Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Mol Biol Rep ; 51(1): 714, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824264

ABSTRACT

BACKGROUND: NOTCH3 variants are known to be linked to cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). However, some null NOTCH3 variants with homozygous inheritance cause neurological symptoms distinct from CADASIL. The aim of this study was to expand the clinical spectrum of this distinct condition and provide further evidence of its autosomal recessive inheritance. METHODS AND RESULTS: Whole exome sequencing (WES) was performed on a proband who exhibited livedo racemosa, ataxia, cognitive decline, seizures, and MRI white matter abnormalities without anterior temporal pole lesions. Segregation analysis was conducted with Sanger sequencing. WES of the proband identified a novel homozygous NOTCH3 null variant (c.2984delC). The consanguineous parents were confirmed as heterozygous variant carriers. In addition, three heterozygous NOTCH3 null variants were reported as incidental findings in three unrelated cases analyzed in our center. CONCLUSION: The findings of this study suggest an autosomal recessive inheritance pattern in this early-onset leukoencephalopathy, in contrast to CADASIL's dominant gain-of-function mechanism; which is a clear example of genotype-phenotype correlation. Comprehensive genetic analysis provides valuable insights into disease mechanisms and facilitates diagnosis and family planning for NOTCH3-associated neurological disorders.


Subject(s)
Exome Sequencing , Genes, Recessive , Pedigree , Phenotype , Receptor, Notch3 , Humans , Receptor, Notch3/genetics , Male , Female , Exome Sequencing/methods , Genes, Recessive/genetics , Adult , Genetic Association Studies , CADASIL/genetics , Magnetic Resonance Imaging/methods , Alleles , Homozygote , Consanguinity , Loss of Function Mutation/genetics , Mutation/genetics , Heterozygote
2.
Front Neurol ; 15: 1399898, 2024.
Article in English | MEDLINE | ID: mdl-38784913

ABSTRACT

Introduction: Myotonic dystrophy type 1 (DM1) is a hereditary neuromuscular disorder affecting the central nervous system (CNS). Although sex differences have been explored in other neuromuscular disorders, research on this topic in DM1 remains limited. The present study aims to analyze sex differences (both the patient's and disease-transmitting parent's sex) with a focus on CNS outcomes. Methods: Retrospective data from 146 non-congenital DM1 patients were analyzed, including clinical, molecular, neuropsychological, and neuroradiological data. Sex and inheritance pattern differences were analyzed using t-tests, and ANOVA analyses were conducted to address the interactions. Results: Overall, no significant sex differences were observed except in certain cognitive domains. However, individuals with maternal inheritance showed larger CTG expansion size, lower estimated IQs, and poorer performance on visual memory, executive functions, and language domains than those with paternal inheritance. Notably, IQ performance was independently influenced by inheritance pattern and CTG expansion. Discussion: This study is the first to delve into sex differences in DM1 with a focus on CNS outcomes. While the results revealed the absence of a sex-specific clinic-molecular profile, more substantial CNS differences were observed between patients with maternal and paternal inheritance patterns. The hypothetical existence of genomic imprinting and its potential mechanism are discussed. These findings hold potential implications for aiding clinical management by improving genetic counseling and predicting disease severity and prognosis.

3.
Asian J Urol ; 11(2): 169-179, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38680588

ABSTRACT

Objective: Urolithiasis formation has been attributed to environmental and dietary factors. However, evidence is accumulating that genetic background can contribute to urolithiasis formation. Advancements in the identification of monogenic causes using high-throughput sequencing technologies have shown that urolithiasis has a strong heritable component. Methods: This review describes monogenic factors implicated in a genetic predisposition to urolithiasis. Peer-reviewed journals were evaluated by a PubMed search until July 2023 to summarize disorders associated with monogenic traits, and discuss clinical implications of identification of patients genetically susceptible to urolithiasis formation. Results: Given that more than 80% of urolithiases cases are associated with calcium accumulation, studies have focused mainly on monogenetic contributors to hypercalciuric urolithiases, leading to the identification of receptors, channels, and transporters involved in the regulation of calcium renal tubular reabsorption. Nevertheless, available candidate genes and linkage methods have a low resolution for evaluation of the effects of genetic components versus those of environmental, dietary, and hormonal factors, and genotypes remain undetermined in the majority of urolithiasis formers. Conclusion: The pathophysiology underlying urolithiasis formation is complex and multifactorial, but evidence strongly suggests the existence of numerous monogenic causes of urolithiasis in humans.

