Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.418
Filter
1.
BMC Complement Med Ther ; 24(1): 256, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982425

ABSTRACT

BACKGROUND: One of the most widely used medicinal plants in Iranian traditional medicine, Rosa × damascena Herrm. (mohammadi flower) that the people of Kashan use as a sedative and to treat nervous diseases and constipation. In this research, the yield, chemical composition and antimicrobial activity of the essential oil of this plant were evaluated for the first time from Azaran region, Kashan. METHODS: The essential oil was extracted by means of hydrodistillation (Clevenger), and its chemical compounds were identified and determined by GC/MS. The antimicrobial activity of the essential oil was determined by the diffusion method in agar, the minimum growth inhibitory concentration (MIC) and the minimum concentration capable of killing bacterial/fungal microorganisms (MBC/MFC). RESULTS: The results showed that the yield of essential oil was 0.1586 ± 0.0331% (w/w). Based on the results of the chemical composition analysis of R. x damascena essential oil, 19 different compounds (98.96%) were identified. The dominant and main components of the essential oil were oleic acid (48.08%), palmitic acid (15.44%), stearic acid (10.17%), citronellol (7.37%) and nonadecane (3.70%). Based on the results of diffusion in agar, the highest zone of inhibition against Candida albicans (ATCC 10231) was ~ 9.5 mm. The strongest inhibitory activity of R. x damascena essential oil against Gram-negative Proteus mirabilis (ATCC 43071) was with the diameter of the inhibition zone (~ 9 mm), which was equal to the strength of rifampin (~ 9 mm). CONCLUSION: Therefore, this essential oil is a promising natural option rich in fatty acids, which can be a potential for the production of natural antimicrobials against infectious diseases, especially urinary tract infections.


Subject(s)
Microbial Sensitivity Tests , Oils, Volatile , Proteus mirabilis , Rosa , Proteus mirabilis/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Iran , Rosa/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Fatty Acids, Unsaturated/pharmacology , Fatty Acids, Unsaturated/chemistry
2.
J Agric Food Chem ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953591

ABSTRACT

Six new phenylpropanoid glycosides (1-6), two new phenylethanol glycosides (7 and 8), one new phenylmethanol glycoside (9), three new phenylpropanoid dimers (10-12), two new phenylpropanoid-flavan-3-ol heterodimers (13 and 14), and six known relevant compounds (15-20) were isolated and identified from the well-liked edible and medicinal substance (the bark of Cinnamomum cassia (L.) J.Presl). The structures of these isolates were determined by using spectroscopic analyses, chemical methods, and quantum chemical calculations. Notably, compounds 4-9 were rare apiuronyl-containing glycosides, and compounds 13 and 14 were heterodimers of phenylpropanoids and flavan-3-ols linked through C-9″-C-8 bonds. The antioxidant and α-glucosidase inhibitory activities of all isolates were evaluated. Compounds 10 and 12 exhibited DPPH radical scavenging capacities with IC50 values of 20.1 and 13.0 µM, respectively (vitamin C IC50 value of 14.3 µM). In the ORAC experiment, all these compounds exhibited different levels of capacity for scavenging free radicals, and compound 10 displayed extraordinary free radical scavenging capacity with the ORAC value of 6.42 ± 0.01 µM TE/µM (EGCG ORAC value of 1.54 ± 0.02 µM TE/µM). Compound 12 also showed significant α-glucosidase inhibitory activity with an IC50 of 56.3 µM (acarbose IC50 of 519.4 µM).

3.
Food Sci Nutr ; 12(6): 4362-4371, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38873436

ABSTRACT

The utilization of plant-based residues has been extensively employed for the control of diverse illnesses, owing to their safety and minimal adverse effects. In the current study, it was aimed for the characterization of the bioactive, enzyme inhibitory, and cytotoxic activities of fresh pistachio shell skin (FPSS), green walnut husk and walnut membrane (GWH), almond outer shell and inner brown skin (ASIS), as well as peanut husk and inner skin (PHIS) to be used as industrial food processing by-products. The results showed that the samples exhibited different extraction yields, with GWH having the highest percentage at 15.18%, followed by FPSS at 12.81%, ASIS at 10.29%, and PHIS at 7.80%. FPSS had the highest total phenolic content (16.28 mg gallic acid equivalents (GAE)/g) as well as the best antioxidant capabilities for DPPH (8.96 mg Trolox equivalent (TE)/g), FRAP (11.46 mg TE/g), and ABTS (22.38 mg TE/g) assays. FPSS was followed by PHIS, ASIS, and GWH, respectively. Moreover, the extracts exhibited relatively low activity against acetylcholinesterase, α-glucosidase, and α-amylase compared to standard acarbose or galantamine. Furthermore, the extracts may have the potential to induce cytotoxic effects, varying from moderate to mild, on both cancerous (IC50 = 454.55-617.28 µg/mL) and healthy cells (IC50 = 438.60-490.20 µg/mL). The results of this research showed that shell residues of nut hold promise for a variety of industrial applications spanning the food, pharmaceutical, and cosmetic sectors.

