Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 477
Filter
1.
Anal Chim Acta ; 1316: 342875, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969433

ABSTRACT

BACKGROUND: Indole-3-acetic acid (IAA) and salicylic acid (SA), pivotal regulators in plant growth, are integral to a variety of plant physiological activities. The ongoing and simultaneous monitoring of these hormones in vivo enhances our comprehension of their interactive and regulatory roles. Traditional detection methods, such as liquid chromatography-mass spectrometry, cannot obtain precise and immediate information on IAA and SA due to the complexity of sample processing. In contrast, the electrochemical detection method offers high sensitivity, rapid response times, and compactness, making it well-suited for in vivo or real-time detection applications. RESULTS: A microneedle electrochemical sensor system crafted from disposable stainless steel (SS) wire was specifically designed for the real-time assessment of IAA and SA in plant in situ. This sensor system included a SS wire (100 µm diameter) coated with carbon cement and multi-walled carbon nanotubes, a plain platinum wire (100 µm diameter), and an Ag/AgCl wire (100 µm diameter). Differential pulse voltammetry and amperometry were adopted for detecting SA and IAA within the range of 0.1-20 µM, respectively. This sensor was applied to track IAA and SA fluctuations in tomato leaves during PstDC3000 infection, offering continuous data. Observations indicated an uptick in SA levels following infection, while IAA production was suppressed. The newly developed disposable SS wire-based microneedle electrochemical sensor system is economical, suitable for mass production, and inflicts minimal damage during the monitoring of SA and IAA in plant tissues. SIGNIFICANCE: This disposable microneedle electrochemical sensor facilitates in vivo detection of IAA and SA in smaller plant tissues and allows for long-time monitoring of their concentrations, which not only propels research into the regulatory and interaction mechanisms of IAA and SA but also furnishes essential tools for advancing precision agriculture.


Subject(s)
Electrochemical Techniques , Indoleacetic Acids , Plant Leaves , Salicylic Acid , Solanum lycopersicum , Stainless Steel , Solanum lycopersicum/chemistry , Indoleacetic Acids/analysis , Salicylic Acid/analysis , Plant Leaves/chemistry , Plant Leaves/metabolism , Stainless Steel/chemistry , Electrochemical Techniques/instrumentation , Needles , Plant Diseases/microbiology
2.
New Phytol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962989

ABSTRACT

Grain filling in maize (Zea mays) is intricately linked to cell development, involving the regulation of genes responsible for the biosynthesis of storage reserves (starch, proteins, and lipids) and phytohormones. However, the regulatory network coordinating these biological functions remains unclear. In this study, we identified 1744 high-confidence target genes co-regulated by the transcription factors (TFs) ZmNAC128 and ZmNAC130 (ZmNAC128/130) through chromatin immunoprecipitation sequencing coupled with RNA-seq analysis in the zmnac128/130 loss-of-function mutants. We further constructed a hierarchical regulatory network using DNA affinity purification sequencing analysis of downstream TFs regulated by ZmNAC128/130. In addition to target genes involved in the biosynthesis of starch and zeins, we discovered novel target genes of ZmNAC128/130 involved in the biosynthesis of lipids and indole-3-acetic acid (IAA). Consistently, the number of oil bodies, as well as the contents of triacylglycerol, and IAA were significantly reduced in zmnac128/130. The hierarchical regulatory network centered by ZmNAC128/130 revealed a significant overlap between the direct target genes of ZmNAC128/130 and their downstream TFs, particularly in regulating the biosynthesis of storage reserves and IAA. Our results indicated that the biosynthesis of storage reserves and IAA is coordinated by a multi-TFs hierarchical regulatory network in maize endosperm.

3.
Environ Pollut ; 358: 124522, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986759

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are a type of organic pollution that can accumulate in crops and hazard human health. This study used phenanthrene (PHE) as a model PAH and employed hydroponic experiments to illustrate the role of indole-3-acetic acid (IAA) in the regulation of PHE accumulation in wheat roots. At optimal concentrations, wheat roots treated with PHE + IAA showed a 46.9% increase in PHE concentration, whereas treatment with PHE + P-chlorophenoxyisobutyric acid resulted in a 38.77% reduction. Transcriptome analysis identified TaSAUR80-5A as the crucial gene for IAA-enhancing PHE uptake. IAA increases plasma membrane H+-ATPase activity, promoting active transport of PHE via the PHE/H+ cotransport mechanism. These results provide not only the theoretical basis necessary to better understand the function of IAA in PAHs uptake and transport by staple crops, but also a strategy for controlling PAHs accumulation in staple crops and enhancing phytoremediation of PAH-contaminated environments.

