Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 434
Filter
1.
Eur J Pharmacol ; 978: 176764, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908670

ABSTRACT

Breast cancer is one of the most common cancers globally and a leading cause of cancer-related deaths among women. Despite the combination of chemotherapy with targeted therapy, including monoclonal antibodies and kinase inhibitors, drug resistance and treatment failure remain a common occurrence. Copper, complexed to various organic ligands, has gained attention as potential chemotherapeutic agents due to its perceived decreased toxicity to normal cells. The cytotoxic efficacy and the mechanism of cell death of an 8-aminoquinoline-naphthyl copper complex (Cu8AqN) in MCF-7 and MDA-MB-231 breast cancer cell lines was investigated. The complex inhibited the growth of MCF-7 and MDA-MB-231 cells with IC50 values of 2.54 ± 0.69 µM and 3.31 ± 0.06 µM, respectively. Nuclear fragmentation, annexin V binding, and increased caspase-3/7 activity indicated apoptotic cell death. The loss of mitochondrial membrane potential, an increase in caspase-9 activity, the absence of active caspase-8 and a decrease of tumour necrosis factor receptor 1(TNFR1) expression supported activation of the intrinsic apoptotic pathway. Increased ROS formation and increased expression of haem oxygenase-1 (HMOX-1) indicated activation of cellular stress pathways. Expression of p21 protein in the nuclei was increased indicating cell cycle arrest, whilst the expression of inhibitor of apoptosis proteins (IAPs); cIAP1, XIAP and survivin were decreased, creating a pro-apoptotic environment. Phosphorylated p53 species; phospho-p53(S15), phospho-p53(S46), and phospho-p53(S392) accumulated in MCF-7 cells indicating the potential of Cu8AqN to restore p53 function in the cells. In combination, the data indicates that Cu8AqN is a useful lead molecule worthy of further exploration as a potential anti-cancer drug.

2.
Cancer Treat Rev ; 129: 102773, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38878677

ABSTRACT

Combinations of surgery, radiotherapy and chemotherapy can eradicate tumors in patients with locally advanced squamous cell carcinoma of the head and neck (LA SCCHN), but a significant proportion of tumors progress, recur, or do not respond to therapy due to treatment resistance. The prognosis for these patients is poor, thus new approaches are needed to improve outcomes. Key resistance mechanisms to chemoradiotherapy (CRT) in patients with LA SCCHN are alterations to the pathways that mediate apoptosis, a form of programmed cell death. Targeting dysregulation of apoptotic pathways represents a rational therapeutic strategy in many types of cancer, with a number of proteins, including the pro-survival B-cell lymphoma 2 family and inhibitors of apoptosis proteins (IAPs), having been identified as druggable targets. This review discusses the mechanisms by which apoptosis occurs under physiological conditions, and how this process is abnormally restrained in LA SCCHN tumor cells, with treatment strategies aimed at re-enabling apoptosis in LA SCCHN also considered. In particular, the development of, and future opportunities for, IAP inhibitors in LA SCCHN are discussed, in light of recent encouraging proof-of-concept clinical trial data.

3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731935

ABSTRACT

Cancer treatment is greatly challenged by drug resistance, highlighting the need for novel drug discoveries. Here, we investigated novel organoarsenic compounds regarding their resistance-breaking and apoptosis-inducing properties in leukemia and lymphoma. Notably, the compound (2,6-dimethylphenyl)arsonic acid (As2) demonstrated significant inhibition of cell proliferation and induction of apoptosis in leukemia and lymphoma cells while sparing healthy leukocytes. As2 reached half of its maximum activity (AC50) against leukemia cells at around 6.3 µM. Further experiments showed that As2 overcomes multidrug resistance and sensitizes drug-resistant leukemia and lymphoma cell lines to treatments with the common cytostatic drugs vincristine, daunorubicin, and cytarabine at low micromolar concentrations. Mechanistic investigations of As2-mediated apoptosis involving FADD (FAS-associated death domain)-deficient or Smac (second mitochondria-derived activator of caspases)/DIABLO (direct IAP binding protein with low pI)-overexpressing cell lines, western blot analysis of caspase-9 cleavage, and measurements of mitochondrial membrane integrity identified the mitochondrial apoptosis pathway as the main mode of action. Downregulation of XIAP (x-linked inhibitor of apoptosis protein) and apoptosis induction independent of Bcl-2 (B-cell lymphoma 2) and caspase-3 expression levels suggest the activation of additional apoptosis-promoting mechanisms. Due to the selective apoptosis induction, the synergistic effects with common anti-cancer drugs, and the ability to overcome multidrug resistance in vitro, As2 represents a promising candidate for further preclinical investigations with respect to refractory malignancies.