4.
J Sci Food Agric ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855927

ABSTRACT

BACKGROUND: The present study aimed to evaluate the anti-hypertensive and anti-diabetic activities from biologically active peptides produced by fermented sheep milk with Lacticaseibacillus paracasei M11 (MG027695), as well as to purify and characterize the angiotensin-converting enzyme (ACE) inhibitory and anti-diabetic peptides produced from fermented sheep milk. RESULTS: After 48 h of fermentation at 37 °C, sheep milk demonstrated significant changes in anti-diabetic effects and ACE-I effects, with inhibition percentages observed for ACE inhibition (76.32%), α-amylase (70.13%), α-glucosidase (70.11%) and lipase inhibition (68.22%). The highest level of peptides (9.77 mg mL-1) was produced by optimizing the growth conditions, which included an inoculation rate of 2.5% and a 48 h of incubation period. The comparison of molecular weight distributions among protein fractions was conducted through sodium dodecyl-sulfate polyacrylamide gel electrophoresis analysis, whereas spots were separated using 2D gel electrophoresis according to both the molecular weight and pH. Peptide characterization with ultra-filtration membranes at 3 and 10 kDa allowed the study to assess molecular weight-based separation. Nitric oxide generated by lipopolysaccharide and the secretion of pro-inflammatory cytokines in RAW 264.7 immune cells were both inhibited by sheep milk fermented with M11. Fourier-transform infrared spectroscopy was employed to assess changes in functional groups after fermentation, providing insights into the structural changes occurring during fermentation. CONCLUSION: The present study demonstrates that fermentation with L. paracasei (M11) led to significant changes in fermented sheep milk, enhancing its bioactive properties, notably in terms of ACE inhibition and anti-diabetic activities, and the generation of peptides with bioactive properties has potential health benefits. © 2024 Society of Chemical Industry.

5.
Chem Pharm Bull (Tokyo) ; 72(6): 540-546, 2024.
Article in English | MEDLINE | ID: mdl-38866475

ABSTRACT

Three neo-clerodane diterpenoids, including two new tinocordifoliols A (1) and B (2) and one known tinopanoid R (3), were isolated from the ethyl acetate-soluble fraction of the 70% ethanol extract of Tinospora cordifolia stems. The structures were elucidated by various spectroscopic methods, including one dimensional (1D) and 2D-NMR, high resolution-electrospray ionization (HR-ESI)-MS, and electronic circular dichroism (ECD) data. The T. cordifolia extract and all isolated compounds 1-3 possessed arginase I inhibitory activities. Among them, 3 exhibited moderate competitive inhibition of human arginase I (IC50 = 61.9 µM). Furthermore, docking studies revealed that the presence of a ß-substituted furan in 3 may play a key role in the arginase I inhibitory activities.


Subject(s)
Arginase , Diterpenes, Clerodane , Enzyme Inhibitors , Molecular Docking Simulation , Plant Stems , Tinospora , Tinospora/chemistry , Arginase/antagonists & inhibitors , Arginase/metabolism , Diterpenes, Clerodane/pharmacology , Diterpenes, Clerodane/chemistry , Diterpenes, Clerodane/isolation & purification , Humans , Plant Stems/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/isolation & purification , Structure-Activity Relationship , Molecular Structure , Molecular Conformation , Dose-Response Relationship, Drug
6.
Food Chem ; 455: 139921, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38843718