5.
mSystems ; : e0016524, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837409

ABSTRACT

The communication between plants and their microbiota is highly dynamic and involves a complex network of signal molecules. Among them, the auxin indole-3-acetic acid (IAA) is a critical phytohormone that not only regulates plant growth and development, but is emerging as an important inter- and intra-kingdom signal that modulates many bacterial processes that are important during interaction with their plant hosts. However, the corresponding signaling cascades remain largely unknown. Here, we advance our understanding of the largely unknown mechanisms by which IAA carries out its regulatory functions in plant-associated bacteria. We showed that IAA caused important changes in the global transcriptome of the rhizobacterium Serratia plymuthica and multidisciplinary approaches revealed that IAA sensing interferes with the signaling mediated by other pivotal plant-derived signals such as amino acids and 4-hydroxybenzoic acid. Exposure to IAA caused large alterations in the transcript levels of genes involved in amino acid metabolism, resulting in significant metabolic alterations. IAA treatment also increased resistance to toxic aromatic compounds through the induction of the AaeXAB pump, which also confers resistance to IAA. Furthermore, IAA promoted motility and severely inhibited biofilm formation; phenotypes that were associated with decreased c-di-GMP levels and capsule production. IAA increased capsule gene expression and enhanced bacterial sensitivity to a capsule-dependent phage. Additionally, IAA induced the expression of several genes involved in antibiotic resistance and led to changes in the susceptibility and responses to antibiotics with different mechanisms of action. Collectively, our study illustrates the complexity of IAA-mediated signaling in plant-associated bacteria. IMPORTANCE: Signal sensing plays an important role in bacterial adaptation to ecological niches and hosts. This communication appears to be particularly important in plant-associated bacteria since they possess a large number of signal transduction systems that respond to a wide diversity of chemical, physical, and biological stimuli. IAA is emerging as a key inter- and intra-kingdom signal molecule that regulates a variety of bacterial processes. However, despite the extensive knowledge of the IAA-mediated regulatory mechanisms in plants, IAA signaling in bacteria remains largely unknown. Here, we provide insight into the diversity of mechanisms by which IAA regulates primary and secondary metabolism, biofilm formation, motility, antibiotic susceptibility, and phage sensitivity in a biocontrol rhizobacterium. This work has important implications for our understanding of bacterial ecology in plant environments and for the biotechnological and clinical applications of IAA, as well as related molecules.

6.
Molecules ; 29(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893338

ABSTRACT

Acting as a growth regulator, Indole-3-acetic acid (IAA) is an important phytohormone that can be produced by several Bacillus species. However, few studies have been published on the comprehensive evaluation of the strains for practical applications and the effects of selenium species on their IAA-producing ability. The present study showed the selenite reduction strain Bacillus altitudinis LH18, which is capable of producing selenium nanoparticles (SeNPs) at a high yield in a cost-effective manner. Bio-SeNPs were systematically characterized by using DLS, zeta potential, SEM, and FTIR. The results showed that these bio-SeNPs were small in particle size, homogeneously dispersed, and highly stable. Significantly, the IAA-producing ability of strain was differently affected under different selenium species. The addition of SeNPs and sodium selenite resulted in IAA contents of 221.7 µg/mL and 91.01 µg/mL, respectively, which were 3.23 and 1.33 times higher than that of the control. This study is the first to examine the influence of various selenium species on the IAA-producing capacity of Bacillus spp., providing a theoretical foundation for the enhancement of the IAA-production potential of microorganisms.


