Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.767
Filter
1.
Immune Netw ; 24(3): e19, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974213

ABSTRACT

The influenza virus poses a global health burden. Currently, an annual vaccine is used to reduce influenza virus-associated morbidity and mortality. Most influenza vaccines have been developed to elicit neutralizing Abs against influenza virus. These Abs primarily target immunodominant epitopes derived from hemagglutinin (HA) or neuraminidase (NA) of the influenza virus incorporated in vaccines. However, HA and NA are highly variable proteins that are prone to antigenic changes, which can reduce vaccine efficacy. Therefore, it is essential to develop universal vaccines that target immunodominant epitopes derived from conserved regions of the influenza virus, enabling cross-protection among different virus variants. The internal proteins of the influenza virus serve as ideal targets for universal vaccines. These internal proteins are presented by MHC class I molecules on Ag-presenting cells, such as dendritic cells, and recognized by CD8 T cells, which elicit CD8 T cell responses, reducing the likelihood of disease and influenza viral spread by inducing virus-infected cell apoptosis. In this review, we highlight the importance of CD8 T cell-mediated immunity against influenza viruses and that of viral epitopes for developing CD8 T cell-based influenza vaccines.

2.
Front Immunol ; 15: 1376395, 2024.
Article in English | MEDLINE | ID: mdl-38975350

ABSTRACT

Influenza A Virus (IAV) and Respiratory Syncytial Virus (RSV) are both responsible for millions of severe respiratory tract infections every year worldwide. Effective vaccines able to prevent transmission and severe disease, are important measures to reduce the burden for the global health system. Despite the strong systemic immune responses induced upon current parental immunizations, this vaccination strategy fails to promote a robust mucosal immune response. Here, we investigated the immunogenicity and efficacy of a mucosal adenoviral vector vaccine to tackle both pathogens simultaneously at their entry site. For this purpose, BALB/c mice were immunized intranasally with adenoviral vectors (Ad) encoding the influenza-derived proteins, hemagglutinin (HA) and nucleoprotein (NP), in combination with an Ad encoding for the RSV fusion (F) protein. The mucosal combinatory vaccine induced neutralizing antibodies as well as local IgA responses against both viruses. Moreover, the vaccine elicited pulmonary CD8+ and CD4+ tissue resident memory T cells (TRM) against the immunodominant epitopes of RSV-F and IAV-NP. Furthermore, the addition of Ad-TGFß or Ad-CCL17 as mucosal adjuvant enhanced the formation of functional CD8+ TRM responses against the conserved IAV-NP. Consequently, the combinatory vaccine not only provided protection against subsequent infections with RSV, but also against heterosubtypic challenges with pH1N1 or H3N2 strains. In conclusion, we present here a potent combinatory vaccine for mucosal applications, which provides protection against two of the most relevant respiratory viruses.


Subject(s)
Antibodies, Viral , Immunity, Mucosal , Influenza A virus , Influenza Vaccines , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Animals , Mice , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus Vaccines/administration & dosage , Antibodies, Viral/immunology , Influenza A virus/immunology , Female , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Respiratory Syncytial Viruses/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Vaccines, Combined/immunology , Vaccines, Combined/administration & dosage , Humans , Adenoviridae/immunology , Adenoviridae/genetics , Genetic Vectors
3.
Front Immunol ; 15: 1360698, 2024.
Article in English | MEDLINE | ID: mdl-38979428

ABSTRACT

Regulatory T cells (Tregs) play a crucial and complex role in balancing the immune response to viral infection. Primarily, they serve to regulate the immune response by limiting the expression of proinflammatory cytokines, reducing inflammation in infected tissue, and limiting virus-specific T cell responses. But excessive activity of Tregs can also be detrimental and hinder the ability to effectively clear viral infection, leading to prolonged disease and potential worsening of disease severity. Not much is known about the impact of Tregs during severe influenza. In the present study, we show that CD4+/CD25+FoxP3+ Tregs are strongly involved in disease progression during influenza A virus (IAV) infection in mice. By comparing sublethal with lethal dose infection in vivo, we found that not the viral load but an increased number of CD4+/CD25+FoxP3+ Tregs may impair the immune response by suppressing virus specific CD8+ T cells and favors disease progression. Moreover, the transfer of induced Tregs into mice with mild disease symptoms had a negative and prolonged effect on disease outcome, emphasizing their importance for pathogenesis. Furthermore, treatment with MEK-inhibitors resulted in a significant reduction of induced Tregs in vitro and in vivo and positively influenced the progression of the disease. Our results demonstrate that CD4+/CD25+FoxP3+ Tregs are involved in the pathogenesis of severe influenza and indicate the potential of the MEK-inhibitor zapnometinib to modulate CD4+/CD25+FoxP3+ Tregs. Thus, making MEK-inhibitors even more promising for the treatment of severe influenza virus infections.