4.
J Clin Med ; 13(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38610765

ABSTRACT

Background: The vestibular phenotypes of patients with genetic hearing loss are poorly understood. Methods: we performed genetic testing including exome sequencing and vestibular function tests to investigate vestibular phenotypes and functions in patients with genetic hearing loss. Results: Among 627 patients, 143 (22.8%) had vestibular symptoms. Genetic variations were confirmed in 45 (31.5%) of the 143 patients. Nineteen deafness genes were linked with vestibular symptoms; the most frequent genes in autosomal dominant and recessive individuals were COCH and SLC26A4, respectively. Vestibular symptoms were mostly of the vertigo type, recurrent, and persisted for hours in the genetically confirmed and unconfirmed groups. Decreased vestibular function in the caloric test, video head impulse test, cervical vestibular-evoked myogenic potential, and ocular vestibular-evoked myogenic potential was observed in 42.0%, 16.3%, 57.8%, and 85.0% of the patients, respectively. The caloric test revealed a significantly higher incidence of abnormal results in autosomal recessive individuals than in autosomal dominant individuals (p = 0.011). The genes, including SLC26A4, COCH, KCNQ4, MYH9, NLRP3, EYA4, MYO7A, MYO15A, and MYH9, were heterogeneously associated with abnormalities in the vestibular function test. Conclusions: In conclusion, diverse vestibular symptoms are commonly concomitant with genetic hearing loss and are easily overlooked.

5.
Muscle Nerve ; 69(4): 472-476, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38299438

ABSTRACT

INTRODUCTION/AIMS: Limb-girdle muscular dystrophy R1 (LGMDR1) calpain 3-related usually presents as a recessively transmitted weakness of proximal limb-girdle muscles due to pathogenic variants in the CAPN3 gene. Pathogenic variants in this gene have also been found in patients with an autosomal dominantly inherited transmission pattern (LGMDD4). The mechanism underlying this difference in transmission patterns has not yet been elucidated. Camptocormia, progressive limb weakness, myalgia, back pain, and increased CK levels are common clinical features associated with dominant forms. The p.Lys254del pathogenic variant was associated with camptocormia in two LGMDD4 families. This study aimed to present carriers found in recessively transmitted LGMDR1 families bearing the p.Lys254del variant that do not show muscle weakness. METHODS: DNA sequencing was performed on exon 5 of CAPN3 in family members to establish the carrier status of the pathogenic variant. They were evaluated clinically and MRI was performed when available. RESULTS: Two families presented with the p.Lys254del pathogenic variant in a homozygous or compound heterozygous state. Family members carrying only the pathogenic variant in the heterozygous state did not demonstrate the myopathic characteristics described in dominant patients. Camptocormia and other severe clinical symptoms were not observed. DISCUSSION: We conclude that the p.Lys254del pathogenic variant per se cannot be solely responsible for camptocormia in dominant patients. Other undisclosed factors may regulate the phenotype associated with the dominant inheritance pattern in CAPN3 pathogenic variant carriers.


