Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 307
Filter
1.
Environ Geochem Health ; 46(7): 216, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38941030

ABSTRACT

Iron phosphate-based coating and iron silicate-based coating were used to inhibit the oxidation of sulfide minerals in rainy and submerged environments. The inhibiting effectiveness of coating agents on the oxidation of iron sulfide minerals was investigated using pyrite and rock samples resulting from acid drainage. The film formed with both surface-coating agents was identified by pyrite surface analysis. It was also confirmed that the formation of coatings varies depending on the crystallographic orientation. The inhibitory effects under rainy and submerged conditions were investigated using column experiments. Submerged conditions accelerated deterioration compared to that under rainy conditions. Iron phosphate coating had a significantly better oxidation-inhibitory effect (84.86-98.70%) than iron silicate coating (56.80-92.36%), and at a concentration of 300 mM, H+ elution was inhibited by more than 90% throughout the experiment. Furthermore, methods for effective film formation were investigated in terms of producing Fe3+; (1) application of coating agents mixed with oxidant (H2O2), (2) application of coating agent after the use of the oxidant. In a rainy environment, applying iron phosphate-based coating using the sequential method showed oxidation inhibition effects for cycles 1-9, whereas applying the mixed material showed effects for cycles 9-13. The use of a surface-coating agent after applying an oxidant did not inhibit oxidation. The surface coating agent and the oxidizing agent should be applied as a mixture to form a film.


Subject(s)
Iron , Oxidation-Reduction , Phosphates , Silicates , Silicates/chemistry , Iron/chemistry , Phosphates/chemistry , Acid Rain , Sulfides/chemistry , Hydrogen Peroxide/chemistry , Ferric Compounds/chemistry
2.
Nat Prod Res ; : 1-8, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884117

ABSTRACT

Sarcanoids A and B (1 and 2), two new lindenane-type sesquiterpenoid dimers with a γ-hydroxysenecioate moiety at C-15', were isolated from the ethyl acetate extract of Sarcandra glabra. The structures were elucidated by extensive analysis of spectroscopic data, and their absolute configurations were determined by single-crystal X-ray crystallography. Compounds 1 and 2 showed moderate inhibitory activities on the nitric oxide (NO) production induced by lipopolysaccharide (LPS) in RAW264.7 macrophages.

3.
BMC Psychol ; 12(1): 358, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38890761

ABSTRACT

BACKGROUND: Fear overgeneralization constitutes a susceptibility factor contributing to the development and maintenance of anxiety spectrum disorders. Extant research has demonstrated that exposure to positive and supportive social relationships attenuates fear acquisition and promotes the extinction of conditioned fear responses. However, the literature lacks investigation into the effect of secure attachment priming on inhibiting the generalization of conditioned fear. METHODS: In this study, college students were recruited via online platforms to voluntarily engage in the experimental procedures, resulting in 57 subjects whose data were deemed suitable for analysis. The experimental protocol consisted of four consecutive phases: pre-acquisition, acquisition, priming, and generalization. The priming phase consisted of two experimental conditions: secure attachment priming (experimental group) and positive emotion priming (control group). This study adopted the perceptual discrimination fear conditioning paradigm, employing subjective expectancy of shock ratings and skin conductance responses as primary assessment indices. Individual difference variables were measured using corresponding psychological measurement scales. RESULTS: In terms of generalization degree, a notable divergence surfaced in the skin conductance responses across various generalization materials between the secure attachment priming group and the control group. Similarly, during generalization extinction, a significant disparity emerged in the skin conductance responses across different generalization phases between the secure attachment priming group and the control group. In addition, individual differences analyses revealed that the inhibitory effect of secure attachment priming on fear generalization was not affected by intolerance of uncertainty and attachment orientations. Conversely, slope analyses confirmed that as intolerance of uncertainty increased, the inhibitory effect of positive emotion priming on fear generalization was attenuated. CONCLUSION: The findings suggest that activating participants' representations of secure attachment via imagination effectively attenuates the generalization of perceptual fear at the physiological level. The inhibitory effect of secure attachment priming appears to be distinct from positive emotional modulation and remains unaffected by individual trait attachment styles. These results offer novel insights and avenues for the prevention and clinical intervention of anxiety spectrum disorders.