Subject(s)
Influenza A virus , Orthomyxoviridae Infections , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/drug therapy , Mice , Influenza A virus/immunology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Female , Mice, Inbred C57BL , Forkhead Transcription Factors/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Viral Load/drug effects , Disease Models, Animal
4.
Front Cell Infect Microbiol ; 14: 1433661, 2024.
Article in English | MEDLINE | ID: mdl-38979510

ABSTRACT

In recent years, the avian influenza virus has emerged as a significant threat to both human and public health. This study focuses on a patient infected with the H10N3 subtype of avian influenza virus, admitted to the Third People's Hospital of Kunming City on March 6, 2024. Metagenomic RNA sequencing and polymerase chain reaction (PCR) analysis were conducted on the patient's sputum, confirming the H10N3 infection. The patient presented severe pneumonia symptoms such as fever, expectoration, chest tightness, shortness of breath, and cough. Phylogenetic analysis of the Haemagglutinin (HA) and neuraminidase (NA) genes of the virus showed that the virus was most closely related to a case of human infection with the H10N3 subtype of avian influenza virus found in Zhejiang Province, China. Analysis of amino acid mutation sites identified four mutations potentially hazardous to human health. Consequently, this underscores the importance of continuous and vigilant monitoring of the dynamics surrounding the H10N3 subtype of avian influenza virus, utilizing advanced genomic surveillance techniques.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus , Influenza A virus , Influenza, Human , Neuraminidase , Phylogeny , Humans , China/epidemiology , Influenza, Human/virology , Neuraminidase/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Mutation , DNA Mutational Analysis , Animals , Influenza in Birds/virology , Viral Proteins/genetics , Sputum/virology , Birds/virology , Male , RNA, Viral/genetics
5.
Front Microbiol ; 15: 1401997, 2024.
Article in English | MEDLINE | ID: mdl-38957616

ABSTRACT

Influenza A virus (IAV) is a negative-sense single-stranded RNA virus that causes acute lung injury and acute respiratory distress syndrome, posing a serious threat to both animal and human health. N6-methyladenosine (m6A), a prevalent and abundant post-transcriptional methylation of RNA in eukaryotes, plays a crucial regulatory role in IAV infection by altering viral RNA and cellular transcripts to affect viral infection and the host immune response. This review focuses on the molecular mechanisms underlying m6A modification and its regulatory function in the context of IAV infection and the host immune response. This will provide a better understanding of virus-host interactions and offer insights into potential anti-IAV strategies.

