11 folds, respectively, was observed at the first 24 h of incubation under biogas atmosphere Overall, the ability of A. brasilense to metabolically adapt to a biogas atmosphere is demonstrated, which allows its implementation for generating biogas with high calorific values and the use of renewable energies through microalga biotechnologies.


Subject(s)
Azospirillum brasilense , Microalgae , Microalgae/genetics , Biofuels , Transcriptome , Indoleacetic Acids/metabolism , Gene Expression Profiling , Adaptation, Physiological/genetics , Riboflavin/genetics , Riboflavin/metabolism
2.
Int J Mol Sci ; 23(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35457125

ABSTRACT

Arundo donax has been recognized as a promising crop for biomass production on marginal lands due to its superior productivity and stress tolerance. However, salt stress negatively impacts A. donax growth and photosynthesis. In this study, we tested whether the tolerance of A. donax to salinity stress can be enhanced by the addition of 5-aminolevulinic acid (ALA), a known promoter of plant growth and abiotic stress tolerance. Our results indicated that root exposure to ALA increased the ALA levels in leaves along the A. donax plant profile. ALA enhanced Na+ accumulation in the roots of salt-stressed plants and, at the same time, lowered Na+ concentration in leaves, while a reduced callose amount was found in the root tissue. ALA also improved the photosynthetic performance of salt-stressed apical leaves by stimulating stomatal opening and preventing an increase in the ratio between abscisic acid (ABA) and indol-3-acetic acid (IAA), without affecting leaf methanol emission and plant growth. Supply of ALA to the roots reduced isoprene fluxes from leaves of non-stressed plants, while it sustained isoprene fluxes along the profile of salt-stressed A. donax. Thus, ALA likely interacted with the methylerythritol 4-phosphate (MEP) pathway and modulate the synthesis of either ABA or isoprene under stressful conditions. Overall, our study highlights the effectiveness of ALA supply through soil fertirrigation in preserving the young apical developing leaves from the detrimental effects of salt stress, thus helping of A. donax to cope with salinity and favoring the recovery of the whole plant once the stress is removed.


Subject(s)
Aminolevulinic Acid , Plant Growth Regulators , Abscisic Acid/metabolism , Aminolevulinic Acid/metabolism , Butadienes , Hemiterpenes , Photosynthesis , Plant Leaves/metabolism , Plant Roots/metabolism , Poaceae/metabolism , Salt Stress
3.
Braz. arch. biol. technol ; 65: e22200439, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1364460

ABSTRACT

Abstract: Sugarcane is an important Brazilian commodity, being usually cultivated in soils with low natural fertility. This study aimed to isolate diazotrophic endophytes from sugarcane tissues and evaluate the morphological and physiological characteristics of their colonies as well as their plant growth-promoting (PGP) traits in select diazotrophic endophytic bacteria. Fifty-six bacterial isolates were identified in the sugarcane tissues, and these isolates presented distinct morphological and physiological traits. A total of thirty-five bacterial isolates were biochemically evaluated. Overall, Bacillus was the dominant genus. Isolates of Methylobacterium spp. and Brevibacillus agri were present only in leaves, while Herbaspirillum seropedicae occurred only in stems. Except to IPA-CF45A, all isolates were nitrogenase positive. All endophytes exhibit production of indol 3-acetic acid. Over 50% of endophytes solubilize phosphate, release N-acyl homoserine lactones, and present the activity of 1-aminocyclopropane-1-carboxylic acid deaminase, catalase, lipase and protease. The network analysis showed that isolates belonged to Burkholderia, Herbaspirillum, and Methylobacterium interact with Bacillus. Bacterial endophytes exhibited distinct morphological, physiological, and PGP traits that are useful for sustainable agriculture, highlighting the isolates IPA-CC33, IPA-CF65, IPA-CC9 and IPA-CF27. Further studies on the effects of these diazotrophic endophytes and their potential for providing microbial inoculants for improving sugarcane fields will provide valuable information to maintain the sustainability and environment quality.