Subject(s)
Bacillus , Indoleacetic Acids , Selenium , Indoleacetic Acids/metabolism , Bacillus/metabolism , Bacillus/drug effects , Selenium/chemistry , Selenium/pharmacology , Selenium/metabolism , Nanoparticles/chemistry , Particle Size
7.
J Fungi (Basel) ; 10(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38921403

ABSTRACT

Several strains of Trichoderma are applied in the field to control plant diseases due to their capacity to suppress fungal pathogens and control plant diseases. Some Trichoderma strains also are able to promote plant growth through the production of indole-3-acetic acid (IAA). In southern Thailand, the local rice variety "Chor Khing" is mainly cultivated in the Songkhla province; it is characterized by slow growth and is susceptible to sheath blight caused by Rhizoctonia solani. Therefore, this research aimed to screen Trichoderma species with the ability to promote plant growth in this rice variety and enact biological control against R. solani. A total of 21 Trichoderma isolates were screened for indole compound production using the Salkowski reagent. The Z2-03 isolate reacted positively to the Salkowski reagent, indicating the production of the indole compound. High-performance liquid chromatography (HPCL) confirmed that Z2-03 produced IAA at 35.58 ± 7.60 µg/mL. The cell-free culture filtrate of the potato dextrose broth (CF) of Z2-03 induced rice germination in rice seeds, yielding root and shoot lengths in cell-free CF-treated rice that were significantly higher than those of the control (distilled water and culture broth alone). Furthermore, inoculation with Trichoderma conidia promoted rice growth and induced a defense response against R. solani during the seedling stage. Trichoderma Z2-03 displayed an antifungal capacity against R. solani, achieving 74.17% inhibition (as measured through dual culture assay) and the production of siderophores on the CAS medium. The pot experiment revealed that inoculation with the Trichoderma sp. Z2-03 conidial suspension increased the number of tillers and the plant height in the "Chor Khing" rice variety, and suppressed the percentage of disease incidence (PDI). The Trichoderma isolate Z2-03 was identified, based on the morphology and molecular properties of ITS, translation elongation factor 1-alpha (tef1-α), and RNA polymerase 2 (rpb2), as Trichoderma breve Z2-03. Our results reveal the ability of T. breve Z2-03 to act as a plant growth promoter, enhancing growth and development in the "Chor Khing" rice variety, as well as a biological control agent through its competition and defense induction mechanism in this rice variety.

8.
Environ Res ; 252(Pt 4): 119093, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723991

ABSTRACT

Regulating the microalgal initial adhesion in biofilm formation is a key approach to address the challenges of attached microalgae cultivation. As a type of phytohormone, Indole-3-acetic acid (IAA) can promote the growth and metabolism of microalgae. However, limited knowledge has been acquired of how IAA can change the initial adhesion of microalgae in biofilm formation. This study focused on investigating the initial adhesion of microalgae under different IAA concentrations exposure in biofilm formation. The results showed that IAA showed obvious hormesis-like effects on the initial adhesion ability of microalgae biofilm. Under exposure to the low concentration (0.1 mg/L) of IAA, the initial adhesion quantity of microalgae on the surface of the carrier reached the highest value of 7.2 g/m2. However, exposure to the excessively high concentration (10 mg/L) of IAA led to a decrease in the initial adhesion capability of microalgal biofilms. The enhanced adhesion of microalgal biofilms due to IAA was attributed to the upregulation of genes related to the Calvin Cycle, which promoted the synthesis of hydrophobic amino acids, leading to increased protein secretion and altering the surface electron donor characteristics of microalgal biofilms. This, in turn, reduced the energy barrier between the carriers and microalgae. The research findings would provide crucial support for the application of IAA in regulating the operation of microalgal biofilm systems.


Subject(s)
Biofilms , Indoleacetic Acids , Microalgae , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Biofilms/drug effects , Biofilms/growth & development , Microalgae/drug effects , Microalgae/physiology , Plant Growth Regulators/pharmacology
9.
Phytopathology ; 114(5): 1050-1056, 2024 May.
Article in English | MEDLINE | ID: mdl-38709298

ABSTRACT

Auxin is an important phytohormone that regulates diverse biologic processes, including plant growth and immunity. Indole-3-acetic acid (IAA), known as one of the main forms of auxin, is able to activate plant immunity. However, it is unknown whether IAA enhances plant resistance and/or suppresses the growth of the fungal pathogen Magnaporthe oryzae. Here, we found that IAA could induce expression levels of pathogenesis-related genes to enhance disease resistance and could control the development of blast disease through inhibiting M. oryzae infection. Exogenous IAA suppressed mycelial growth and delayed spore germination by inhibiting fungal endogenous IAA biosynthesis and impairing redox homeostasis, respectively. When applied to a field test, two IAA analogues, 1-naphthaleneacetic acid and 2,4-dichlorophenoxy acetic acid, can effectively control rice blast disease. Our study advances the understanding of IAA in controlling rice blast disease through suppressing pathogen growth and enhancing plant resistance.