Subject(s)
Conditioning, Classical , Fear , Generalization, Psychological , Object Attachment , Humans , Fear/psychology , Male , Female , Young Adult , Adult , Conditioning, Classical/physiology , Galvanic Skin Response/physiology , Extinction, Psychological/physiology , Adolescent
4.
Acta Pharm Sin B ; 14(6): 2567-2580, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828157

ABSTRACT

The pandemic of SARS-CoV-2 worldwide with successive emerging variants urgently calls for small-molecule oral drugs with broad-spectrum antiviral activity. Here, we show that carrimycin, a new macrolide antibiotic in the clinic and an antiviral candidate for SARS-CoV-2 in phase III trials, decreases the efficiency of programmed -1 ribosomal frameshifting of coronaviruses and thus impedes viral replication in a broad-spectrum fashion. Carrimycin binds directly to the coronaviral frameshift-stimulatory element (FSE) RNA pseudoknot, interrupting the viral protein translation switch from ORF1a to ORF1b and thereby reducing the level of the core components of the viral replication and transcription complexes. Combined carrimycin with known viral replicase inhibitors yielded a synergistic inhibitory effect on coronaviruses. Because the FSE mechanism is essential in all coronaviruses, carrimycin could be a new broad-spectrum antiviral drug for human coronaviruses by directly targeting the conserved coronaviral FSE RNA. This finding may open a new direction in antiviral drug discovery for coronavirus variants.

5.
Phytochemistry ; 224: 114169, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38825030

ABSTRACT

Continued interest in the bioactive alkaloids led to the isolation of five undescribed alkaloids (1-5), ophiorglucidines A-E, and seven known analogues (6-12) from the water-soluble fraction of Ophiorrhiza japonica. The structures were elucidated based on spectroscopic data and quantum calculations as well as X-ray crystallographic analysis. The structure of 1 was characterized as a hexacyclic skeleton including a double bridge linking the indole and the monoterpene moieties, which is the first report of a single crystal with this type of structure. Moreover, the inhibitory effect of zwitterionic indole alkaloid glycosides on xanthine oxidase was found for the first time. The alkaloids 2 and 3, both of which have a pentacyclic zwitterionic system, were more active than the reference inhibitor, allopurinol (IC50 = 11.1 µM) with IC50 values of 1.0 µM, and 2.5 µM, respectively. Structure-activity relationships analyses confirmed that the carbonyl group at C-14 was a key functional group responsible for the inhibitory effects of these alkaloids.


Subject(s)
Enzyme Inhibitors , Indole Alkaloids , Monoterpenes , Rubiaceae , Xanthine Oxidase , Xanthine Oxidase/antagonists & inhibitors , Xanthine Oxidase/metabolism , Rubiaceae/chemistry , Structure-Activity Relationship , Indole Alkaloids/chemistry , Indole Alkaloids/pharmacology , Indole Alkaloids/isolation & purification , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Monoterpenes/chemistry , Monoterpenes/pharmacology , Monoterpenes/isolation & purification , Molecular Structure , Dose-Response Relationship, Drug , Models, Molecular , Crystallography, X-Ray
6.
Fish Shellfish Immunol ; 151: 109654, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810711