6.
J Ethnopharmacol ; : 118521, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969152

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Sangju Cold Granule (SJCG) is a classical traditional Chinese medicine (TCM) prescription described in "Item Differentiation of Warm Febrile Diseases". Historically, SJCG was employed to treat respiratory illnesses. Despite its popular usage, the alleviating effect of SJCG on influenza A virus infection and its mechanisms have not been fully elucidated. AIM OF THE STUDY: Influenza is a severe respiratory disease that threatens human health. This study aims to assess the therapeutic potential of SJCG and the possible molecular mechanism underlying its activity against influenza A virus in vitro and in vivo. MATERIALS AND METHODS: Ultrahigh-performance liquid chromatography (UPLC)-Q-Exactive was used to identify the components of SJCG. The 50% cytotoxic concentration of SJCG in MDCK and A549 cells were determined using the CCK-8 assay. The activity of SJCG against influenza A virus H1N1 was evaluated in vitro using cytopathic effect inhibition and progeny virus titer reduction assays. RT-qPCR was performed to obtain the expression levels of inflammatory mediators and the transcriptional regulation of RIG-I and MDA5 in H1N1-infected A549 cells. Then, the mechanism of SJCG effect on viral replication and inflammation was further explored by measuring the expressions of proteins of the RIG-I/NF-kB/IFN(I/III) signaling pathway by western blot. The impact of SJCG was explored in vivo in an intranasally H1N1-infected BALB/c mouse pneumonia model treated with varying doses of SJCG. The protective role of SJCG in this model was evaluated by survival, body weight monitoring, lung viral titers, lung index, lung histological changes, lung inflammatory mediators, and peripheral blood leukocyte count. RESULTS: The main SJCG chemical constituents were flavonoids, carbohydrates and glycosides, amino acids, peptides, and derivatives, organic acids and derivatives, alkaloids, fatty acyls, and terpenes. The CC50 of SJCG were 24.43 mg/mL on MDCK cells and 20.54 mg/mL on A549 cells, respectively. In vitro, SJCG significantly inhibited H1N1 replication and reduced the production of TNF-α, IFN-ß, IL-6, IL-8, IL-13, IP-10, RANTES, TRAIL, and SOCS1 in infected A549 cells. Intracellularly, SJCG reduced the expression of RIG-I, MDA5, P-NF-κB P65 (P-P65), P-IκBα, P-STAT1, P-STAT2, and IRF9. In vivo, SJCG enhanced the survival rate and decreased body weight loss in H1N1-infected mice. Mice with H1N1-induced pneumonia treated with SJCG showed a lower lung viral load and lung index than untreated mice. SJCG effectively alleviated lung damage and reduced the levels of TNF-α, IFN-ß, IL-6, IP-10, RANTES, and SOCS1 in lung tissue. Moreover, SJCG significantly ameliorated H1N1-induced leukocyte changes in peripheral blood. CONCLUSIONS: SJCG significantly reduced influenza A virus and virus-mediated inflammation through inhibiting the RIG-I/NF-kB/IFN(I/III) signaling pathway. Thus, SJCG could provide an effective TCM for influenza treatment.

7.
J Med Virol ; 96(7): e29768, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38978388

ABSTRACT

The vagus nerve circuit, operating through the alpha-7 nicotinic acetylcholine receptor (α7 nAChR), regulates the inflammatory response by influencing immune cells. However, the role of vagal-α7 nAChR signaling in influenza virus infection is unclear. In particular, does vagal-α7 nAChR signaling impact the infection of alveolar epithelial cells (AECs), the primary target cells of influenza virus? Here, we demonstrated a distinct role of α7 nAChR in type II AECs compared to its role in immune cells during influenza infection. We found that deletion of Chrna7 (encoding gene of α7 nAChR) in type II AECs or disruption of vagal circuits reduced lung influenza infection and protected mice from influenza-induced lung injury. We further unveiled that activation of α7 nAChR enhanced influenza infection through PTP1B-NEDD4L-ASK1-p38MAPK pathway. Mechanistically, activation of α7 nAChR signaling decreased p38MAPK phosphorylation during infection, facilitating the nuclear export of influenza viral ribonucleoproteins and thereby promoting infection. Taken together, our findings reveal a mechanism mediated by vagal-α7 nAChR signaling that promotes influenza viral infection and exacerbates disease severity. Targeting vagal-α7 nAChR signaling may offer novel strategies for combating influenza virus infections.


Subject(s)
Lung , Orthomyxoviridae Infections , Signal Transduction , Vagus Nerve , alpha7 Nicotinic Acetylcholine Receptor , Animals , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , Vagus Nerve/metabolism , Mice , Orthomyxoviridae Infections/virology , Lung/virology , Lung/pathology , Mice, Inbred C57BL , Alveolar Epithelial Cells/virology , Alveolar Epithelial Cells/metabolism , Humans , Mice, Knockout
8.
Cell Host Microbe ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38889725