Subject(s)
Apoptosis , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Leukemia , Lymphoma , Mitochondria , X-Linked Inhibitor of Apoptosis Protein , X-Linked Inhibitor of Apoptosis Protein/metabolism , Humans , Apoptosis/drug effects , Drug Resistance, Neoplasm/drug effects , Lymphoma/drug therapy , Lymphoma/metabolism , Lymphoma/pathology , Leukemia/metabolism , Leukemia/drug therapy , Leukemia/pathology , Drug Resistance, Multiple/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Down-Regulation/drug effects , Cell Proliferation/drug effects , Cytostatic Agents/pharmacology , Antineoplastic Agents/pharmacology
4.
J Nutr Biochem ; 129: 109636, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38561079

ABSTRACT

The purpose of this study is to investigate if grape consumption, in the form of grape powder (GP), could protect against ultraviolet (UV)-induced cataract. Mice were fed with the regular diet, sugar placebo diet, or a grape diet (regular diet supplemented with 5%, 10%, and 15% GP) for 3 months. The mice were then exposed to UV radiation to induce cataract. The results showed that the GP diet dose-dependently inhibited UV-induced cataract and preserved glutathione pools. Interestingly, UV-induced Nrf2 activation was abolished in the groups on the GP diet, suggesting GP consumption may improve redox homeostasis in the lens, making Nrf2 activation unnecessary. For molecular target prediction, a total of 471 proteins regulated by GP were identified using Agilent Literature Search (ALS) software. Among these targets, the X-linked inhibitor of apoptosis (XIAP) was correlated with all of the main active ingredients of GP, including resveratrol, catechin, quercetin, and anthocyanins. Our data confirmed that GP prevented UV-induced suppression of XIAP, indicating that XIAP might be one of the critical molecular targets of GP. In conclusion, this study demonstrated that GP protected the lens from UV-induced cataract development in mice. The protective effects of GP may be attributed to its ability to improve redox homeostasis and activate the XIAP-mediated antiapoptotic pathway.


Subject(s)
Cataract , Dietary Supplements , NF-E2-Related Factor 2 , Ultraviolet Rays , Vitis , X-Linked Inhibitor of Apoptosis Protein , Animals , Cataract/prevention & control , Cataract/metabolism , Cataract/etiology , NF-E2-Related Factor 2/metabolism , Ultraviolet Rays/adverse effects , Vitis/chemistry , X-Linked Inhibitor of Apoptosis Protein/metabolism , Mice , Lens, Crystalline/metabolism , Lens, Crystalline/radiation effects , Lens, Crystalline/drug effects , Male , Resveratrol/pharmacology , Glutathione/metabolism , Signal Transduction/drug effects , Mice, Inbred C57BL , Anthocyanins/pharmacology
6.
Heliyon ; 10(7): e29079, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38596136

ABSTRACT

The survival rate over a five-year period for rare pancreatic neuroendocrine tumors (PanNET) is notably lower compared to other neuroendocrine tumors due to late-stage detection, which is a consequence of the absence of suitable diagnostic markers; therefore, there exists a critical need for an early-stage biomarker-specific to PanNETs. This study introduces a novel approach, investigating the impact of small extracellular vesicles (sEV) in PanNET growth and metastasis. As proof of concept, this study shows a correlation between sEV concentration in controls and PanNET. Notably, higher sEV concentrations were observed in PanNETs than in controls (p < 0.0001) with a sensitivity of 100%. Further, apparent differences were observed in the sEV concentrations between controls and grades 1 PanNET (p = 0.005). The expression of sEV markers was confirmed using CD63, TSG101, CD9, Flotillin-1, and GAD65 antibodies. Additionally, the expression of cancer marker BIRC2/cIAP1 (p = 0.002) and autophagy marker Beclin-1 (p = 0.02) were observed in plasma-derived sEVs and PanNET tissue. This study represents the first to indicate the increased secretion of sEV in PanNET patients' blood plasma, proposing potential function of sEV as a new biomarker for early-stage PanNET detection.