ABSTRACT

Interleukin-10 (IL-10) is an immunosuppressive cytokine, which plays a vital role in regulating inflammation for inhibiting the generation and function of pro-inflammatory cytokines in vivo or in vitro. In the present study, the full length cDNA of IL-10 was characterized from Nibea albiflora (named as NaIL-10) of 1238 base pairs (bp), containing a 5'-UTR (untranslated region) of 350 bp, a 3'-UTR of 333 bp and an open reading frame (ORF) of 555 bp (Fig. 1A) to encode 184 amino acid residues with a signal peptide at the N-terminus. The sequence analysis showed that NaIL-10 possessed the typical IL-10 family symbolic motif and conversed cysteine residues, similar to its teleost orthologues. Real-time PCR indicated that NaIL-10 had wide distribution in different healthy tissues, with a relatively high expression in immune-related tissues (head kidney, spleen, kidney, liver and gill). Significantly, up-regulations of NaIL-10 after infection against Vibrio parahaemolyticus, Vibrio alginolyticus and Poly I:C were also observed. Subcellular localization manifested that NaIL-10 mainly distributed in the cytoplasm unevenly and aggregately, and there was also a small amount on the cell membrane, indicating that NaIL-10 was secreted to the extracellular space as the known IL-10 homologous molecules. It could co-locate with IL-10 Rα on the membrane of HEK293T cells for their potential interaction, and GST pull-down and Co-IP studies certified the specific and direct interaction between NaIL-10 and NaIL-10 Rα, confirming that an IL-10 ligand-receptor system existed in N.albiflora. The expression of pro-inflammatory cytokines, including TNF-α, IL-6, IL-1ß, were dramatically inhibited in LPS-stimulated RAW264.7 macrophages pre-incubated with recombinant NaIL-10 protein, demonstrating its anti-inflammatory roles. Taken together, the results demonstrated the existence of IL-10 ligand-receptor system in N.albiflora for the first time, and indicated the suppressive function of NaIL-10 on pro-inflammatory cytokine expression in inflammatory response, which would be conducive to better comprehending the role of IL-10 in the immunomodulatory mechanisms of teleost.

7.
Nat Prod Res ; : 1-9, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770927

ABSTRACT

The Marsdenia tenacissima, has been used as traditional Chinese medicine for six hundred years. Our chemical investigation on the stem of Marsdenia tenacissima led to the isolation of one new pregnane glycoside, namely, marsdeoside J (compound 1) and twelve known compounds. The structure of the new compound was elucidated by spectroscopic analysis including 1D and 2D NMR, HRESIMS, IR, and UV. The absolute configurations of the sugar moiety were identified by comparing the specific optical rotations and Rf values with those of the commercially available standards and the data reported in the literature. Compound 1 showed cytotoxicities against five human cancer cell lines, with IC50 values ranging from 6.5 to 18.1 µM and certain inhibitory activities on NO production.

8.
Chin J Nat Med ; 22(5): 441-454, 2024 May.
Article in English | MEDLINE | ID: mdl-38796217

ABSTRACT

Five novel (9,10-dihydro) phenanthrene and bibenzyl trimers, as well as two previously identified biphenanthrenes and bibenzyls, were isolated from the tubers of Bletilla striata. Their structures were elucidated through comprehensive analyses of NMR and HRESIMS spectroscopic data. The absolute configurations of these compounds were determined by calculating rotational energy barriers and comparison of experimental and calculated ECD curves. Compounds 5b and 6 exhibited inhibitory effects on LPS-induced NO production in BV-2 cells, with IC50 values of 12.59 ± 0.40 and 15.59 ± 0.83 µmol·L-1, respectively. A mechanistic study suggested that these compounds may attenuate neuroinflammation by reducing the activation of the AKT/IκB/NF-κB signaling pathway. Additionally, compounds 3a, 6, and 7 demonstrated significant PTP1B inhibitory activities, with IC50 values of 1.52 ± 0.34, 1.39 ± 0.11, and 1.78 ± 0.01 µmol·L-1, respectively. Further investigation revealed that compound 3a might inhibit LPS-induced PTP1B overexpression and NF-κB activation, thereby mitigating the neuroinflammatory response in BV-2 cells.


Subject(s)
NF-kappa B , Orchidaceae , Phenanthrenes , Plant Tubers , Signal Transduction , Phenanthrenes/pharmacology , Phenanthrenes/chemistry , NF-kappa B/metabolism , Orchidaceae/chemistry , Signal Transduction/drug effects , Plant Tubers/chemistry , Animals , Mice , Molecular Structure , Bibenzyls/pharmacology , Bibenzyls/chemistry , Cell Line , Lipopolysaccharides/pharmacology , Nitric Oxide/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Humans
9.
Pestic Biochem Physiol ; 201: 105848, 2024 May.
Article in English | MEDLINE | ID: mdl-38685210