ABSTRACT

Avian influenza A virus (IAV) surveillance in Northern California, USA, revealed unique IAV hemagglutinin (HA) genome sequences in cloacal swabs from lesser scaups. We found two closely related HA sequences in the same duck species in 2010 and 2013. Phylogenetic analyses suggest that both sequences belong to the recently discovered H19 subtype, which thus far has remained uncharacterized. We demonstrate that H19 does not bind the canonical IAV receptor sialic acid (Sia). Instead, H19 binds to the major histocompatibility complex class II (MHC class II), which facilitates viral entry. Unlike the broad MHC class II specificity of H17 and H18 from bat IAV, H19 exhibits a species-specific MHC class II usage that suggests a limited host range and zoonotic potential. Using cell lines overexpressing MHC class II, we rescued recombinant H19 IAV. We solved the H19 crystal structure and identified residues within the putative Sia receptor binding site (RBS) that impede Sia-dependent entry.

9.
Front Immunol ; 15: 1399960, 2024.
Article in English | MEDLINE | ID: mdl-38873606

ABSTRACT

The VH6-1 class of antibodies includes some of the broadest and most potent antibodies that neutralize influenza A virus. Here, we elicit and isolate anti-idiotype antibodies against germline versions of VH6-1 antibodies, use these to sort human leukocytes, and isolate a new VH6-1-class member, antibody L5A7, which potently neutralized diverse group 1 and group 2 influenza A strains. While its heavy chain derived from the canonical IGHV6-1 heavy chain gene used by the class, L5A7 utilized a light chain gene, IGKV1-9, which had not been previously observed in other VH6-1-class antibodies. The cryo-EM structure of L5A7 in complex with Indonesia 2005 hemagglutinin revealed a nearly identical binding mode to other VH6-1-class members. The structure of L5A7 bound to the isolating anti-idiotype antibody, 28H6E11, revealed a shared surface for binding anti-idiotype and hemagglutinin that included two critical L5A7 regions: an FG motif in the third heavy chain-complementary determining region (CDR H3) and the CDR L1 loop. Surprisingly, the chemistries of L5A7 interactions with hemagglutinin and with anti-idiotype were substantially different. Overall, we demonstrate anti-idiotype-based isolation of a broad and potent influenza A virus-neutralizing antibody, revealing that anti-idiotypic selection of antibodies can involve features other than chemical mimicry of the target antigen.


Subject(s)
Antibodies, Anti-Idiotypic , Antibodies, Neutralizing , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A virus , Humans , Influenza A virus/immunology , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Anti-Idiotypic/immunology , Antibodies, Anti-Idiotypic/isolation & purification , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza, Human/immunology , Influenza, Human/virology , Animals , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/chemistry
10.
Animals (Basel) ; 14(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891609

ABSTRACT

Urban stray cats are cats without owners that survive in the wild for extended periods of time. They are one of the most common stray animals in cities, and as such, monitoring the pathogens carried by urban stray cats is an important component of urban epidemiological surveillance. In order to understand the prevalence of respiratory diseases in urban stray cats in Shanghai and provide scientific evidence for the development of targeted prevention and control strategies for respiratory diseases in stray cats, we collected 374 ocular, nasal, and oropharyngeal swabs from urban stray cats in Shanghai from January 2022 to December 2022. After RNA extraction, we used real-time PCR to detect six respiratory pathogens, including influenza A virus, feline calicivirus, feline herpesvirus type 1, Mycoplasma, Chlamydia, and Bordetella bronchiseptica. The results showed that among the 374 samples, 146 tested positive, with a positivity rate of 39.04%. The highest positivity rate was observed for Mycoplasma felis at 18.72% (70/374), followed by Chlamydia felis at 11.76% (44/374), feline calicivirus at 3.74% (14/374), feline herpesvirus 1 at 3.48% (13/374), Bordetella bronchiseptica at 1.34% (5/374), and influenza A virus was not detected. The highest positivity rate for Mycoplasma felis was in Minhang District at 31.94% (23/72), while Chlamydia felis and Bordetella bronchiseptica had the highest positivity rates in Jiading District at 23.53% (8/34) and 5.88% (2/34), respectively. The highest positivity rates for feline calicivirus and feline herpesvirus 1 were both observed in Qingpu District, at 14.46% (12/83) and 9.64% (8/83), respectively. A total of 36 samples showed mixed infections with two or more pathogens, with Mycoplasma felis being involved in 32 of these mixed infections, with the highest number of mixed infections being with Chlamydia felis at 25 samples. Respiratory pathogen positivity was detected throughout the year, with peak detection rates in summer and winter. The positivity rates of cat respiratory pathogens in different seasons showed statistical differences (χ2 = 27.73, p < 0.01). There was no statistical difference in the positivity rates of respiratory pathogens between cats of different genders (χ2 = 0.92, p > 0.05). The positivity rates of respiratory pathogens in cats of different age groups showed statistical differences (χ2 = 44.41, p < 0.01). Mycoplasma felis and Chlamydia felis were the main pathogens causing respiratory infections in stray cats, with Mycoplasma felis showing a much higher positivity rate than other respiratory pathogens and often co-infecting with Chlamydia felis and feline calicivirus. The positivity rate of Mycoplasma felis was high in summer, autumn, and winter, with no statistical difference between seasons. These results indicate a serious overall prevalence of respiratory pathogens in urban stray cats in the Shanghai area, showing seasonal trends and mixed infections with other pathogens. These findings suggest the need for comprehensive prevention and control measures to address respiratory pathogen infections in urban stray cats in the Shanghai area.