Subject(s)
Calpain , Muscular Atrophy, Spinal , Muscular Dystrophies, Limb-Girdle , Spinal Curvatures , Humans , Calpain/genetics , Muscular Dystrophies, Limb-Girdle/pathology , Muscle Weakness , Family , Paresis , Mutation/genetics , Muscle Proteins/genetics
6.
Anim Genet ; 55(2): 249-256, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38194424

ABSTRACT

The genetic foundation of chicken body plumage color has been extensively studied. However, little attention has been paid to the inheritance patterns and molecular mechanisms underlying the formation of distal feather colors (tail and wingtip). Differences in these colors are common; for example, the Chinese Huiyang Beard chicken has black tail feathers, but yellow body plumage. Here, the hybrid offspring of Huiyang Beard and White Leghorn chickens were used to study the inheritance patterns of tail-feather color. The expression levels of pigment genes in differently colored feather follicles were analyzed using quantitative real-time PCR. The results showed that genetic regulation of tail-feather color was independent of body-plumage color. The Dominant White locus inhibited eumelanin synthesis in tail feathers without affecting the formation of yellow body plumage, whereas the Silver locus had the opposite effect. The expression of agouti signaling protein (ASIP) gene class 1 transcripts was significantly lower in black tail-feather follicles than in yellow body follicles, whereas tyrosinase-related protein 1 (TYRP1) gene expression was significantly higher in black tail feathers. These differentially expressed genes were confirmed to exert an effect on eumelanin and pheomelanin formation in feathers, thus influencing the regulation of chicken tail-feather color. In conclusion, this study lays the foundation for further research on the genetic mechanisms of regional differences in feather color, contributing to a better understanding of plumage pigmentation in chickens.


Subject(s)
Chickens , Tail , Animals , Chickens/genetics , Agouti Signaling Protein/genetics , Feathers/physiology , Gene Expression , Pigmentation/genetics
7.
Seizure ; 116: 4-13, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37777370

ABSTRACT

PURPOSE: To provide an updated list of epilepsy-associated genes based on clinical-genetic evidence. METHODS: Epilepsy-associated genes were systematically searched and cross-checked from the OMIM, HGMD, and PubMed databases up to July 2023. To facilitate the reference for the epilepsy-associated genes that are potentially common in clinical practice, the epilepsy-associated genes were ranked by the mutation number in the HGMD database and by case number in the China Epilepsy Gene 1.0 project, which targeted common epilepsy. RESULTS: Based on the OMIM database, 1506 genes were identified to be associated with epilepsy and were classified into three categories according to their potential association with epilepsy or other abnormal phenotypes, including 168 epilepsy genes that were associated with epilepsies as pure or core symptoms, 364 genes that were associated with neurodevelopmental disorders as the main symptom and epilepsy, and 974 epilepsy-related genes that were associated with gross physical/systemic abnormalities accompanied by epilepsy/seizures. Among the epilepsy genes, 115 genes (68.5%) were associated with epileptic encephalopathy. After cross-checking with the HGMD and PubMed databases, an additional 1440 genes were listed as potential epilepsy-associated genes, of which 278 genes have been repeatedly identified variants in patients with epilepsy. The top 100 frequently reported/identified epilepsy-associated genes from the HGMD database and the China Epilepsy Gene 1.0 project were listed, among which 40 genes were identical in both sources. SIGNIFICANCE: Recognition of epilepsy-associated genes will facilitate genetic screening strategies and be helpful for precise molecular diagnosis and treatment of epilepsy in clinical practice.


Subject(s)
Epilepsy , Humans , Epilepsy/genetics , Seizures/genetics , Genetic Testing , Mutation/genetics , Databases, Factual , Phenotype
8.
J Mol Neurosci ; 73(7-8): 563-565, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37420094

ABSTRACT

Primary familial brain calcification (PFBC), often called Fahr's disease, is a condition in which calcium phosphate accumulates in the brain, mainly in the basal ganglia, thalamus, and cerebellum, and without the association of any metabolic or infectious cause. Patients present a variety of neurological and psychiatric disorders, usually during adulthood. The disease is caused by autosomal dominant pathogenic variants in genes such as SLC20A2, PDGFRB, PDGFB, and XPR1. MYORG and JAM2 are the other genes linked to homozygous patterns of inheritance. Here, we briefly discuss the recent cases reported by Ceylan et al. (2022) and Al-Kasbi et al. (2022), which challenge the current association with two previous genes and a clear pattern of inheritance. Ceylan et al. report a new biallelic variant related to a pathogenic variant in the SLC20A2 gene, which is typically associated with a heterozygous mutation pattern. The affected siblings displayed a severe and early onset of the disease, revealing a phenotype similar to that seen in CMV infections, often named as pseudo-TORCH. Furthermore, a study of genes related to intellectual disability conducted by Al-Kasbi et al. demonstrated that the biallelic manifestation of the XPR1 gene was associated with early symptoms, leading to the belief that the homozygous pattern of genes responsible for causing PFBC with an autosomal dominant pattern may also be linked to early-onset manifestations of PFBC. Further studies might explore the variety of clinical presentations linked to PFBC genes, especially if we pay attention to complex patterns of inheritance, reinforcing the need for a more detailed bioinformatic analysis.