ABSTRACT

Fusarium asiaticum is a destructive phytopathogenic fungus that causes Fusarium head blight of wheat (FHB), leading to serious yield and economic losses to cereal crops worldwide. Our previous studies indicated that target-site mutations (K216R/E, S217P/L, or E420K/G/D) of Type I myosin FaMyo5 conferred high resistance to phenamacril. Here, we first constructed one sensitive strain H1S and three point mutation resistant strains HA, HC and H1R. Then we conducted comparative transcriptome analysis of these F. asiaticum strains after 1 and 10 µg·mL-1 phenamacril treatment. Results indicated that 2135 genes were differentially expressed (DEGs) among the sensitive and resistant strains. The DEGs encoding ammonium transporter MEP1/MEP2, nitrate reductase, copper amine oxidase 1, 4-aminobutyrate aminotransferase, amino-acid permease inda1, succinate-semialdehyde dehydrogenase, 2, 3-dihydroxybenzoic acid decarboxylase, etc., were significantly up-regulated in all the phenamacril-resistant strains. Compared to the control group, a total of 1778 and 2097 DEGs were identified in these strains after 1 and 10 µg·mL-1 phenamacril treatment, respectively. These DEGs involved in 4-aminobutyrate aminotransferase, chitin synthase 1, multiprotein-bridging factor 1, transcriptional regulatory protein pro-1, amino-acid permease inda1, ATP-dependent RNA helicase DED1, acetyl-coenzyme A synthetase, sarcoplasmic/endoplasmic reticulum calcium ATPase 2, etc., showed significantly down-regulated expression in phenamacril-sensitive strain but not in resistant strains after phenamacril treatment. In addition, cyanide hydratase, mating-type protein MAT-1, putative purine nucleoside permease, plasma membrane protein yro2, etc., showed significantly co-down-regulated expression in all the strains after phenamacril treatment. Taken together, This study provides deep insights into the resistance regulation mechanism and the inhibitory effect of fungicide phenamacril and these new annotated proteins or enzymes are worth for the discovery of new fungicide targets.


Subject(s)
Drug Resistance, Fungal , Fungicides, Industrial , Fusarium , Fusarium/drug effects , Fusarium/genetics , Fungicides, Industrial/pharmacology , Drug Resistance, Fungal/genetics , Gene Expression Profiling , Transcriptome/drug effects , Gene Expression Regulation, Fungal/drug effects , Plant Diseases/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism
10.
Future Med Chem ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488019

ABSTRACT

Background: 4-Methylacetophenone is used in the preparation of starting materials, 4-methylphenacyle bromide (2) and 4-methylacetophenone thiosemicarbazole (3). Results: Several novel 2,4-disubstituted-1,3-thiazole analogues were obtained via the treatment of starting materials with 4-methylphenacyl bromide, acetyl chloride, aromatic aldehydes and bromination providing thiazole derivatives 5-8 respectively. Conclusion: Compounds 5-8 were investigated for their cytotoxic activity on MCF-7 and normal breast cells. Active compounds were found and in contrast to staurosporine, compound 8 displayed the most potent cytotoxic action that showed a strong inhibitory effect (aromatase) and (protein tyrosine kinase) enzymes, proving that the novel thiazole derivatives promoted the effective anticancer drug candidates.

11.
Heliyon ; 10(6): e27525, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38500987

ABSTRACT

Aspongopus chinensis Dallas is a traditional Chinese medicinal insect with several anticancer properties can inhibit cancer cell growth, by inhibiting cell division, autophagy and cell cycle. However, the precise therapeutics effects and mechanisms of this insect on liver cancer are still unknown. This study examined the inhibitory influence of A. chinensis on the proliferation of hepatocellular carcinoma (HCC) cells and explore the underlying mechanism using high-throughput sequencing. The results showed that A. chinensis substantially reduced the viability of Hep G2 cells. A total of 33 miRNAs were found to be upregulated, while 43 miRNAs were downregulated. Additionally, 754 mRNAs were upregulated and 863 mRNAs were downregulated. Significant enrichment of differentially expressed genes was observed in signaling pathways related to tumor cell growth, cell cycle regulation, and apoptosis. Differentially expressed miRNAs exhibited a targeting relationship with various target genes, including ARC, HSPA6, C11orf86, and others. Hence, cell cycle and apoptosis were identified by flow cytometry. These findings indicate that A. chinensis impeded cell cycle advancement, halted the cell cycle in the G0/G1 and S stages, and stimulated apoptosis. Finally, mouse experiments confirmed that A. chinensis significantly inhibits tumor growth in vivo. Therefore, our findings indicate that A. chinensis has a notable suppressive impact on the proliferation of HCC cells. The potential mechanism of action could involve the regulation of mRNA expression via miRNA, ultimately leading to cell cycle arrest and apoptosis. The results offer a scientific foundation for the advancement and application of A. chinensis in the management of HCC.