ABSTRACT

The pharmaceutical and nutraceutical potentials of whole fruit, pulp and seeds of Rosa pimpinellifolia L. were evaluated. Forty-two phenolic compounds and two triterpenoids were identified in extracts by LC-MS/MS and GC-MS, respectively. The most prominent compounds were ellagic acid, catechin, epicatechin, tannic acid, quercetin, oleanolic acid, and ursolic acid. The highest enzyme inhibitory activities of the extracts (94.83%) were obtained against angiotensin-converting enzyme and were almost equal to those of the commercial standard (lisinopril, 98.99%). Whole fruit and pulp extracts (IC50:2.47 and 1.52 µg DW/mL) exhibited higher antioxidant capacity than the standards (α-tocopherol, IC50:9.89 µg DW/mL). The highest antibacterial activity was obtained against Bacillus cereus (MIC: 256 µg/mL) for the whole fruit extract. Correlation analyses were conducted to find the correlation between individual phenolics and enzyme inhibitory activities. The results showed the remarkable future of not only the edible part but also the seeds of black rose hips in phytochemical and functional aspects.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Fruit , Phytochemicals , Plant Extracts , Rosa , Seeds , Antioxidants/pharmacology , Antioxidants/chemistry , Fruit/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Seeds/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Rosa/chemistry , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Phenols/pharmacology , Phenols/chemistry
7.
J Food Sci Technol ; 61(7): 1283-1294, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38910925

ABSTRACT

In the current study, ten lactic acid bacteria (LAB) isolates exhibiting anti-α-glucosidase activity were isolated from fermented food. It is directed at novel supplementary diets to prevent/improve diet-induced carbohydrate metabolism disorders and related chronic diseases. Moreover, to evaluate their safety, functionality, and probiotic potential via in vitro simulated test conditions. From 16s-rRNA sequencing, Pediococcus acidilactici (NKUST 803, 845, 858), Lactobacillus plantarum (NKUST 817, 828, 851), Levilactobacillus brevis (NKUST 816, 855) and Lactobacillus acidophilus (NKUST 803, 863) were identified. The results showed that the isolates possessed anti-pathogenic activity, auto-aggregation ability, hydrophobicity (47.44-96.4%), and gastric acid-resistant activity (79-99.1%), which proved their potential for probiotics in nutraceuticals to render hypoglycemic activity or antidiabetic effects to the host positively. Among tested isolates, L. plantarum 817 and P. acidilactici 858 exhibited maximum α-glucosidase inhibitory (AGI) activity of 35-40%. The heat map clearly showed that L. plantarum 817 exhibited the best AGI activity and probiotic potential, among others. These were studied under various simulated gut conditions and safety tests. However, all isolates possess the potential to be used as probiotics in commercial-scale health applications. Pediococcus sp. possesses notable AGI activity but relatively less colonization potential in the gut hence recommended daily intake for positive health effects.

8.
Molecules ; 29(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38930797

ABSTRACT

Pueraria lobata (P. lobata), a traditional anti-diabetic medicine mainly composed of flavonoids and isoflavones, has a long history in diabetes treatment in China. However, the anti-diabetic active component is still unclear. Recently, protein tyrosine phosphatase 1B (PTP1B) has been a hot therapeutic target by negatively regulating insulin signaling pathways. In this study, the spectrum-effect relationship analysis method was first used to identify the active components of P. lobata that inhibit PTP1B. The fingerprints of 12 batches of samples were established using high-performance liquid chromatography (HPLC), and sixty common peaks were identified. Meanwhile, twelve components were identified by a comparison with the standards. The inhibition of PTP1B activity was studied in vitro by using the p-nitrophenol method, and the partial least squares discriminant analysis, grey relational analysis, bivariate correlation analysis, and cluster analysis were used to analyze the bioactive compounds in P. lobata. Peaks 6, 9 (glycitin), 11 (genistin), 12 (4'-methoxypuerarin), 25, 34, 35, 36, 53, and 59 were considered as potentially active substances that inhibit PTP1B. The in vitro PTP1B inhibitory activity was confirmed by glycitin, genistin, and 4'-methoxypuerarin. The IC50s of the three compounds were 10.56 ± 0.42 µg/mL, 16.46 ± 0.29 µg/mL, and 9.336 ± 0.56 µg/mL, respectively, indicating the obvious PTP1B inhibitory activity. In brief, we established an effective method to identify PTP1B enzyme inhibitors in P. lobata, which is helpful in clarifying the material basis of P. lobata on diabetes. Additionally, it is evident that the spectrum-effect relationship method serves as an efficient approach for identifying active compounds, and this study can also serve as a reference for screening bioactive constituents in traditional Chinese medicine.