11.
J Med Virol ; 96(6): e29751, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38884384

ABSTRACT

During the COVID-19 pandemic, non-pharmaceutical interventions were introduced to reduce exposure to respiratory viruses. However, these measures may have led to an "immunity debt" that could make the population more vulnerable. The goal of this study was to examine the transmission dynamics of seasonal influenza in the years 2023-2024. Respiratory samples from patients with influenza-like illness were collected and tested for influenza A and B viruses. The electronic medical records of index cases from October 2023 to March 2024 were analyzed to determine their clinical and epidemiological characteristics. A total of 48984 positive cases were detected, with a pooled prevalence of 46.9% (95% CI 46.3-47.5). This season saw bimodal peaks of influenza activity, with influenza A peaked in week 48, 2023, and influenza B peaked in week 1, 2024. The pooled positive rates were 28.6% (95% CI 55.4-59.6) and 18.3% (95% CI 18.0-18.7) for influenza A and B viruses, respectively. The median values of instantaneous reproduction number were 5.5 (IQR 3.0-6.7) and 4.6 (IQR 2.4-5.5), respectively. The hospitalization rate for influenza A virus (2.2%, 95% CI 2.0-2.5) was significantly higher than that of influenza B virus (1.1%, 95% CI 0.9-1.4). Among the 17 clinical symptoms studied, odds ratios of 15 symptoms were below 1 when comparing influenza A and B positive inpatients, with headache, weakness, and myalgia showing significant differences. This study provides an overview of influenza dynamics and clinical symptoms, highlighting the importance for individuals to receive an annual influenza vaccine.


Subject(s)
Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza, Human , Seasons , Humans , Influenza, Human/epidemiology , Male , Female , Influenza B virus/isolation & purification , Influenza B virus/genetics , Adult , Middle Aged , Adolescent , Young Adult , Child , Aged , Child, Preschool , Beijing/epidemiology , Infant , COVID-19/epidemiology , COVID-19/transmission , Prevalence , Infant, Newborn , Disease Susceptibility , Aged, 80 and over , SARS-CoV-2
12.
J Transl Med ; 22(1): 570, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879538