7.
Gene ; 912: 148355, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38467314

ABSTRACT

BACKGROUND: Breast cancer (BC) is the most prevalent malignant disease affecting women globally. PANoptosis, a novel form of cell death combining features of pyroptosis, apoptosis, and necroptosis, has recently gained attention. However, its precise function in BC and the predictive values of PANoptosis-related genes remain unclear. METHODS: We used the expression data and clinical information of BC tissues or normal breast tissues from public databases, and then successfully developed and verified a BC PANoptosis-related risk model through a combination of univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression, and Kaplan-Meier (KM) analysis. A nomogram was constructed to estimate survival probability, and its accuracy was assessed using calibration curves. RESULTS: Among 37 PANoptosis-related genes, we identified 4 differentially expressed genes related to overall survival (OS). Next, a risk model incorporating these four PANoptosis-related genes was established. Patients were stratified into low/high-risk groups based on the median risk score, with the low-risk group showing better prognoses and higher levels of immune infiltration. Utilizing the risk score and clinical features, we developed a nomogram to predict 1-, 3- and 5-year survival probability. X-linked inhibitor of apoptosis protein (XIAP) emerged as a potentially risky factor with the highest hazard ratio. In vitro experiments demonstrated that XIAP inhibition enhances the antitumor effect of doxorubicin through the PANoptosis pathway. CONCLUSION: PANoptosis holds an important role in BC prognosis and treatment.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , X-Linked Inhibitor of Apoptosis Protein/genetics , Oncogenes/genetics , Doxorubicin , Apoptosis/genetics
8.
J Cell Commun Signal ; 18(1): e12015, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38545255

ABSTRACT

Persistent activation of hepatic stellate cells (HSCs) in the injured liver leads to the progression of liver injury from fibrosis to detrimental cirrhosis. In a previous study, we have shown that survivin protein is upregulated during the early activation of HSCs, which triggers the onset of liver fibrosis. However, the therapeutic potential of targeting survivin in a fully established fibrotic liver needs to be investigated. In this study, we chemically induced hepatic fibrosis in mice using carbon tetrachloride (CCl4) for 6 weeks, which was followed by treatment with a survivin suppressant (YM155). We also evaluated survivin expression in fibrotic human liver tissues, primary HSCs, and HSC cell line by histological analysis. αSMA+ HSCs in human and mice fibrotic liver tissues showed enhanced survivin expression, whereas the hepatocytes and quiescent (qHSCs) displayed minimal expression. Alternatively, activated M2 macrophage subtype induced survivin expression in HSCs through the TGF-ß-TGF-ß receptor-I/II signaling. Inhibition of survivin in HSCs promoted cell cycle arrest and senescence, which eventually suppressed their activation. In vivo, YM155 treatment increased the expression of cell senescence makers in HSCs around fibrotic septa such as p53, p21, and ß-galactosidase. YM155 treatment in vivo also reduced the hepatic macrophage population and inflammatory cytokine expression in the liver. In conclusion, downregulation of survivin in the fibrotic liver decreases HSC activation by inducing cellular senescence and modulating macrophage cytokine expression that collectively ameliorates liver fibrosis.