Subject(s)
Basal Ganglia Diseases , Brain Diseases , Humans , Adult , Brain Diseases/metabolism , Xenotropic and Polytropic Retrovirus Receptor , Brain/metabolism , Mutation , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Sodium-Phosphate Cotransporter Proteins, Type III/metabolism
9.
Clin Genet ; 104(5): 577-581, 2023 11.
Article in English | MEDLINE | ID: mdl-37337432

ABSTRACT

Genetic causation for the majority of non-obstructive azoospermia (NOA) remains unclear. Mutations in synaptonemal complex (SC)-associated genes could cause meiotic arrest and NOA. Previous studies showed that heterozygous truncating variants in SYCP2 encoding a protein essential for SC formation, are associated with non-obstructive azoospermia and severe oligozoospermia. Herein, we showed a homozygous loss-of-function variant in SYCP2 (c.2689_2690insT) in an NOA-affected patient. And this variant was inherited from heterozygous parental carriers by natural reproduction. HE, IF, and meiotic chromosomal spread analyses demonstrated that spermatogenesis was arrested at the zygotene stage in the proband with NOA. Thus, this study revealed that SYCP2 associated with NOA segregates in an autosomal recessive inheritance pattern, rather than an autosomal dominant pattern. Furthermore, our study expanded the knowledge of variants in SYCP2 and provided new insight into understanding the genetic etiology of NOA.


Subject(s)
Azoospermia , Male , Humans , Azoospermia/genetics , Frameshift Mutation , Mutation , Spermatogenesis/genetics , DNA-Binding Proteins/genetics , Cell Cycle Proteins/genetics
10.
Mol Biol Evol ; 40(5)2023 05 02.
Article in English | MEDLINE | ID: mdl-37116210

ABSTRACT

The germline-restricted chromosome (GRC) is likely present in all songbird species but differs widely in size and gene content. This extra chromosome has been described as either a microchromosome with only limited basic gene content or a macrochromosome with enriched gene functions related to female gonad and embryo development. Here, we assembled, annotated, and characterized the first micro-GRC in the blue tit (Cyanistes caeruleus) using high-fidelity long-read sequencing data. Although some genes on the blue tit GRC show signals of pseudogenization, others potentially have important functions, either currently or in the past. We highlight the GRC gene paralog BMP15, which is among the highest expressed GRC genes both in blue tits and in zebra finches (Taeniopygia guttata) and is known to play a role in oocyte and follicular maturation in other vertebrates. The GRC genes of the blue tit are further enriched for functions related to the synaptonemal complex. We found a similar functional enrichment when analyzing published data on GRC genes from two nightingale species (Luscinia spp.). We hypothesize that these genes play a role in maintaining standard maternal inheritance or in recombining maternal and paternal GRCs during potential episodes of biparental inheritance.


Subject(s)
Passeriformes , Songbirds , Animals , Female , Songbirds/genetics , Chromosomes , Germ Cells , Oocytes , Ovary , Passeriformes/genetics
11.
Biomedica ; 42(4): 554-561, 2022 12 01.
Article in English, Spanish | MEDLINE | ID: mdl-36511670

ABSTRACT

The Adams-Oliver syndrome is a rare congenital disorder characterized by aplasia cutis congenita of the scalp, terminal transverse limb defects, and congenital telangiectatic cutis marmorata. It can occur through different inheritance patterns: autosomal dominant, autosomal recessive, or de novo dominant mutations. Although the Adams-Oliver syndrome is a rare disease, it is essential to know its clinical characteristics and inheritance patterns, to establish a correct diagnosis and its possible complications during follow-up. In the present study, we describe the case of an adolescent with Adams-Oliver syndrome with an autosomal dominant inheritance pattern, pulmonary hypertension and plastic bronchitis, and several compromised family members.