Subject(s)
Disease Resistance , Indoleacetic Acids , Oryza , Plant Diseases , Indoleacetic Acids/metabolism , Oryza/microbiology , Oryza/growth & development , Oryza/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/prevention & control , Disease Resistance/genetics , Disease Resistance/drug effects , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant , Ascomycota/drug effects , Ascomycota/physiology , Naphthaleneacetic Acids/pharmacology , Spores, Fungal/drug effects , Spores, Fungal/growth & development
10.
Data Brief ; 54: 110466, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38774239

ABSTRACT

A Gram-positive bacterium designated as strain ORF15-23 was isolated from a soil sample collected from rainfed organic paddy fields in Roi Et province, Thailand. This strain is previously reported to produce indole-3-acetic acid and 2-acetyl-1-pyrroline (2AP) compound, solubilize potassium feldspar and promote growth of rice seedlings. The genome sequencing was carried out using Illumina MiSeq platform. The draft genome of strain ORF15-23 was 2,562,005 bp in length with 1677 protein coding sequences and an average G + C content of 72.97 mol.%. Phylogenomic tree supports the assignment of strain ORF15-23 as member of the genus Micrococcus. A comparison of average nucleotide identity (ANIb) values revealed that strain ORF15-23 shared 96.95 % identity with the genome of M. yunnanensis DSM 21948T. The draft genome sequence of M. yunnanesis ORF15-23 has been deposited in the DDBJ/EMBL/GenBank databases under the accession number JAZDRZ000000000. This genome sequence data provides insightful information for the taxonomic characterization and further biotechnological exploitation of M. yunnanesis ORF15-23.

11.
Article in English | MEDLINE | ID: mdl-38761166

ABSTRACT

Lung microvascular endothelial cell (EC) dysfunction is the pathological hallmark of acute respiratory distress syndrome (ARDS). Heat shock protein 90 (HSP90) is a key regulator in control of endothelial barrier disruption and inflammation. Our recent study has demonstrated that ubiquitin-specific peptidase 40 (USP40) preserves endothelial integrity by targeting HSP90 for its deubiquitination and inactivation. Indole-3-acetic acid (IAA), a plant hormone of the auxin class, can also be catabolized from dietary tryptophan by the intestinal microbiota. Accumulating evidence suggests that IAA reduces oxidative stress and inflammation, and promotes intestinal barrier function. However, little is known about the role of IAA in endothelial cells and acute lung injury. In this study, we investigated the role of IAA in lung endothelial cell function in the context of acute lung injury. IAA exhibited EC barrier protection against LPS-induced reduction in transendothelial electrical resistance (TEER) and inflammatory responses. The underlying mechanism of IAA on EC protective effects were investigated by examining the influence of IAA on levels of HSP90 ubiquitination and USP40 activity. We identified that IAA, acting as a potential activator of USP40, reduces HSP90 ubiquitination, thereby protecting against LPS-induced inflammation in human lung microvascular endothelial cell (HLMVECs) as well as alleviating experimental lung injury. Furthermore, the EC protective effects of IAA against LPS-induced EC dysfunction and lung injury were abolished in USP40 deficient HLMVECs and lungs of USP40 EC specific knockout (USP40cdh5-ECKO) mice. Taken together, this study reveals that IAA protects against LPS-induced EC dysfunction and lung injury through the activation of USP40.

12.
Dev Cell ; 59(11): 1363-1378.e4, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38579719

ABSTRACT

The mechanism underlying the ability of rice to germinate underwater is a largely enigmatic but key research question highly relevant to rice cultivation. Moreover, although rice is known to accumulate salicylic acid (SA), SA biosynthesis is poorly defined, and its role in underwater germination is unknown. It is also unclear whether peroxisomes, organelles essential to oilseed germination and rice SA accumulation, play a role in rice germination. Here, we show that submerged imbibition of rice seeds induces SA accumulation to promote germination in submergence. Two submergence-induced peroxisomal Oryza sativa cinnamate:CoA ligases (OsCNLs) are required for this SA accumulation. SA exerts this germination-promoting function by inducing indole-acetic acid (IAA) catabolism through the IAA-amino acid conjugating enzyme GH3. The metabolic cascade we identified may potentially be adopted in agriculture to improve the underwater germination of submergence-intolerant rice varieties. SA pretreatment is also a promising strategy to improve submerged rice germination in the field.