9.
Respir Res ; 25(1): 64, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302925

ABSTRACT

BACKGROUND: Among patients with chronic obstructive pulmonary disease (COPD), some have features of both asthma and COPD-a condition categorized as asthma-COPD overlap (ACO). Our aim was to determine whether asthma- or COPD-related microRNAs (miRNAs) play a role in the pathogenesis of ACO. METHODS: A total of 22 healthy subjects and 27 patients with ACO were enrolled. We selected 6 miRNAs that were found to correlate with COPD and asthma. The expression of miRNAs and target genes was analyzed using quantitative reverse-transcriptase polymerase chain reaction. Cell apoptosis and intracellular reactive oxygen species production were evaluated using flow cytometry. In vitro human monocytic THP-1 cells and primary normal human bronchial epithelial (NHBE) cells under stimuli with cigarette smoke extract (CSE) or ovalbumin (OVA) allergen or both were used to verify the clinical findings. RESULTS: We identified the upregulation of miR-125b-5p in patients with ACO and in THP-1 cells stimulated with CSE plus OVA allergen. We selected 16 genes related to the miR-125b-5p pathway and found that IL6R and TRIAP1 were both downregulated in patients with ACO and in THP-1 cells stimulated with CSE plus OVA. The percentage of late apoptotic cells increased in the THP-1 cell culture model when stimulated with CSE plus OVA, and the effect was reversed by transfection with miR-125b-5p small interfering RNA (siRNA). The percentage of reactive oxygen species-producing cells increased in the NHBE cell culture model when stimulated with CSE plus OVA, and the effect was reversed by transfection with miR-125b-5p siRNA. In NHBE cells, siRNA transfection reversed the upregulation of STAT3 under CSE+OVA stimulation. CONCLUSIONS: Our study revealed that upregulation of miR-125b-5p in patients with ACO mediated late apoptosis in THP-1 cells and oxidative stress in NHBE cells via targeting IL6R and TRIAP1. STAT3 expression was also regulated by miR-125b-5p.


Subject(s)
Apoptosis , Asthma , MicroRNAs , Pulmonary Disease, Chronic Obstructive , Humans , Allergens , Apoptosis/genetics , Asthma/genetics , Asthma/complications , Intracellular Signaling Peptides and Proteins/metabolism , MicroRNAs/metabolism , Oxidative Stress/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Reactive Oxygen Species , Receptors, Interleukin-6/metabolism , RNA, Small Interfering/metabolism , Male , Aged
10.
Mini Rev Med Chem ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38275029

ABSTRACT

BACKGROUND: Uncontrolled cell growth and proliferation, which originate from lung tissue often lead to lung carcinoma and are more likely due to smoking as well as inhaled environmental toxins. It is widely recognized that tumour cells evade the ability of natural programmed death (apoptosis) and facilitates tumour progression and metastasis. Therefore investigating and targeting the apoptosis pathway is being utilized as one of the best approaches for decades. OBJECTIVE: This review describes the emergence of SMAC mimetic drugs as a treatment approach, its possibilities to synergize the response along with current limitations as well as future perspective therapy for lung cancer. METHOD: Articles were analysed using search engines and databases namely Pubmed and Scopus. RESULT: Under cancerous circumstances, the level of Inhibitor of Apoptosis Proteins (IAPs) gets elevated, which suppresses the pathway of programmed cell death, plus supports the proliferation of lung cancer. As it is a major apoptosis regulator, natural drugs that imitate the IAP antagonistic response like SMAC mimetic agents/Diablo have been identified to trigger cell death. SMAC i.e. second mitochondria activators of caspases is a molecule produced by mitochondria, stimulates apoptosis by neutralizing/inhibiting IAP and prevents its potential responsible for the activation of caspases. Various preclinical data have proven that these agents elicit the death of lung tumour cells. Apart from inducing apoptosis, these also sensitize the cancer cells toward other effective anticancer approaches like chemo, radio, or immunotherapies. There are many SMAC mimetic agents such as birinapant, BV-6, LCL161, and JP 1201, which have been identified for diagnosis as well as treatment purposes in lung cancer and are also under clinical investigation. CONCLUSION: SMAC mimetics acts in a restorative way in the prevention of lung cancer.