El síndrome de Adams-Oliver es un trastorno congénito raro, caracterizado por aplasia cutis congénita en el cuero cabelludo, defectos terminales transversales de las extremidades y piel marmorata telangiectásica congénita. Este puede presentarse debido a diferentes patrones de herencia de tipo autosómico dominante o autosómico recesivo, o por mutaciones dominantes de novo. Aunque el síndrome de Adams-Oliver es una enfermedad poco frecuente, es importante conocer sus características clínicas y patrones de herencia, para así establecer un correcto diagnóstico y sus posibles complicaciones durante el seguimiento. En el presente estudio, se describe el caso de una adolescente con síndrome de Adams-Oliver con patrón de herencia autosómica dominante, hipertensión pulmonar y bronquitis plástica. Había varios miembros de su familia con el mismo compromiso.


Subject(s)
Retrospective Studies , Colombia
12.
Biomédica (Bogotá) ; 42(4): 554-561, oct.-dic. 2022. tab, graf
Article in Spanish | LILACS | ID: biblio-1420305

ABSTRACT

El síndrome de Adams-Oliver es un trastorno congénito raro, caracterizado por aplasia cutis congénita en el cuero cabelludo, defectos terminales transversales de las extremidades y piel marmorata telangiectásica congénita. Este puede presentarse debido a diferentes patrones de herencia de tipo autosómico dominante o autosómico recesivo, o por mutaciones dominantes de novo. Aunque el síndrome de Adams-Oliver es una enfermedad poco frecuente, es importante conocer sus características clínicas y patrones de herencia, para así establecer un correcto diagnóstico y sus posibles complicaciones durante el seguimiento. En el presente estudio, se describe el caso de una adolescente con síndrome de Adams-Oliver con patrón de herencia autosómica dominante, hipertensión pulmonar y bronquitis plástica. Había varios miembros de su familia con el mismo compromiso


The Adams-Oliver syndrome is a rare congenital disorder characterized by aplasia cutis congenita of the scalp, terminal transverse limb defects, and congenital telangiectatic cutis marmorata. It can occur through different inheritance patterns: autosomal dominant, autosomal recessive, or de novo dominant mutations. Although the Adams-Oliver syndrome is a rare disease, it is essential to know its clinical characteristics and inheritance patterns, to establish a correct diagnosis and its possible complications during follow-up. In the present study, we describe the case of an adolescent with Adams-Oliver syndrome with an autosomal dominant inheritance pattern, pulmonary hypertension and plastic bronchitis, and several compromised family members.


Subject(s)
Syndrome , Rare Diseases , Ectodermal Dysplasia , Limb Deformities, Congenital , Inheritance Patterns
13.
Front Genet ; 13: 990015, 2022.
Article in English | MEDLINE | ID: mdl-36212160

ABSTRACT

Despite recent advancements in our understanding of genetic etiology and its molecular and physiological consequences, it is not yet clear what genetic features determine the inheritance pattern of a disease. To address this issue, we conducted whole exome sequencing analysis to characterize genetic variants in 1,180 Korean patients with neurological symptoms. The diagnostic yield for definitive pathogenic variant findings was 50.8%, after including 33 cases (5.9%) additionally diagnosed by reanalysis. Of diagnosed patients, 33.4% carried inherited variants. At the genetic level, autosomal recessive-inherited genes were characterized by enrichments in metabolic process, muscle organization and metal ion homeostasis pathways. Transcriptome and interactome profiling analyses revealed less brain-centered expression and fewer protein-protein interactions for recessive genes. The majority of autosomal recessive genes were more tolerant of variation, and functional prediction scores of recessively-inherited variants tended to be lower than those of dominantly-inherited variants. Additionally, we were able to predict the rates of carriers for recessive variants. Our results showed that genes responsible for neurodevelopmental disorders harbor different molecular mechanisms and expression patterns according to their inheritance patterns. Also, calculated frequency rates for recessive variants could be utilized to pre-screen rare neurodevelopmental disorder carriers.