12.
Front Microbiol ; 15: 1280333, 2024.
Article in English | MEDLINE | ID: mdl-38533328

ABSTRACT

Seemingly barren heavy-metal-polluted vanadium (V) and titanium (Ti) magnetite mine tailings contain various functional microbes, yet it is unclear whether this includes microbial resources relevant to the biological control of plant diseases. Kiwifruit brown leaf spot disease, caused by Corynespora cassiicola, can seriously reduce kiwifruit yield. To discover effective control measures for kiwifruit leaf spot, 18 bacteria strains among 136 tailing-isolated bacteria from V-Ti magnetite mine tailings were identified as inhibiting C. cassiicola by the confrontation plate method, indicating that antagonistic bacteria surviving in the V-Ti magnetite mine tailings were present at a low level. The 18 antagonistic strains could be divided into two BOX-A1R clusters. The 13 representative strains that were selected for phylogenetic tree construction based on their 16S rRNA sequences belonged to the Bacillus genus. Five predominant strains exhibited different toxin-production times and intensities, with four of them initiating toxin production at 32 h. Among them, Bacillus sp. KT-10 displayed the highest bacteriostatic rate (100%), with a 37.5% growth inhibition rate and an antagonistic band of 3.2 cm against C. cassiicola. Bacillus sp. KT10 also showed a significant inhibitory effect against the expansion speed of kiwifruit brown spots in the pot. The relative control effect was 78.48 and 83.89% at 7 days after the first and last spraying of KT-10 dilution, respectively, confirming a good effect of KT-10 on kiwifruit brown leaf spots in the field. This study demonstrated for the first time that there are some antagonistic bacteria to pathogenic C. cassiicola in V-Ti magnetite mine tailings, and Bacillus sp. KT10 was found to have a good control effect on kiwifruit brown leaf spots in pots and fields, which provided an effective biological control measurement for kiwifruit brown leaf spots.

13.
Molecules ; 29(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38474647

ABSTRACT

A chemical study of Aesculus wilsonii Rehd. (also called Suo Luo Zi) and the in vitro anti-inflammatory effects of the obtained compounds was conducted. Retrieving results through SciFinder showed that there were four unreported compounds, aeswilosides I-IV (1-4), along with fourteen known isolates (5-18). Their structures were elucidated by extensive spectroscopic methods such as UV, IR, NMR, [α]D, and MS spectra, as well as acid hydrolysis. Among the known ones, compounds 5, 6, 8-10, and 12-16 were obtained from the Aesculus genus for the first time; compounds 7, 11, 17, and 18 were first identified from this plant. The NMR data of 5 and 18 were reported first. The effects of 1-18 on the release of nitric oxide (NO) from lipopolysaccharide (LPS)-induced RAW264.7 cells were determined. The results showed that at concentrations of 10, 25, and 50 µM, the novel compounds, aeswilosides I (1) and IV (4), along with the known ones, 1-(2-methylbutyryl)phloroglucinyl-glucopyranoside (10) and pisuminic acid (15), displayed significant inhibitory effects on NO production in a concentration-dependent manner. It is worth mentioning that compound 10 showed the best NO inhibitory effect with a relative NO production of 88.1%, which was close to that of the positive drug dexamethasone. The Elisa experiment suggested that compounds 1, 4, 10, and 15 suppressed the release of TNF-α and IL-1ß as well. In conclusion, this study enriches the spectra of compounds with potential anti-inflammatory effects in A. wilsonii and provides new references for the discovery of anti-inflammatory lead compounds, but further mechanistic research is still needed.