Subject(s)
Enzyme Inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Pueraria , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Pueraria/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Chromatography, High Pressure Liquid , Isoflavones/pharmacology , Isoflavones/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Humans
9.
Chem Biodivers ; : e202401273, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828879

ABSTRACT

Eight furostanol glycosides including five undescribed compounds, named tribufurostanosides A-E (1-5), and three known ones (6-8) were isolated from the fruits of Tribulus terrestris L. Their chemical structures were determined by the IR, HR-ESI-MS, 1D-, and 2D-NMR spectra. Furostanols 1-8 significantly inhibited nitric oxide production in LPS activated RAW 264.7 cells with IC50 values ranging from 14.2 to 64.7 µM, compared to that of the positive control compound, dexamethazone (IC50 13.6 µM).

10.
Acta Pharm Sin B ; 14(6): 2646-2656, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828134

ABSTRACT

Tumor necrosis factor-α (TNF-α) is a promising target for inflammatory and autoimmune diseases. Spirohypertones A (1) and B (2), two unprecedented polycyclic polyprenylated acylphloroglucinols with highly rearranged skeletons, were isolated from Hypericum patulum. The structures of 1 and 2 were confirmed through comprehensive spectroscopic analysis, single-crystal X-ray diffraction and electronic circular dichroism calculations. Importantly, 2 showed remarkable TNF-α inhibitory activity, which could protect L929 cells from death induced by co-incubation with TNF-α and actinomycin D. It also demonstrated the ability to suppress the inflammatory response in HaCaT cells stimulated with TNF-α. Notably, in an imiquimod-induced psoriasis murine model, 2 restrained symptoms of epidermal hyperplasia associated with psoriasis, presenting anti-inflammatory and antiproliferative effects. This discovery positions 2 as a potent TNF-α inhibitor, providing a promising lead compound for developing an antipsoriatic agent.

11.
BMC Complement Med Ther ; 24(1): 232, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877470

ABSTRACT

BACKGROUND: Alzheimer's disease is a neurodegenerative age-related disease that primarily affects the elderly population leading to progressive memory impairments and neural deficits. It is counted as a major cause of geriatric dependency and disability. The pathogenesis of Alzheimer's disease incidence is complex and involves various hypotheses, including the cholinergic hypothesis, deposition of ß-amyloid plaques, neuroinflammation, oxidative stress, and apoptosis. Conventional treatments such as donepezil aim to delay the symptoms but do not affect the progression of the disease and may cause serious side effects like hepatoxicity. The use of natural candidates for Alzheimer's disease treatment has drawn the attention of many researchers as it offers a multitargeted approach. METHODS: This current study investigates the metabolic profiles of total defatted methanolic extract of Vitex pubescens bark and its polar fractions, viz. ethyl acetate and n-butanol, using ultra-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight tandem mass spectrometry(UPLC-ESI-QTOF/MS/MS) technique as well as evaluate the antioxidant using free radical scavenging assays, viz. DPPH and ABTS assays and in-vitro acetylcholinesterase inhibitory activities using Ellman's microplate assay. RESULTS: Metabolic profiling revealed a total of 71, 43, and 55 metabolites tentatively identified in the defatted methanolic extract, ethyl acetate, and n-butanol fractions, respectively. Phenolic acids were the most abundant class, viz. benzoic acids, and acyl quinic acid derivatives followed by flavonoids exemplified mainly by luteolin-C-glycosides and apigenin-C-glycosides. Quantification of the total phenolic and flavonoid contents in the total defatted methanolic extract confirmed its enrichment with phenolics and flavonoids equivalent to 138.61 ± 9.39 µg gallic acid/mg extract and 119.63 ± 4.62 µg rutin/mg extract, respectively. Moreover, the total defatted methanolic extract exhibited promising antioxidant activity confirmed through DPPH and ABTS assays with a 50% inhibitory concentration (IC50) value equivalent to 52.79 ± 2.16 µg/mL and 10.02 ± µg/mL, respectively. The inhibitory activity of acetylcholine esterase (AchE) was assessed using in-vitro Ellman's colorimetric assay, the total defatted methanolic extract, ethyl acetate, and n-butanol fractions exhibited IC50 values of 52.9, 15.1 and 108.8 µg/mL that they proved the significant inhibition of AchE activity. CONCLUSION: The results obtained herein unraveled the potential use of the total methanolic extract of Vitex pubescens bark and its polar fractions as natural candidates for controlling Alzheimer's disease progression.