14.
J Assist Reprod Genet ; 39(9): 2043-2050, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35920991

ABSTRACT

PURPOSE: To identify specific likelihoods that an embryo will be classified as appropriate for transfer after preimplantation genetic testing for detection of a monogenic disorder (PGT-M), with or without preimplantation genetic testing for aneuploidy (PGT-A), separated by inheritance pattern. METHODS: Retrospective chart review of 181 selected PGT-M cycles performed at CooperGenomics in 2018 or 2019. For each cycle, the following main outcome data was collected: the number of embryos classified as affected with monogenic disease, the number detected to be chromosomally abnormal, the number that were recombinant, the number that had no result, and if applicable, the number which were aneuploid. RESULTS: There were significantly fewer embryos appropriate to consider for transfer when PGT-A was included for autosomal recessive and X-linked disorders. There were also fewer for autosomal dominant disorders, though this was not statistically significant. When PGT-A was not included, 45.8% of autosomal dominant, 69% of autosomal recessive, and 47.8% of X-linked embryos were appropriate to consider for transfer. When PGT-A analysis was included, 29% of autosomal dominant, 41% of autosomal recessive, and 22% of X-linked embryos were appropriate to consider for transfer. 96.8% of women elect to include PGT-A when pursuing PGT-M. CONCLUSION: This study resulted in specific likelihoods that an embryo would be found appropriate for clinicians and patients to consider for transfer based on the inheritance pattern of the monogenic disease being tested for and whether aneuploidy analysis was included.


Subject(s)
Preimplantation Diagnosis , Aneuploidy , Embryo Transfer/methods , Female , Genetic Testing/methods , Humans , Pregnancy , Preimplantation Diagnosis/methods , Retrospective Studies
15.
Clin Chim Acta ; 533: 109-113, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35760084

ABSTRACT

BACKGROUND: Hypermethioninemia is an inborn error of metabolism with elevated plasma methionine (Met) caused by methionine adenosyltransferase deficiency. Methionine adenosyltransferase (MAT) I/III deficiency is the most common cause of hypermethioninemia. Except for increased blood Met, most patients have no symptoms, but a small number have nervous system complications, including cognitive impairment and mental retardation. OBJECTIVE: To investigate the gene variation of patients with hypermethioninemia in newborns in Henan province. METHODS: 9 cases of hypermethioninemia were screened for amino acids profile and acyl carnitine by tandem mass spectrometric (MS/MS) among 245 054 newborns. We performed whole-exome sequencing on 9 families of infants with hypermethioninemia. We identified mutated genes under different models of inheritance and further assessed these mutations through Sanger sequencing and association analysis. RESULTS: The incidence of neonatal hypermethioninemia was 1:27 228 in Henan province. A total of ten mutations in the MAT1A gene in the 9 patients were identified, including nine reported mutations (c.1070C > T, c.895C > T, c.100 T > A, c.315C > A, c.529C > T, c.623A > C, c.407G > T, c.1066C > T, 867G > T) and one novel mutations (c.772G > C). c.772G > C was detected in 2 families and is the most common variant. 7 infants (7/9) with hypermethioninemia were genetically autosomal dominant, and 2 infants (2/9) with hypermethioninemia were genetically autosomal recessive. CONCLUSION: Our findings expand the mutational spectrum of hypermethioninemia, with the description of one new mutation. They improve the understanding of the genetic background and clinical manifestation of MAT1A in Chinese patients.