ABSTRACT

BACKGROUND: Gut microbiota (GM) have been implicated as important regulators of gastrointestinal symptom which is commonly occurred along with respiratory influenza A virus (IAV) infection, suggesting the involvement of the gut-to-lung axis in a host's response to IAV. IAV primarily destroys airway epithelium tight junctions (TJs) and consequently causes acute respiratory disease syndrome. It is known that GM and their metabolism produce an anti-influenza effect, but their role in IAV-induced airway epithelial integrity remains unknown. METHODS: A mouse model of IAV infection was established. GM were analyzed using 16S rRNA gene sequencing, and short-chain fatty acids (SCFAs) levels were measured. GM depletion and fecal microbiota transplantation (FMT) were conducted to validate the role of GM in IAV infection. A pair-feeding experiment was conducted to reveal whether IAV-induced GM dysbiosis is attributed to impaired food intake. Furthermore, human bronchial epithelial (HBE) cells were cocultured with IAV in the presence or absence of acetate. TJs function was analyzed by paracellular permeability and transepithelial electronic resistance (TEER). The mechanism of how acetate affects TJs integrity was evaluated in HBE cells transfected with G protein-coupled receptor 43 (GPR43) short hairpin RNA (shRNA). RESULTS: IAV-infected mice exhibited lower relative abundance of acetate-producing bacteria (Bacteroides, Bifidobacterium, and Akkermansia) and decreased acetate levels in gut and serum. These changes were partly caused by a decrease in food consumption (due to anorexia). GM depletion exacerbated and FMT restored IAV-induced lung inflammatory injury. IAV infection suppressed expressions of TJs (occludin, ZO-1) leading to disrupted airway epithelial barrier function as evidenced by decreased TEER and increased permeability. Acetate pretreatment activated GPR43, partially restored IAV-induced airway epithelial barrier function, and reduced inflammatory cytokines levels (TNF-α, IL-6, and IL-1ß). Such protective effects of acetate were absent in HBE cells transfected with GPR43 shRNA. Acetate and GPR43 improved TJs in an AMP-activated protein kinase (AMPK)-dependent manner. CONCLUSION: Collectively, our results demonstrated that GM protected airway TJs by modulating GPR43-AMPK signaling in IAV-induced lung injury. Therefore, improving GM dysbiosis may be a potential therapeutic target for patients with IAV infection.


Subject(s)
Acetates , Gastrointestinal Microbiome , Lung Injury , Orthomyxoviridae Infections , Tight Junctions , Animals , Tight Junctions/metabolism , Gastrointestinal Microbiome/drug effects , Acetates/metabolism , Humans , Orthomyxoviridae Infections/complications , Mice, Inbred C57BL , Influenza A virus , Fecal Microbiota Transplantation , Receptors, G-Protein-Coupled/metabolism , Mice , Epithelial Cells/metabolism , Dysbiosis , Fatty Acids, Volatile/metabolism
13.
Int J Infect Dis ; : 107146, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945434

ABSTRACT

OBJECTIVE: This study sought to detect and characterize influenza A (IAV) and influenza D (IDV) viruses circulating among commercial birds and shop owners in Pakistan's live bird markets. METHODS: Oropharyngeal swabs (n=600; n=300 pools) collected from poultry and nasopharyngeal swabs (n=240) collected from poultry workers were studied for molecular evidence of IAV and IDV using real-time and conventional RT-PCR protocols. RESULTS: Nineteen (6.3%) poultry pools were positive for IAV and 73.9% of these were positive for H9N2 subtypes. Two (0.83%) poultry workers had evidence of IAV, and both were also H9N2 subtypes. The poultry and human influenza A-positive specimens all clustered phylogenetically by Sanger and next-generation sequencing with previously detected H9N2 poultry isolates. No field specimens were positive for IDV. CONCLUSION: H9N2 IAV is likely enzootic in Punjab Province Pakistan's live bird markets and may be colonizing the noses of workers and market visitors. Regular monitoring for avian influenza-associated human illness in Punjab seems to be a needed public measure.

14.
Antiviral Res ; 228: 105925, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944160

ABSTRACT

Influenza A virus (IAV) continuously poses a considerable threat to global health through seasonal epidemics and recurring pandemics. IAV RNA-dependent RNA polymerases (FluPol) mediate the transcription of RNA and replication of the viral genome. Searching for targets that inhibit viral polymerase activity helps us develop better antiviral drugs. Here, we identified heterogeneous nuclear ribonucleoprotein A/B (hnRNPAB) as an anti-influenza host factor. hnRNPAB interacts with NP of IAV to inhibit the interaction between PB1 and NP, which is dependent on the 5-amino-acid peptide of the hnRNPAB C-terminal domain (aa 318-322). We further found that the 5-amino-acid peptide blocks the interaction between PB1 and NP to destroy the FluPol activity. In vivo studies demonstrate that hnRNPAB-deficient mice display higher viral burdens, enhanced cytokine production, and increased mortality after influenza infection. These data demonstrate that hnRNPAB perturbs FluPol complex conformation to inhibit IAV infection, providing insights into anti-influenza defense mechanisms.