Subject(s)
Antioxidants , Cholinesterase Inhibitors , Plant Bark , Plant Extracts , Tandem Mass Spectrometry , Vitex , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Cholinesterase Inhibitors/pharmacology , Plant Bark/chemistry , Tandem Mass Spectrometry/methods , Vitex/chemistry , Chromatography, High Pressure Liquid , Spectrometry, Mass, Electrospray Ionization , Humans
12.
Nat Prod Res ; : 1-7, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913076

ABSTRACT

Two new limonoid glycosides, named limonosides A (1) and B (2), along with four known limonoids (3-6) were obtained from the seeds of Citrus limon. Their structures were deduced based on extensive spectroscopic analysis. Limonoside A (1) and nomilin (4) were found to possess moderate phosphodiesterase type 4D (PDE4D) inhibitory effect with values of 89.8 ± 2.4% and 98.9 ± 3.0% at 10 µM, respectively.

13.
Plant Dis ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698518

ABSTRACT

Tree peony black spot (TPBS), mainly caused by Alternaria suffruticosae, is a common leaf disease on the ornamental peony, which posed a great threat on the flower buds in the current year and the flowering quality in the next year. However, there was only one fungicide registered for the control of the disease, difenoconazole. In order to avoid the severe problem of pathogen resistance caused by long-term use of difenoconazole, it is necessary to screen more chemical fungicides for the prevention and control of TPBS. In the paper, the biological activities of flutolanil, phenamacril, pyraclostrobin, and boscalid on mycelial growth, conidial germination, germ tube elongation and sporulation quantity of A. suffruticosae were determined, and field control efficacy were conducted to evaluate the preventive and therapeutic activities. Difenoconazole, was used as a control simultaneously. The results showed that pyraclostrobin had the strongest inhibitory effects on the conidial germination, mycelium growth, germ tube elongation and sporulation quantity, with the average EC50 of 0.0517, 0.5343, 0.0008 and 0.8068 µg/mL respectively. The inhibitory activity of flutolanil on the four developmental stages of A. suffruticosae was weaker than the other three fungicides. Compared with flutolanil, boscalid, the other succinate dehydrogenase inhibitors, had more srtong inhibitory effects on the mycelial growth and sporulation quantity, with the average EC50 of 3.8603 and 1.4760 µg/mL respectively. Phenamacril had a moderate inhibitory level, which had more inhibitory activity on conidial germination and germ tube elongation, with the average EC50 of 31.5349 and 5.2597 µg/mL. All of the four fungicides had no significant effects on the shape of spores and germ tubes. The control fungicide difenoconazole had the strongest inhibitory activity on mycelial growth, and the average EC50 was only 0.3297 µg/ml. However, its inhibitory activity on the other three growth stages was not high. In the field trials, pyraclostrobin had high control efficacy on TPBS even at low concentrations, reaching a minimum of 62.6293%, which was higher than that of difenoconazole. The other three fungicides had higher control efficacy at high concentrations, but decreased significantly at low concentrations. Considering the dosage and control efficacy, pyraclostrobin was the first choice for the control of TPBS. Pyraclostrobin is the preferred alternative fungicide of difenoconazole for the prevention and control of TPBS in production.

14.
Nat Prod Res ; : 1-7, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726924

ABSTRACT

Two new phenylpropanoids, ainsbons A and B (1 and 2), along with a known analogue coniferyl diisovalerate (3) were isolated from the whole plant of Ainsliaea bonatii. Their structures were elucidated by analysis of NMR spectroscopic data and HRESIMS, and the absolute configuration of 2 was established by the optical rotation calculations. Compounds 1-3 were evaluated for their effects on LPS-induced nitric oxide production, and 1 and 3 showed inhibitory activities with IC50 values of 43.43 and 7.57 µM, respectively.