Subject(s)
Germination , Oryza , Peroxisomes , Plant Growth Regulators , Plant Proteins , Oryza/metabolism , Oryza/growth & development , Germination/physiology , Peroxisomes/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Coenzyme A Ligases/metabolism , Indoleacetic Acids/metabolism , Seeds/metabolism , Seeds/growth & development , Salicylic Acid/metabolism , Cinnamates/metabolism
13.
Ecotoxicol Environ Saf ; 276: 116315, 2024 May.
Article in English | MEDLINE | ID: mdl-38614001

ABSTRACT

This study explores the role of endogenous indole-3-acetic acid (IAA) in modulating plant responses to pollution stress and its effect on pollutant accumulation, with a focus on fluoranthene (Flu) in ryegrass. To elucidate the mechanism, we employed an IAA promoter (α-aminobutyric acid [α-AB]) and an IAA inhibitor (naphthylphthalamic acid [NPA]) to regulate IAA levels and analyze Flu uptake characteristics. The experimental setup included a Flu treatment group (ryegrass with Flu addition) and a control group (ryegrass without Flu). Our findings demonstrate that Flu treatment enhanced IAA content and plant growth in ryegrass compared to the control. The Flu+AB treatment further enhanced these effects, while the Flu+NPA treatment exhibited a contrasting trend. Moreover, Flu+AB treatment led to increased Flu accumulation, in contrast to the inhibitory effect observed with Flu+NPA treatment. Flu treatment also enhanced the activities of key antioxidant enzymes (SOD, POD, CAT) and increased soluble sugar and protein levels, indicative of enzymatic and nonenzymatic defense responses, respectively. The Flu+AB treatment amplified these responses, whereas the Flu+NPA treatment attenuated them. Significantly, Flu treatment raised H+-ATPase activity compared to the control, an effect further elevated by Flu+AB treatment and diminished by Flu+NPA treatment. A random forest analysis suggested that Flu accumulation dependency varied under different treatments: it relied more on H+-ATPase activity under Flu+AB treatment and more on SOD activity under Flu+NPA treatment. Additionally, Flu+AB treatment boosted the transpiration rate in ryegrass, thereby increasing the Flu translocation factor, a trend reversed by Flu+NPA treatment. This research highlights crucial factors influencing Flu accumulation in ryegrass, offering potential new avenues for controlling the gathering of contaminants within plant systems.


Subject(s)
Fluorenes , Indoleacetic Acids , Lolium , Superoxide Dismutase , Fluorenes/toxicity , Lolium/drug effects , Lolium/growth & development , Indoleacetic Acids/metabolism , Superoxide Dismutase/metabolism , Soil Pollutants/toxicity , Plant Growth Regulators , Antioxidants/metabolism
14.
Immunol Res ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630408

ABSTRACT

Massive evidence shows that intestinal tryptophan metabolites affected by intestinal flora can modulate the progression of rheumatoid arthritis (RA). However, the effects and mechanisms of intestinal tryptophan metabolites on RA are not yet detailed. Herein, we investigated the protective effects of intestinal tryptophan metabolites on RA and its detailed mechanisms. In this study, the collagen-induced arthritis (CIA) rat model was established. Based on metabolomics analysis, the contents of ß-indole-3-acetic acid (IAA), indolylpropionic acid, and indole-3-ß-acrylic acid in the sera of CIA rats were significantly less compared with those of the normal rats. Under the condition of Treg or Th17 cell differentiation, IAA significantly promoted the differentiation and activation of Treg cells instead of Th17 cells. Intestinal tryptophan metabolites are well-known endogenic ligands of aryl hydrocarbon receptor (AhR). Not surprisingly, IAA increased the level of Foxp3 through activating the AhR pathway. Interestingly, IAA had little impact on the level of Foxp3 mRNA, but reducing the ubiquitination and degradation of Foxp3. Mechanically, IAA reduced the expression of the transcriptional coactivator TAZ, which was almost completely reversed by either AhR antagonist CH223191 or siRNA. In vitro, IAA decreased the combination of TAZ and the histone acetyltransferase Tip60, while it increased the combination of Tip60 and Foxp3. In CIA rats, oral administration of IAA increased the number of Treg cells and relieved the inflammation. A combined use with CH223191 almost abolished the effect of IAA. Taken together, IAA attenuated CIA by promoting the differentiation of Treg cells through reducing the ubiquitination of Foxp3 via the AhR-TAZ-Tip60 pathway.