11.
Future Oncol ; 20(12): 739-748, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38197296

ABSTRACT

There is a significant unmet need and lack of treatment options for patients with resected, high-risk, cisplatin-ineligible locally advanced squamous cell carcinoma of the head and neck (LA SCCHN). Xevinapant, a first-in-class, potent, oral, small-molecule IAP inhibitor, is thought to restore cancer cell sensitivity to chemotherapy and radiotherapy in clinical and preclinical studies. We describe the design of XRay Vision (NCT05386550), an international, randomized, double-blind, phase III study. Approximately 700 patients with resected, high-risk, cisplatin-ineligible LA SCCHN will be randomized 1:1 to receive 6 cycles of xevinapant or placebo, in combination with radiotherapy for the first 3 cycles. The primary end point is disease-free survival, and secondary end points include overall survival, health-related quality of life, and safety.


Squamous cell carcinoma is the most common form of head and neck cancer (SCCHN) and includes cancers of the lips, mouth, throat, tongue and voice box. It is called 'locally advanced' when the cancer has spread to nearby areas but not to other parts of the body. Few treatment options are available for people with locally advanced SCCHN who have had surgery and are unable to receive a type of chemotherapy called cisplatin. Xevinapant is being developed as a possible new type of cancer treatment. It is a liquid that is taken by mouth or given through a feeding tube. Adding xevinapant to the standard treatment ­ called radiotherapy ­ aims to make radiotherapy more effective against the cancer. Researchers have started a large, international, phase III study called XRay Vision to see if adding xevinapant to radiotherapy can help stop the cancer from coming back after surgery and help people live longer. Clinical Trial Registration: NCT05386550 (ClinicalTrials.gov).


Subject(s)
Antineoplastic Agents , Carcinoma, Squamous Cell , Head and Neck Neoplasms , Humans , Antineoplastic Agents/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Cisplatin , Head and Neck Neoplasms/drug therapy , Quality of Life , Randomized Controlled Trials as Topic , Squamous Cell Carcinoma of Head and Neck/drug therapy , X-Rays , Double-Blind Method , Clinical Trials, Phase III as Topic
12.
Clin Exp Immunol ; 215(3): 291-301, 2024 02 19.
Article in English | MEDLINE | ID: mdl-37583360

ABSTRACT

Innate immune activity fuels intestinal inflammation in Crohn's disease (CD), an inflammatory bowel disease. Identification and targeting of new molecular regulators of the innate activity are warranted to control the disease. Inhibitor of apoptosis proteins (IAPs) regulate both cell survival and inflammatory signaling. We investigated the effects of IAP inhibition by second mitochondria-derived activator of caspases (SMAC) mimetics (SMs) on innate responses and cell death to pathogen-associated molecular patterns in peripheral blood mononuclear cells (PBMCs) and monocytes. IAPs inhibited lipopolysaccharide (LPS)-induced expression of proinflammatory interleukin (IL)-1ß, IL-6. Likewise, LPS (but not muramyl dipeptide or Escherichia coli) induced TNF-α was inhibited in CD and control PBMCs. The SM effect was partially reversed by inhibition of receptor-interacting serine/threonine-protein kinase 1 (RIPK1). The effect was mainly cell death independent. Thus, IAP inhibition by SMs leads to reduced production of proinflammatory cytokines and may be considered in the efforts to develop new therapeutic strategies to control CD.


Subject(s)
Crohn Disease , Humans , Lipopolysaccharides , Leukocytes, Mononuclear/metabolism , Healthy Volunteers , Cytokines/metabolism , Carrier Proteins , Tumor Necrosis Factor-alpha/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
13.
Oncol Rep ; 51(2)2024 02.
Article in English | MEDLINE | ID: mdl-38099422

ABSTRACT

Hypopharyngeal squamous cell carcinoma (HSCC) is a relatively rare form of head and neck cancer that is notorious for its poor prognosis and low overall survival rate. This highlights the need for new therapeutic options for this malignancy. The objective of the present study was to examine the ability of caffeic acid phenethyl ester (CAPE), which is an active compound found in propolis, to combat HSCC tumor growth. CAPE exerted its tumor­suppressive activity in HSCC cell lines through the induction of apoptosis. Mechanistically, the CAPE­mediated apoptotic process was attributed to the perturbation of the mitochondrial membrane potential and the activation of caspase­9. CAPE also modulated survivin and X­linked inhibitor of apoptosis, which are potent members of the inhibitors of apoptosis protein family, either through transcriptional or post­translational regulation, leading to HSCC cell line death. Therefore, the findings of the present study suggested that CAPE is an effective treatment alternative for HSCC via the stimulation of mitochondria­dependent apoptosis.