Subject(s)
Glycine N-Methyltransferase , Tandem Mass Spectrometry , Amino Acid Metabolism, Inborn Errors , Genomics , Glycine N-Methyltransferase/deficiency , Glycine N-Methyltransferase/genetics , Humans , Infant , Infant, Newborn , Methionine , Mutation , Exome Sequencing
16.
Front Pediatr ; 10: 1080347, 2022.
Article in English | MEDLINE | ID: mdl-36824296

ABSTRACT

Molecular screening tools have significantly eased the assessment of potential germline susceptibility factors that may underlie the development of pediatric malignancies. Most of the hitherto published studies utilize the comparative analyses of the respective patients' germline and tumor tissues for this purpose. Since this approach is not able to discriminate between de novo and inherited sequence variants, we performed whole exome trio analyses in a consecutive series of 131 children with various forms of hematologic malignancies and their parents. In total, we identified 458 de novo variants with a range from zero to 28 (median value = 3) per patient, although most of them (58%) had only up to three per exome. Overall, we identified bona fide cancer predisposing alterations in five of the investigated 131 (3.8%) patients. Three of them had de novo pathogenic lesions in the SOS1, PTPN11 and TP53 genes and two of them parentally inherited ones in the STK11 and PMS2 genes that are specific for a Peutz-Jeghers and a constitutional mismatch repair deficiency (CMMRD) syndrome, respectively. Notwithstanding that we did not identify a disease-specific alteration in the two cases with the highest number of de novo variants, one of them developed two almost synchronous malignancies: a myelodysplastic syndrome and successively within two months a cerebral astrocytoma. Moreover, we also found that the rate of de novo sequence variants in the offspring increased especially with the age of the father, but less so with that of the mother. We therefore conclude that trio analyses deliver an immediate overview about the inheritance pattern of the entire spectrum of sequence variants, which not only helps to securely identify the de novo or inherited nature of genuinely disease-related lesions, but also of all other less obvious variants that in one or the other way may eventually advance our understanding of the disease process.

17.
Clin Endocrinol (Oxf) ; 96(4): 617-626, 2022 04.
Article in English | MEDLINE | ID: mdl-34374102

ABSTRACT

OBJECTIVE: Congenital hypothyroidism (CH) is known to be due to thyroid dyshormonogenesis (DH), which is mostly inherited in an autosomal recessive inheritance pattern or thyroid dysgenesis (TD), whose inheritance pattern is controversial and whose molecular etiology remains poorly understood. DESIGN AND METHODS: The variants in 37 candidate genes of CH, including 25 genes related to TD, were screened by targeted exon sequencing in 205 Chinese patients whose CH cannot be explained by biallelic variants in genes related to DH. The inheritance pattern of the genes was analyzed in family trios or quartets. RESULTS: Of the 205 patients, 83 patients carried at least one variant in 19 genes related to TD, and 59 of those 83 patients harbored more than two variants in distinct candidate genes for CH. Biallelic or de novo variants in the genes related to TD in Chinese patients are rare. We also found nine probands carried only one heterozygous variant in the genes related to TD that were inherited from a euthyroid either paternal or maternal parent. These findings did not support the monogenic inheritance pattern of the genes related to TD in CH patients. Notably, in family trio or quartet analysis, of 36 patients carrying more than two variants in distinct genes, 24 patients carried these variants inherited from both their parents, which indicated that the oligogenic inheritance pattern of the genes related to TD should be considered in CH. CONCLUSIONS: Our study expanded the variant spectrum of the genes related to TD in Chinese CH patients. It is rare that CH in Chinese patients could be explained by monogenic germline variants in genes related to TD. The hypothesis of an oligogenic origin of the CH should be considered.