15.
Plants (Basel) ; 13(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38498454

ABSTRACT

Camelina is an oil seed crop that is enjoying increasing interest because it has a particularly valuable fatty acid profile, is modest regarding its water and nutrient requirements, and is comparatively resilient to abiotic and biotic stress factors. The regeneration of plants from cells accessible to genetic manipulation is an essential prerequisite for the generation of genetically engineered plants, be it by transgenesis or genome editing. Here, immature embryos were used on the assumption that their incomplete differentiation was associated with totipotency. In culture, regenerative structures appeared adventitiously at the embryos' hypocotyls. For this, the application of auxin- or cytokinin-type growth regulators was essential. The formation of regenerative structures was most efficient when indole-3-acetic acid was added to the induction medium at 1 mg/L, zygotic embryos of the medium walking stick stage were used, and their hypocotyls were stimulated by pricking to a wound response. Histological examinations revealed that the formation of adventitious shoots was initiated by locally activated cell division and proliferation in the epidermis and the outer cortex of the hypocotyl. While the regeneration of plants was established in principle using the experimental line Cam139, the method proved to be similarly applicable to the current cultivar Ligena, and hence it constitutes a vital basis for future genetic engineering approaches.

16.
Chemosphere ; 354: 141633, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442772

ABSTRACT

The activated sludge method is widely used for the treatment of phenol-containing wastewater, which gives rise to the problem of toxic residual sludge accumulation. Indole-3-acetic acid (IAA), a typical phytohormone, facilitates the microalgal resistance to toxic inhibition while promoting biomass accumulation. In this study, Chlorococcum humicola (C. humicola) was cultured in toxic sludge extract and different concentrations of IAA were used to regulate its physiological properties and enrichment of high value-added products. Ultimately, proteomics analysis was used to reveal the response mechanism of C. humicola to exogenous IAA. The results showed that the IAA concentration of 5 × 10-6 mol/L (M) was most beneficial for C. humicola to cope with the toxic stress in the sludge extract medium, to promote the activity of rubisco enzyme, to enhance the efficiency of photosynthesis, and, finally, to accumulate protein as a percentage of specific dry weight 1.57 times more than that of the control group. Exogenous IAA altered the relative abundance of various amino acids in C. humicola cells, and proteomic analyses showed that exogenous IAA stimulated the algal cells to produce more indole-3-glycerol phosphate (IGP), indole, and serine by up-regulating the enzymes. These precursors are converted to tryptophan under the regulation of tryptophan synthase (A0A383V983), and tryptophan can be metabolized to endogenous IAA to promote the growth of C. humicola. These findings have important implications for the treatment of toxic residual sludge while enriching for high-value amino acids.


Subject(s)
Proteomics , Tryptophan , Tryptophan/metabolism , Sewage , Indoleacetic Acids/pharmacology , Indoleacetic Acids/metabolism , Plant Extracts
17.
Arch Pharm Res ; 47(3): 288-299, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38489148

ABSTRACT

Microbiota-derived catabolism of nutrients is closely related to ulcerative colitis (UC). The level of indole-3-acetic acid (IAA), a microbiota-dependent metabolite of tryptophan, was decreased significantly in the feces of UC patients. Thus supplementation with IAA could be a potential therapeutic method for ameliorating colitis. In this work, the protective effect of supplementation with IAA on dextran sulfate sodium (DSS)-induced colitis was evaluated, and the underlying mechanism was elucidated. The results indicated that the administration of IAA significantly relieved DSS-induced weight loss, reduced the disease activity index (DAI), restored colon length, alleviated intestinal injury, and improved the intestinal tight junction barrier. Furthermore, IAA inhibited intestinal inflammation by reducing the expression of proinflammatory cytokines and promoting the production of IL-10 and TGF-ß1. In addition, the ERK signaling pathway is an important mediator of various physiological processes including inflammatory responses and is closely associated with the expression of IL-10. Notably, IAA treatment induced the activation of extracellular signal-regulated kinase (ERK), which is involved in the progression of colitis, while the ERK inhibitor U0126 attenuated the beneficial effects of IAA. In summary, IAA could attenuate the clinical symptoms of colitis, and the ERK signaling pathway was involved in the underlying mechanism. Supplementation with IAA could be a potential option for preventing or ameliorating UC.