Subject(s)
Head and Neck Neoplasms , Phenylethyl Alcohol , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , Cell Line, Tumor , Phenylethyl Alcohol/pharmacology , Phenylethyl Alcohol/therapeutic use , Apoptosis , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Head and Neck Neoplasms/drug therapy
14.
FASEB J ; 37(12): e23292, 2023 12.
Article in English | MEDLINE | ID: mdl-37971407

ABSTRACT

Immunotoxins (ITs) target cancer cells via antibody binding to surface antigens followed by internalization and toxin-mediated inhibition of protein synthesis. The fate of cells responding to IT treatment depends on the amount and stability of specific pro-apoptotic and pro-survival proteins. When treated with a pseudomonas exotoxin-based immunotoxin (HB21PE40), the triple-negative breast cancer (TNBC) cell line MDA-MB-468 displayed a notable resistance to toxin-mediated killing compared to the epidermoid carcinoma cell line, A431, despite succumbing to the same level of protein synthesis inhibition. In a combination screen of ~1912 clinically relevant and mechanistically annotated compounds, we identified several agents that greatly enhanced IT-mediated killing of MDA-MB-468 cells while exhibiting only a modest enhancement for A431 cells. Of interest, two Smac mimetics, birinapant and SM164, exhibited this kind of differential enhancement. To investigate the basis for this, we probed cells for the presence of inhibitor of apoptosis (IAP) proteins and monitored their stability after the addition of immunotoxin. We found that high levels of IAPs inhibited immunotoxin-mediated cell death. Further, TNFα levels were not relevant for the combination's efficacy. In tumor xenograft studies, combinations of immunotoxin and birinapant caused complete regressions in MDA-MB-468tumor-bearing mice but not in mice with A431 tumors. We propose that IAPs constitute a barrier to immunotoxin efficacy which can be overcome with combination treatments that include Smac mimetics.


Subject(s)
Immunotoxins , Neoplasms , Humans , Animals , Mice , Inhibitor of Apoptosis Proteins/metabolism , Immunotoxins/pharmacology , Cell Line, Tumor , Dipeptides/pharmacology , Apoptosis
15.
Life Sci ; 335: 122260, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37963509

ABSTRACT

Survivin is a member of the family of inhibitors of apoptosis proteins (IAPs). It is involved in the normal mitotic process and acts as an anti-apoptotic molecule. While terminally differentiated normal tissues lack survivin, several human malignancies have significant protein levels. Resistance to chemotherapy and radiation in tumor cells is associated with survivin expression. Decreased tumor development, apoptosis, and increased sensitivity to chemotherapy and radiation are all effects of downregulating survivin expression or activity. As a prospective cancer treatment, small molecules targeting the transcription and translation of survivin and molecules that can directly bind with the survivin are being explored both in pre-clinical and clinics. Pre-clinical investigations have found and demonstrated the effectiveness of several small-molecule survivin inhibitors. Unfortunately, these inhibitors have also been shown to have off-target effects, which could limit their clinical utility. In addition to small molecules, several survivin peptide vaccines are currently under development. These vaccines are designed to elicit a cytotoxic T-cell response against survivin, which could lead to the destruction of tumor cells expressing survivin. Some survivin-based vaccines are advancing through Phase II clinical studies. Overall, survivin is a promising cancer drug target. However, challenges still need to be addressed before the survivin targeted therapies can be widely used in the clinics.