Subject(s)
Congenital Hypothyroidism , Thyroid Dysgenesis , China , Congenital Hypothyroidism/diagnosis , Congenital Hypothyroidism/genetics , High-Throughput Nucleotide Sequencing , Humans , Mutation/genetics , Thyroid Dysgenesis/genetics
18.
Int J Mol Sci ; 22(24)2021 Dec 19.
Article in English | MEDLINE | ID: mdl-34948412

ABSTRACT

B chromosomes (Bs) or supernumerary chromosomes are extra chromosomes in the species karyotype that can vary in its copy number. Bs are widespread in eukaryotes. Usually, the Bs of specimens collected from natural populations are the object of the B chromosome studies. We applied another approach analyzing the Bs in animals maintained under the laboratory conditions as lines and cultures. In this study, three species of the Macrostomum genus that underwent a recent whole-genome duplication (WGD) were involved. In laboratory lines of M. lignano and M. janickei, the frequency of Bs was less than 1%, while in the laboratory culture of M. mirumnovem, it was nearer 30%. Their number in specimens of the culture varied from 1 to 14. Mosaicism on Bs was discovered in parts of these animals. We analyzed the distribution of Bs among the worms of the laboratory cultures during long-term cultivation, the transmission rates of Bs in the progeny obtained from crosses of worms with different numbers of Bs, and from self-fertilized isolated worms. The DNA content of the Bs in M. mirumnovem was analyzed with the chromosomal in situ suppression (CISS) hybridization of microdissected DNA probes derived from A chromosomes (As). Bs mainly consisted of repetitive DNA. The cytogenetic analysis also revealed the divergence and high variation in large metacentric chromosomes (LMs) containing numerous regions enriched for repeats. The possible mechanisms of the appearance and evolution of Bs and LMs in species of the Macrostomum genus were also discussed.


Subject(s)
Platyhelminths/genetics , Animals , Chromosomes/genetics , DNA Probes/genetics , DNA, Helminth/genetics , In Situ Hybridization , Mosaicism
19.
Front Genet ; 12: 774240, 2021.
Article in English | MEDLINE | ID: mdl-34925458

ABSTRACT

Transcriptome analysis has been used to investigate many economically traits in chickens; however, alternative splicing still lacks a systematic method of study that is able to promote proteome diversity, and fine-tune expression dynamics. Hybridization has been widely utilized in chicken breeding due to the resulting heterosis, but the dynamic changes in alternative splicing during this process are significant yet unclear. In this study, we performed a reciprocal crossing experiment involving the White Leghorn and Cornish Game chicken breeds which exhibit major differences in body size and reproductive traits, and conducted RNA sequencing of the brain, muscle, and liver tissues to identify the inheritance patterns. A total of 40 515 and 42 612 events were respectively detected in the brain and muscle tissues, with 39 843 observed in the liver; 2807, 4242, and 4538 events significantly different between two breeds were identified in the brain, muscle, and liver tissues, respectively. The hierarchical cluster of tissues from different tissues from all crosses, based on the alternative splicing profiles, suggests high tissue and strain specificity. Furthermore, a comparison between parental strains and hybrid crosses indicated that over one third of alternative splicing genes showed conserved patterns in all three tissues, while the second prevalent pattern was non-additive, which included both dominant and transgressive patterns; this meant that the dominant pattern plays a more important role than suppression. Our study provides an overview of the inheritance patterns of alternative splicing in layer and broiler chickens, to better understand post-transcriptional regulation during hybridization.

20.
Neurotherapeutics ; 18(3): 1468-1477, 2021 07.
Article in English | MEDLINE | ID: mdl-34532824

ABSTRACT

The role of genetics in epilepsy has been recognized for a long time. Over the past decade, genome-wide technologies have identified numerous genes and variants associated with epilepsy. In the clinical setting, a myriad of genetic testing options are available, and a subset of specific genetic diagnoses have management implications. Furthermore, genetic testing can be a dynamic process. As a result, fundamental knowledge about genetics and genomics has become essential for all specialists. Here, we review current knowledge of the genetic contribution to various types of epilepsy, provide an overview of types of genetic variants, and discuss genetic testing options and their diagnostic yield. We also consider advantages and limitations of testing approaches.


Subject(s)
Epilepsy/diagnosis , Epilepsy/genetics , Genetic Testing/methods , Genetic Variation/genetics , Genomics/methods , Genetic Predisposition to Disease/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Karyotyping/methods , Exome Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...