15.
Brain Behav Immun ; 120: 488-498, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925418

ABSTRACT

Influenza A virus (IAV) infection during pregnancy can increase the risk for neurodevelopmental disorders in the offspring, however, the underlying neurobiological mechanisms are largely unknown. To recapitulate viral infection, preclinical studies have traditionally focused on using synthetic viral mimetics, rather than live IAV, to examine consequences of maternal immune activation (MIA)-dependent processes on offspring. In contrast, few studies have used live IAV to assess effects on global gene expression, and none to date have addressed whether moderate IAV, mimicking seasonal influenza disease, alters normal gene expression trajectories in different brain regions across different stages of development. Herein, we show that moderate IAV infection during pregnancy, which causes mild maternal disease and no overt foetal complications in utero, induces lasting effects on the offspring into adulthood. We observed behavioural changes in adult offspring, including disrupted prepulse inhibition, dopaminergic hyper-responsiveness, and spatial recognition memory deficits. Gene profiling in the offspring brain from neonate to adolescence revealed persistent alterations to normal gene expression trajectories in the prefronal cortex, hippocampus, hypothalamus and cerebellum. Alterations were found in genes involved in inflammation and neurogenesis, which were predominately dysregulated in neonatal and early adolescent offspring. Notably, late adolescent offspring born from IAV infected mice displayed altered microglial morphology in the hippocampus. In conclusion, we show that moderate IAV during pregnancy perturbs neurodevelopmental trajectories in the offspring, including alterations in the neuroinflammatory gene expression profile and microglial number and morphology in the hippocampus, resulting in behavioural changes in adult offspring. Such early perturbations may underlie the vulnerability in human offspring for the later development of neurodevelopmental disorders, including schizophrenia. Our work highlights the importance of using live IAV in developing novel preclinical models that better recapitulate the real-world impact of inflammatory insults during pregnancy on offspring neurodevelopmental trajectories and disease susceptibility later in life.

16.
Antiviral Res ; 228: 105919, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851592

ABSTRACT

Bacillus spp. has been considered a promising source for identifying new antimicrobial substances, including anti-viral candidates. Here, we successfully isolated a number of bacteria strains from aged dry citrus peel (Chenpi). Of note, the culture supernatant of a new isolate named Bacillus subtilis LjM2 demonstrated strong inhibition of influenza A virus (IAV) infection in multiple experimental systems in vitro and in vivo. In addition, the anti-viral effect of LjM2 was attributed to its direct lysis of viral particles. Further analysis showed that a protease which we named CPAVM1 isolated from the culture supernatant of LjM2 was the key component responsible for its anti-viral function. Importantly, the therapeutic effect of CPAVM1 was still significant when applied 12 hours after IAV infection of experimental mice. Moreover, we found that the CPAVM1 protease cleaved multiple IAV proteins via targeting basic amino acid Arg or Lys. Furthermore, this study reveals the molecular structure and catalytic mechanism of CPAVM1 protease. During catalysis, Tyr75, Tyr77, and Tyr102 are important active sites. Therefore, the present work identified a special protease CPAVM1 secreted by a new strain of Bacillus subtilis LjM2 against influenza A virus infection via direct cleavage of critical viral proteins, thus facilitates future biotechnological applications of Bacillus subtilis LjM2 and the protease CPAVM1.

17.
Toxicol Appl Pharmacol ; 489: 117010, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901696

ABSTRACT

Humoral responses to respiratory viruses, such as influenza viruses, develop over time and are central to protection from repeated infection with the same or similar viruses. Epidemiological and experimental studies have linked exposures to environmental contaminants that bind the aryl hydrocarbon receptor (AHR) with modulated antibody responses to pathogenic microorganisms and common vaccinations. Other studies have prompted investigation into the potential therapeutic applications of compounds that activate AHR. Herein, using two different AHR ligands [2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid methyl ester (ITE), to modulate the duration of AHR activity, we show that the humoral response to viral infection is dependent upon the duration and timing of AHR signaling, and that different cellular elements of the response have different sensitivities. When AHR activation was initiated prior to infection with influenza A virus, there was suppression of all measured elements of the humoral response (i.e., the frequency of T follicular helper cells, germinal center B cells, plasma cells, and circulating virus-specific antibody). However, when the timing of AHR activation was adjusted to either early (days -1 to +5 relative to infection) or later (days +5 onwards), then AHR activation affected different aspects of the overall humoral response. These findings highlight the importance of considering the timing of AHR activation in relation to triggering an immune response, particularly when targeting the AHR to manipulate disease processes.