15.
Nat Prod Res ; : 1-6, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728614

ABSTRACT

One new compound, styrene dimer-type listeanol-4-O-α-ʟ-rhamnopyranosyl-(1→4)-ß-ᴅ-glucopyranoside (1), and four known compounds namely listeanol (2), isorhapotigenin (3), genetifolin E (4), gnetifolin K (5) were isolated from the methanolic extract from the aerial part of the Gnetum montanum Markgr. in Viet Nam. Their chemical structures were determined by modern spectroscopic methods (NMR and HR-ESI-MS) and comparison with those of published data. These compounds were evaluated for their anti-inflammatory and cytotoxic activities. Among them, compound 3 exhibited the NO inhibitory production on the RAW264.7 cell line, and inhibited the HepG2 cell line with respective IC50 values of 79.88 ± 5.51 (µg/mL) (L-NMMA 7.90 ± 0.63 µg/mL), and 63.48 ± 3.63 (µg/mL) (Ellipticine 0.40 ± 0.01 µg/mL).

16.
J Food Sci ; 89(6): 3469-3483, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720586

ABSTRACT

Pyracantha fortuneana (P. fortuneana) fruit is a wild fruit that is popular because of its delicious taste and numerous nutrients, and phenolic compounds are considered to be the main bioactive components in P. fortuneana fruits. However, the relationship between phenolic compounds and their antioxidant and tyrosinase (TYR) inhibitory activities during the ripening process is still unclear. The study compared the influence of the five developmental stages on the accumulation of phenolic compounds, antioxidant activity, and TYR inhibitory activity in the fruits of P. fortuneana. The compounds were identified by offline two-dimensional liquid chromatography-electrochemical detection (2D-LC-ECD) combined with liquid chromatography-tandem mass spectrometry, and the main active ingredients were quantified. The results showed that stage II had higher total phenolic and flavonoid content, as well as higher antioxidant and TYR inhibitory activity, but the total anthocyanin content was lowest at this stage. A total of 30 compounds were identified by 2D-LC-ECD. Orthogonal partial least squares discriminant analysis screened out six major potential markers, including phenolic acids, procyanidins, and flavonoids. In addition, it was found that caffeoylquinic acids, procyanidins, and flavonoids were higher in stage II than in stages I, III, IV, and V, whereas anthocyanins accumulated gradually from stages III to V. Therefore, this study suggests that the changes in antioxidant and TYR inhibitory activities of P. fortuneana during the five developmental stages may be due to the transformation of procyanidins, caffeoylquinic acids, and phenolic glycosides into other forms during the fruit maturation process. Practical Application: Differences in chemical constituents, antioxidant, and tyrosinase inhibitory activities in fruit maturity stages of P. fortuneana were elucidated to provide reference for rational harvesting and utilization of the fruits and their bioactive components. These findings are expected to provide a comprehensive assessment of the bioactive profile and guide the food industrial production.


Subject(s)
Antioxidants , Fruit , Monophenol Monooxygenase , Phenols , Pyracantha , Fruit/chemistry , Antioxidants/analysis , Antioxidants/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Phenols/analysis , Pyracantha/chemistry , Flavonoids/analysis , Tandem Mass Spectrometry/methods , Enzyme Inhibitors/pharmacology , Proanthocyanidins/pharmacology , Proanthocyanidins/analysis , Anthocyanins/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chromatography, Liquid/methods
17.
Chem Biodivers ; : e202401049, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38757233

ABSTRACT

Four undescribed spirostan glycosides, (25S)-5α-spirostan- 12-one-2α,3ß-diol-3-O-ß-D-glucopyranosyl-(1→4)-ß-D-galactopyranoside (1), (25S)-5α-spirostan-12-one-2α,3ß-diol-3-O-ß-D-galatopyranosyl-(1→2)-ß-D-glucopyranosyl- (1→4)-ß-D-galactopyranoside (2), (25S)-5α-spirostan-12-one-2α,3ß-diol-3-O-ß-D-glucopyranosyl-(1→2)-[ß-D-glucopyranosyl-(1→3)]-ß-D-glucopyranosyl-(1→4)-ß-D-galactopyranoside (3), and hecogenin 3-O-ß-D-glucopyranosyl-(1→3)-[ß-D-xylopyranosyl-(1→2)]-ß-D-glucopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1→2)]-ß-D-galactopyranoside (4), together with eleven known compounds (5-15) were isolated from the branches and leaves of Tribulus terrestris. Their chemical structures were established through spectroscopic methods, including HR-ESI-MS, 1D-, and 2D-NMR spectra. Preliminary biological evaluation on NO production inhibitory activity in LPS activated RAW 264.7 cells showed that compounds 1-3, 5, and 6 had significant inhibitory effects with IC50 values ranging from 2.4 to 18.3 µM, compared to that of the positive control compound, dexamethazone (IC50 13.6 µM).