4.
J Appl Microbiol ; 129(3): 575-589, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32147927

ABSTRACT

OBJECTIVE: The present study was performed to examine the role of pqqE inhabiting rhizobacteria in organic acid production and relationship of the organic acids with phosphate solubilization by the bacteria in vitro as well as in vivo. METHODS AND RESULTS: The pqqE gene was PCR amplified and sequenced in genomic DNA of Pantoea sp. WP-5 and Pseudomonas sp. NN-4. Nucleotide sequence obtained from WP-5 and NN-4 showed maximum sequence similarity (88 and 89%, respectively) with the pqqE gene of Pseudomonas fluorescens strain CMR12a (KM251420). Deduced amino acid sequence from pqqE gene of Pseudomonas sp. NN-4 and Pantoea sp. WP-5 showed 75 and 93% similarity, respectively, with protein pyrroloquinoline quinone. Phosphate solubilization and acid production assay were quantified on spectrophotometer and high-profile liquid chromatograph, respectively, by each bacterial strain. Both strains produced organic acids such as acetic, citric, gluconic, succinic and malic acid and lowered the pH of Pikovskaya broth medium under laboratory conditions. Phosphate solubilization by Pantoea sp. WP-5 was 311 ± 4 and 204 ± 3 µg ml-1 in the culture medium supplemented with glucose and sucrose as carbon source, respectively. Pseudomonas sp. NN-4 solubilized 176 ± 3 and 298 ± 5 µg ml-1 phosphate in Pikovskaya broth medium under similar conditions. In field experiments conducted during two consecutive years, the concentration of acetic acid and gluconic acid was higher in root exudates of plants treated with Pantoea sp. WP-5 at 30% reduced doses of nitrogen (N)- and phosphorus (P)-based chemical fertilizers as compared to non-inoculated plants. Values of chlorophyll contents, crop growth rate, leaf area index, straw yield and P contents were recorded higher in plants inoculated with Pantoea sp. WP-5 and Pseudomonas sp. NN-4 as compared to non-inoculated control. Grain yield was increased by 10-12% due to inoculation with Pantoea sp. WP-5 and Pseudomonas sp. NN-4 over non-inoculated control in the field experiments. CONCLUSIONS: These results lead to the conclusions that the rhizobacteria inhabiting pqqE gene produced organic acids and solubilized the phosphate in vitro. On inoculation to wheat plants in field experiments, these strains produced the organic acids, solubilized the phosphate, and improved the P uptake and productivity of wheat. SIGNIFICANCE AND IMPACT OF THE STUDY: The Pantoea sp. WP-5 and Pseudomonas sp. NN-4 are the potential candidates for inoculation to wheat as phosphate solubilizer even with reduced chemical fertilizer dose. The inoculation of the strains may enhance grain yield and net income of the farmer even with less chemical fertilizer application. This practice will be helpfull inminimizing environmental pollution.


Subject(s)
Bacterial Proteins/genetics , Pantoea/physiology , Pseudomonas/physiology , Triticum/growth & development , Triticum/microbiology , Acids/metabolism , Bacterial Proteins/metabolism , Edible Grain/growth & development , Edible Grain/metabolism , Fertilizers/analysis , Pantoea/genetics , Pantoea/metabolism , Phosphates/metabolism , Pseudomonas/genetics , Pseudomonas/metabolism , Soil/chemistry , Soil Microbiology , Triticum/metabolism
5.
J Plant Physiol ; 231: 356-363, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30388675

ABSTRACT

This study examined the temporal changes in the leaf content of defence-involved phytohormones in pepper (Capsicum annuum L.) plants responding to the green peach aphid (Myzus persicae Sulzer) infestation, at both local and systemic level. Aphid infestation did not alter the content of cis-12-oxo-phytodienoic acid, the jasmonic acid (JA) precursor, even though endogenous levels of JA and its bioactive isoleucine-conjugated form (JA-Ile) significantly increased from 8 to 96 h in local infested leaves. Systemic effects in jasmonates were only showed at 48 h for JA, and 8 and 48 h in the case of JA-Ile. SA accumulated only in local infested leaves after 96 h of infestation, when the level of JA-Ile decreased in these leaves. This suggests a possible antagonistic interaction between JA and SA pathways, although other pathways may be also involved. Endogenous level of indole-3-acetic acid was higher in systemic relative to local infested leaves at 3 and 24 h, although no significant changes in its content were found compared to control leaves. Abscisic acid content was lower in local infested relative to control leaves at 24 h, but was higher at 48 h when it also increased systemically. The possible roles of the studied phytohormones in plant defence responses against aphids are discussed.


Subject(s)
Aphids , Capsicum/parasitology , Plant Growth Regulators/physiology , Plant Leaves/parasitology , Abscisic Acid/metabolism , Animals , Capsicum/metabolism , Cyclopentanes/metabolism , Indoleacetic Acids/metabolism , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Plant Leaves/physiology
6.
Front Plant Sci ; 9: 1898, 2018.
Article in English | MEDLINE | ID: mdl-30619440