Subject(s)
Neoplasms , Vaccines , Humans , Survivin , Inhibitor of Apoptosis Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Apoptosis , Vaccines/therapeutic use , Microtubule-Associated Proteins
16.
Biochem Biophys Res Commun ; 682: 141-147, 2023 11 19.
Article in English | MEDLINE | ID: mdl-37806253

ABSTRACT

Baculoviral inhibitor of apoptosis repeat containing 5 (BIRC5) is also known as survivin. BIRC5, a member of the apoptosis inhibitor (IAP) family, negatively regulates apoptosis or programmed cell death by inhibiting caspase activation. Due to these properties, overexpression of BIRC5 enables specific survival and division associated with cancer malignancies. In addition, BIRC5 is highly expressed in stem cells, but not present at all in terminally differentiated cells. On this basis, there is speculation that BIRC5 may be involved in the regulation of cancer stem cells (CSCs), but few study results have been reported. In addition, the molecular mechanisms of BIRC5 regulation are not yet well understood. Through the present study, it was confirmed that BIRC5 is a key factor regulating CSCs and epithelial to mesenchymal transition (EMT). BIRC5 was simultaneously overexpressed in lung cancer stem cells (LCSCs) and glioma stem cells (GSCs), and when the expression was suppressed, the characteristics of CSCs disappeared. In addition, plasminogen activator inhibitor-1 (PAI-1), a secreted factor regulated by BIRC5, is involved in signaling mechanisms that regulate cancer stem cells and EMT, and PAI-1 forms an autocrine chain. Based on these results, BIRC5 is proposed as a novel therapeutic target protein for LCSCs and GSCs.


Subject(s)
Lung Neoplasms , Plasminogen Activator Inhibitor 1 , Humans , Epithelial-Mesenchymal Transition , Lung Neoplasms/genetics , Neoplastic Stem Cells , Lung , Survivin/genetics
17.
Rinsho Ketsueki ; 64(9): 1213-1221, 2023.
Article in Japanese | MEDLINE | ID: mdl-37899202

ABSTRACT

The pathogenesis of inflammatory bowel disease (IBD) may include immune dysregulation. About 20% of inborn errors of immunity (IEIs) are related to IBD, and more than 60 IEIs are known to present IBD. Monogenic IBDs include those that are refractory to traditional treatment and can be cured by allogeneic hematopoietic cell transplantation (HCT), making early diagnosis and treatment essential. In this report, we present a series of monogenic IBDs that are relatively frequently found in Japan, such as interleukin (IL)-10/IL-10 receptor deficiency, chronic granulomatous disease, XIAP deficiency, immunodysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome, NEMO deficiency, and A20 haploinsufficiency and will describe the features of each IEI and the indications for HCT.


Subject(s)
Genetic Diseases, X-Linked , Granulomatous Disease, Chronic , Hematopoietic Stem Cell Transplantation , Inflammatory Bowel Diseases , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/diagnosis , Genetic Diseases, X-Linked/therapy
18.
Am J Cancer Res ; 13(8): 3517-3530, 2023.
Article in English | MEDLINE | ID: mdl-37693159

ABSTRACT

Patients with non-small cell lung cancer (NSCLC) treated with tyrosine kinase inhibitors (TKIs) inevitably exhibit drug resistance, which diminishes therapeutic effects. Nonetheless, the molecular mechanisms of TKI resistance in NSCLC remain obscure. In this study, data from clinical and TCGA databases revealed an increase in DNMT3A expression, which was correlated with a poor prognosis. Using NSCLC organoid models, we observed that high DNMT3A levels reduced TKI susceptibility of NSCLC cells via upregulating inhibitor of apoptosis proteins (IAPs). Simultaneously, the DNMT3Ahigh subset, which escaped apoptosis, underwent an early senescent-like state in a CDKN1A-dependent manner. Furthermore, the cellular senescence induced by TKIs was observed to be reversible, whereas DNMT3Ahigh cells reacquired their proliferative characteristics in the absence of TKIs, resulting in subsequent tumour recurrence and growth. Notably, the blockade of DNMT3A/IAPs signals enhanced the efficacy of TKIs in DNMT3Ahigh tumour-bearing mice, which represented a promising strategy for the effective treatment of NSCLC.