Subject(s)
Colitis, Ulcerative , Colitis , Indoleacetic Acids , Humans , Animals , Mice , Interleukin-10/metabolism , Dextran Sulfate/toxicity , Dextran Sulfate/metabolism , Colon/metabolism , Extracellular Signal-Regulated MAP Kinases/adverse effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Signal Transduction , Disease Models, Animal , Mice, Inbred C57BL
18.
Adv Sci (Weinh) ; 11(18): e2309255, 2024 May.
Article in English | MEDLINE | ID: mdl-38429906

ABSTRACT

Gut microbiota is linked to human metabolic diseases. The previous work showed that leucine deprivation improved metabolic dysfunction, but whether leucine deprivation alters certain specific species of bacterium that brings these benefits remains unclear. Here, this work finds that leucine deprivation alters gut microbiota composition, which is sufficient and necessary for the metabolic improvements induced by leucine deprivation. Among all the affected bacteria, B. coccoides is markedly increased in the feces of leucine-deprived mice. Moreover, gavage with B. coccoides improves insulin sensitivity and reduces body fat in high-fat diet (HFD) mice, and singly colonization of B. coccoides increases insulin sensitivity in gnotobiotic mice. The effects of B. coccoides are mediated by metabolizing tryptophan into indole-3-acetic acid (I3AA) that activates the aryl hydrocarbon receptor (AhR) in the liver. Finally, this work reveals that reduced fecal B. coccoides and I3AA levels are associated with the clinical metabolic syndrome. These findings suggest that B. coccoides is a newly identified bacterium increased by leucine deprivation, which improves metabolic disorders via metabolizing tryptophan into I3AA.


Subject(s)
Disease Models, Animal , Gastrointestinal Microbiome , Leucine , Mice, Inbred C57BL , Animals , Mice , Leucine/metabolism , Gastrointestinal Microbiome/physiology , Gastrointestinal Microbiome/genetics , Male , Metabolic Diseases/metabolism , Metabolic Diseases/microbiology , Diet, High-Fat , Insulin Resistance/physiology , Tryptophan/metabolism , Indoleacetic Acids/metabolism , Feces/microbiology , Clostridiales/metabolism , Clostridiales/genetics , Humans
19.
Microorganisms ; 12(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38543667

ABSTRACT

Alfalfa (Medicago sativa L.), a forage legume known for its moderate salt-alkali tolerance, offers notable economic and ecological benefits and aids in soil amelioration when cultivated in saline-alkaline soils. Nonetheless, the limited stress resistance of alfalfa could curtail its productivity. This study investigated the salt tolerance and growth-promoting characteristics (in vitro) of four strains of plant growth-promoting rhizobacteria (PGPR) that were pre-selected, as well as their effects on alfalfa at different growth stages (a pot experiment). The results showed that the selected strains belonged to the genera Priestia (HL3), Bacillus (HL6 and HG12), and Paenibacillus (HG24). All four strains exhibited the ability to solubilize phosphate and produce indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Among them, except for strain HG24, the other strains could tolerate 9% NaCl stress. Treatment with 100 mM NaCl consistently decreased the IAA production levels of the selected strains, but inconsistent changes (either enhanced or reduced) in terms of phosphate solubilization, ACC deaminase, and exopolysaccharides (EPS) production were observed among the strains. During the various growth stages of alfalfa, PGPR exhibited different growth-promoting effects: at the seedling stage, they enhanced salt tolerance through the induction of physiological changes; at the flowering stage, they promoted growth through nutrient acquisition. The current findings suggest that strains HL3, HL6, and HG12 are effective microbial inoculants for alleviating salt stress in alfalfa plants in arid and semi-arid regions. This study not only reveals the potential of indigenous salt-tolerant PGPR in enhancing the salt tolerance of alfalfa but also provides new insights into the mechanisms of action of PGPR.

SELECTION OF CITATIONS
SEARCH DETAIL
...