ABSTRACT

Somatic embryogenesis (SE) provides us a potent biotechnological tool to manipulate the physical and chemical conditions (water availability) along the process and to study their effect in the final success in terms of quantity of somatic embryos produced. In the last years, our research team has been focused on the study of different aspects of the SE in Pinus spp. One of the main aspects affecting SE is the composition of culture media; in this sense, phytohormones play one of the most crucial roles in this propagation system. Many studies in conifers have shown that different stages of SE and somatic embryo development are correlated with distinct endogenous phytohormone profiles under the stress conditions needed for the process (i.e., cytokinins play a regulatory role in stress signaling, which it is essential for radiata pine SE). Based on this knowledge, the aim of this study was to test the effect of different temperatures (18, 23, and 28°C) and gelling agent concentrations (8, 9, and 10 gL-1) during the maturation stage of Pinus radiata SE in maturation and germination rates. Parallel, phytohormone profile of somatic embryos developed was evaluated. In this sense, the highest gellan gum concentration led to significantly lower water availability. At this gellan gum concentration and 23°C a significantly higher number of somatic embryos was obtained and the overall success of the process increased with respect to other treatments assayed. The somatic embryos produced in these conditions showed the highest concentration of iP-type cytokinins and total ribosides. Although, the different conditions applied during maturation of somatic embryos led to different hormonal profiles, they did not affect the ex vitro survival of the resulting somatic plants, where no significant differences were observed.

7.
Braz. j. pharm. sci ; 51(4): 931-947, Oct.-Dec. 2015. tab, graf
Article in English | LILACS | ID: lil-778412

ABSTRACT

abstract A series of N-substituted 2-{[5-(1H-indol-3-ylmethyl)-1,3,4-oxadiazol-2-yl]sulfanyl}acetamides (8a-w) was synthesized in three steps. The first step involved the sequential conversion of 2-(1H-indol-3-yl)acetic acid (1) to ester (2) followed by hydrazide (3) formation and finally cyclization in the presence of CS2 and alcoholic KOH yielded 5-(1H-indole-3-yl-methyl)-1,3,4-oxadiazole-2-thiol (4). In the second step, aryl/aralkyl amines (5a-w) were reacted with 2-bromoacetyl bromide (6) in basic medium to yield 2-bromo-N-substituted acetamides (7a-w). In the third step, these electrophiles (7a-w) were reacted with 4 to afford the target compounds (8a-w). Structural elucidation of all the synthesized derivatives was done by 1H-NMR, IR and EI-MS spectral techniques. Moreover, they were screened for antibacterial and hemolytic activity. Enzyme inhibition activity was well supported by molecular docking results, for example, compound 8q exhibited better inhibitory potential against α-glucosidase, while 8g and 8b exhibited comparatively better inhibition against butyrylcholinesterase and lipoxygenase, respectively. Similarly, compounds 8b and 8c showed very good antibacterial activity against Salmonella typhi, which was very close to that of ciprofloxacin, a standard antibiotic used in this study. 8c and 8l also showed very good antibacterial activity against Staphylococcus aureus as well. Almost all compounds showed very slight hemolytic activity, where 8p exhibited the least. Therefore, the molecules synthesized may have utility as suitable therapeutic agents.


resumo Uma série de acetamidas 2-{[5-(1H-indol-3-ilmetil)-1,3,4-oxadiazol-2-il]sulfanila} N-substituídas (8a-w) foi sintetizada em três fases. A primeira etapa envolveu a conversão sequencial de ácido 2-(1H-indol-3-il)acético (1) a éster (2), seguido por hidrazida (3) e, finalmente, a e ciclização na presença de CS2 e KOH alcoólico produziu 5-(1H-indol-3-il- metil)-1,3,4-oxadiazole-2-tiol (4). Na segunda etapa, aminas arílicas/aralquílicas(5a-w) reagiram com brometo de 2-bromoacetila (6​​), em meio básico, para se obter acetamidas 2-bromo-N-substituídas (7a-w). Na terceira etapa, estes eletrófilos (7a- w) reagiram com 4, para se obter os compostos alvo (8a-w). A elucidação estrutural de todos os derivados sintetizados foi realizada por 1H-NMR, IR e técnicas de espectrometria de EI-MS. Além disso, eles foram submetidos a triagem de atividade antibacteriana e hemolítica. Análise da inibição enzimática foi bem apoiada pelos resultados de docking molecular. Por exemplo, o composto 8q exibiu melhor potencial inibitório contra α-glicosidase, e os compostos 8g e 8b exibiram, comparativamente, melhor inibição contra butirilcolinesterase (BChE) elipoxigenase (LOX), respectivamente. Do mesmo modo os compostos 8b e 8c mostraram excelente potencial antibacteriano contra SalmonellaTyphi, semelhante ao do ciprofloxacino, antibiótico padrão usado neste estudo. Os compostos 8c e 8l também mostraram excelente potencial antibacteriano contra Staphylococcus aureus . Quase todos os compostos mostraram pequena atividade hemolítica, sendo que o composto 8p apresentou menor atividade. Assim, as moléculas sintetizadas podem ter a sua utilidade como agentes terapêuticos adequados.


Subject(s)
Hydroxyindoleacetic Acid/analysis , Acetamides/analysis , Butyrylcholinesterase/analysis , Complement Hemolytic Activity Assay/classification , Lipoxygenases/pharmacokinetics , Glycoside Hydrolases/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...