18.
Fitoterapia ; 176: 106001, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729246

ABSTRACT

Phytochemical investigation of the EtOAc soluble fraction from leaves of Trichilia dregeana Sond. (Meliaceae) afforded naturally rare four new pentacyclic triterpenoids (1-4), together with five known pentacyclic analogs (5-8, and 11) and two steroids (9 and 10). Their structures were elucidated by extensive spectroscopic techniques such as 1D and 2D NMR and HRESIMS data analyses. The absolute configuration of 1 was determined by using the single-crystal X-ray diffraction analysis. The nitric oxide (NO) production inhibitory assay indicated that the EtOAc fraction as well as 4 and 7 inhibited the NO production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells with the IC50 values of 83.53 µg/mL and 81.31 and 85.71 µM, respectively. Compounds 1-4 are rare 19(10 â†’ 9)abeo-euphane-type triterpenoids bearing a 3,10-ether bridge. To the best of our knowledge, this study is the first isolation of triterpenoids with the 3,10-ether bridge in their skeleton from the genus Trichilia, providing new insights into the chemodiversity of the terpenoids in T. dregeana.


Subject(s)
Meliaceae , Nitric Oxide , Phytochemicals , Plant Leaves , Triterpenes , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/metabolism , Nitric Oxide/biosynthesis , Plant Leaves/chemistry , Triterpenes/isolation & purification , Triterpenes/pharmacology , Triterpenes/chemistry , Mice , Animals , RAW 264.7 Cells , Meliaceae/chemistry , Molecular Structure , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , China
19.
Fitoterapia ; 176: 106000, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729248

ABSTRACT

Five new characteristic cembrane-type diterpenoids (olibacartiols A-E, 1-5) were acquired from the gum resin of Boswellia carterii. The structures of these diterpenoids were characterized by detailed spectroscopic analysis, and compounds 1-3 were unambiguously confirmed by single-crystal X-ray diffraction experiments. The anti-inflammatory activities of the isolated compounds were evaluated using LPS-induced BV2 cell model and compounds 2-5 showed moderate NO inhibitory effects with IC50 values of 8.84 ± 1.02, 9.82 ± 1.95, 9.75 ± 2.24, and 7.39 ± 1.24 µM, respectively.


Subject(s)
Anti-Inflammatory Agents , Boswellia , Diterpenes , Nitric Oxide , Phytochemicals , Resins, Plant , Diterpenes/pharmacology , Diterpenes/isolation & purification , Diterpenes/chemistry , Boswellia/chemistry , Nitric Oxide/metabolism , Molecular Structure , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Resins, Plant/chemistry , Mice , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Cell Line , China , Plant Gums/chemistry , Plant Gums/pharmacology
20.
Fitoterapia ; 176: 106044, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801895

ABSTRACT

Phytochemical investigations of the twig and leaf extracts of Uvaria dac Pierre ex Finet & Gagnep. resulted in the isolation and identification of five new highly oxygenated cyclohexenes, uvaridacols M - Q (1-3, 5, and 6), and six known compounds (4 and 7-11). All new structures were elucidated by spectroscopic methods and HRESITOFMS data. The absolute configuration of 1, 5, and 6 was confirmed by single X-ray diffraction analysis with Cu Kα radiation. In contrast, other compounds were established by comparing their specific rotation and ECD spectra with those of known compounds. Some of the isolated compounds with sufficient quantity were evaluated for their α-glucosidase inhibitory activity. Of these, (-)-1,6-desoxypipoxide (10) showed α-glucosidase inhibitory activity with an IC50 value of 28.6 µM. The in silico molecular docking of active compounds was also studied.


Subject(s)
Cyclohexenes , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Phytochemicals , Plant Leaves , Uvaria , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/isolation & purification , Glycoside Hydrolase Inhibitors/chemistry , Molecular Structure , Uvaria/chemistry , Plant Leaves/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Cyclohexenes/isolation & purification , Cyclohexenes/pharmacology , Cyclohexenes/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Stems/chemistry , China
SELECTION OF CITATIONS
SEARCH DETAIL
...