18.
Virulence ; 15(1): 2367671, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38910312

ABSTRACT

Viral diseases are among the main threats to public health. Understanding the factors affecting viral invasion is important for antiviral research. Until now, it was known that most viruses have very low plaque-forming unit (PFU)-to-particle ratios. However, further investigation is required to determine the underlying factors. Here, using quantitative single-particle analysis methods, the invasion of Semliki Forest virus (SFV), Japanese encephalitis virus (JEV), and influenza A virus (IAV) containing attachment to the cell surface, entry into the cell, transport towards the cell interior, and fusion with endosomes to release nucleocapsids were quantitatively analysed in parallel. It was found that for SFV with an PFU-to-particle ratio of approximately 1:2, an entry efficiency of approximately 31% limited infection. For JEV, whose PFU-to-particle ratio was approximately 1:310, an attachment efficiency of approximately 27% and an entry efficiency of 10% were the main factors limiting its infection. Meanwhile, for IAV with PFU-to-particle ratios of 1:8100, 5% attachment efficiency, 9% entry efficiency, and 53% fusion efficiency significantly limited its infection. These results suggest that viruses with different infectivities have different limited steps in the invasion process. Moreover, there are significant differences in attachment efficiencies among viruses, emphasizing the pivotal role of attachment in viral invasion. The influence of the virus purification method on virus invasion was also investigated. This study, for the first time, reports the efficiencies of different stages of virus invasion, leading to a better understanding of virus invasion and providing a protocol to quantitatively analyse the virus invasion efficiency.


Subject(s)
Influenza A virus , Semliki forest virus , Virus Internalization , Influenza A virus/physiology , Animals , Semliki forest virus/physiology , Humans , Encephalitis Virus, Japanese/physiology , Cell Line , Virus Attachment , Endosomes/virology
19.
Virulence ; 15(1): 2359470, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38918890

ABSTRACT

Influenza A virus (IAV) is the leading cause of highly contagious respiratory infections, which poses a serious threat to public health. The non-structural protein 1 (NS1) is encoded by segment 8 of IAV genome and is expressed in high levels in host cells upon IAV infection. It is the determinant of virulence and has multiple functions by targeting type Ι interferon (IFN-I) and type III interferon (IFN-III) production, disrupting cell apoptosis and autophagy in IAV-infected cells, and regulating the host fitness of influenza viruses. This review will summarize the current research on the NS1 including the structure and related biological functions of the NS1 as well as the interaction between the NS1 and host cells. It is hoped that this will provide some scientific basis for the prevention and control of the influenza virus.


Subject(s)
Influenza A virus , Influenza, Human , Viral Nonstructural Proteins , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Humans , Influenza A virus/genetics , Influenza A virus/pathogenicity , Influenza A virus/physiology , Influenza, Human/virology , Animals , Autophagy , Virulence , Host-Pathogen Interactions , Apoptosis , Interferons/metabolism , Interferons/immunology , Interferons/genetics
20.
Emerg Infect Dis ; 30(7): 1425-1429, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38848249

ABSTRACT

During March and April 2024, we studied dairy cattle specimens from a single farm in Texas, USA, using multiple molecular, cell culture, and next-generation sequencing pathogen detection techniques. Here, we report evidence that highly pathogenic avian influenza A(H5N1) virus strains of clade 2.3.4.4b were the sole cause of this epizootic.


Subject(s)
Cattle Diseases , Influenza A Virus, H5N1 Subtype , Animals , Texas/epidemiology , Cattle , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Cattle Diseases/virology , Cattle Diseases/epidemiology , Phylogeny , Influenza in Birds/virology , Influenza in Birds/epidemiology , Dairying , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...