19.
J Biol Inorg Chem ; 28(5): 485-494, 2023 08.
Article in English | MEDLINE | ID: mdl-37268744

ABSTRACT

Modulation of metalloprotein structure and function via metal ion substitution may constitute a molecular basis for metal ion toxicity and/or metal-mediated functional control. The X-linked Inhibitor of Apoptosis Protein (XIAP) is a metalloprotein that requires zinc for proper structure and function. In addition to its role as a modulator of apoptosis, XIAP has been implicated in copper homeostasis. Given the similar coordination preferences of copper and zinc, investigation of XIAP structure and function upon interaction with copper is relevant. The Really Interesting New Gene (RING) domain of XIAP is representative of a class of zinc finger proteins that utilize a bi-nuclear zinc-binding motif to maintain proper structure and ubiquitin ligase function. Herein, we report the characterization of copper (I) binding to the Zn2-RING domain of XIAP. Electronic absorption studies that monitor copper-thiolate interactions demonstrate that the RING domain of XIAP binds 5-6 Cu(I) ions and that copper is thermodynamically preferred relative to zinc. Repetition of the experiments in the presence of the Zn(II)-specific dye Mag-Fura2 shows that Cu(I) addition results in Zn(II) ejection from the protein, even in the presence of glutathione. Loss of dimeric structure of the RING domain, which is a requirement for its ubiquitin ligase activity, upon copper substitution at the zinc-binding sites, was readily observed via size exclusion chromatography. These results provide a molecular basis for the modulation of RING function by copper and add to the growing body of literature that describe the impact of Cu(I) on zinc metalloprotein structure and function.


Subject(s)
Copper , Metalloproteins , Copper/chemistry , Metalloproteins/metabolism , Protein Binding , Ubiquitins/metabolism , X-Linked Inhibitor of Apoptosis Protein/chemistry , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/metabolism , Zinc/metabolism , RING Finger Domains/physiology
20.
J Surg Res ; 283: 1038-1046, 2023 03.
Article in English | MEDLINE | ID: mdl-36914994

ABSTRACT

INTRODUCTION: Little is known about the protective effects of butylphthalide on cerebral ischemia-reperfusion injury. This study aims to investigate the impact on the second mitochondrial-derived activator of Caspases (Smac) and X-linked inhibitor of apoptosis protein (XIAP) expression in the ischemic semidark area using a rat model of carotid artery stenosis. METHODS: Thirty Sprague-Dawley rats were randomly divided into the sham-operated group, carotid stenosis model controls, low-dose (20 mg/kg), medium-dose (40 mg/kg), and high-dose (80 mg/kg) butylphthalide groups. The neurological function was scored by the balance beam test (BBT). The morphological changes of brain tissue were detected by Hematoxylin-eosin (HE) staining, with apoptosis detected by Terminal Deoxynucleotidyl Transferase mediated dUTP Nick-End Labeling (TUNEL) staining. Smac and XIAP protein expression were detected by immunohistochemistry (IHC). The expressions of Smac and XIAP mRNA were detected by real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: HE showed that neuronal loss, nuclear consolidation, and vacuolar degeneration were significantly reduced in the medium and high-dose butylphthalide groups compared with the model controls. The BBT scores and apoptotic index were significantly lower in the medium and high doses of butylphthalide compared with the model controls. RT-qPCR and IHC showed that Smac, XIAP mRNA and protein expressions in the ischemic hemispheric region were significantly reduced in low, medium, and high doses of butylphthalide compared with the model controls (P < 0.05), showing some concentration effect. CONCLUSIONS: Butylphthalide can significantly reduce Smac and XIAP mRNA and protein expression, inhibit neuronal apoptosis induced by ischemia-reperfusion injury in rats with carotid stenosis, and exert neuroprotective effects.


Subject(s)
Brain Ischemia , Carotid Stenosis , Reperfusion Injury , Rats , Animals , Caspases/metabolism , Caspases/pharmacology , X-Linked Inhibitor of Apoptosis Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/pharmacology , Rats, Sprague-Dawley , Capsules/pharmacology , Apoptosis , Ischemia , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion , RNA, Messenger , Brain Ischemia/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...