Subject(s)
Aesculus , Mice , Animals , Aesculus/chemistry , Anti-Inflammatory Agents/pharmacology , RAW 264.7 Cells , Tumor Necrosis Factor-alpha , Seeds/chemistry , Lipopolysaccharides/pharmacology , Nitric Oxide/analysis
14.
Biomed Pharmacother ; 172: 116259, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38359488

ABSTRACT

Gastric cancer is a highly metastatic malignant tumor with high morbidity and mortality globally. Recent studies reported that sulfonamide derivatives such as indisulam exhibited inhibitory effects on the viability and migration of cancer cells. However, multiple clinical trials revealed that indisulam did not significantly prevent cancer progression due to metastasis and drug resistance. Therefore, it is necessary to discover new potent derivatives to explore alternative therapeutic strategies. Here, we synthesize multiple indisulam derivatives and examine their inhibitory effects on the viability and migration of gastric cancer cells. Among them, compounds SR-3-65 and WXM-1-170 exhibit better inhibitory effects on the migration of gastric cancer cells than indisulam. Mechanistically, we discover that they could attenuate the PI3K/AKT/GSK-3ß/ß-catenin signaling pathway and lead to the suppression of epithelial-to-mesenchymal transition (EMT)-related transcription factors. The influence of SR-3-65 on the migration of gastric cancer cells is blocked by the PI3K inhibitor LY294002 while SR-3-65 and WXM-1-170 reverse the effect of PI3K activator 740 Y-P on the migration of gastric cancer cells. Molecular docking and molecular dynamics simulation further confirm that PI3K is the target of SR-3-65. Our study unveils a novel mechanism by which SR-3-65 and WXM-1-170 inhibit the migration of gastric cancer cells. Together with the previous discovery, we reveal that subtle structural change in indisulam results in a striking switch on the molecular targets and their associated signaling pathways for the inhibition of the migration of gastric cancer cells. These findings might provide informative insights for the development of targeted therapy for gastric cancer.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Phosphatidylinositol 3-Kinases/metabolism , Glycogen Synthase Kinase 3 beta , Molecular Docking Simulation , Sulfonamides
15.
J Food Sci ; 89(1): 684-700, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38010752

ABSTRACT

Date palm (Phoenix dactylifera L.) is an important commercial crop extensively consumed as a staple food and has been applied in many ethnomedical systems. Fruit vinegar is a preservative, condiment, and beverage with a spectrum of health benefits. Studies about the preparation, chemical profiles, and bioactivities of date fruit vinegar (DFV) are fundamental requirements for industrialization production. This study focused on the lab-scaled producing conditions, chemical profiles of DFV, and its bioactivities in vitro. According to the results, a date wine containing 9.75% methanol was obtained by yeast fermenting the enzyme-hydrolyzed date juice with 23.11% ± 0.39% of total sugar content. The optimized acidic fermentation conditions were an inoculation amount of 0.02%, a fermentation temperature of 31.14°C, and an initial alcohol content of 7.78%. Total acidity and total phenolic contents of the DFV were 7.74% ± 0.29% and 1.44 mg gallic acid equivalent/mL, respectively. In total, 32 organic acids were quantitated in the unaged DFV, with acetic, L-malic, and oxoglutaric acids as the predominant compounds. A total of 930 volatiles were identified in the DFV, including 186 esters, 177 terpenoids, and 148 heterocyclic compounds. There are 18 phenolic acids presented in the DFV. In addition, 42 flavonoids were quantitated in the DFV, including catechin, taxifolin, and cynaroside. The results of free radical scavenging activities and reducing power demonstrated that the DFV displayed good antioxidant properties. The DFV also acted well on angiotensin-converting enzyme 2 inhibition. These results suggest that the DFV can be industrially developed as a dietary supplement.


Subject(s)
Antioxidants , Phoeniceae , Antioxidants/chemistry , Acetic Acid/analysis , Angiotensin-Converting Enzyme 2/analysis , Flavonoids/analysis , Fruit/chemistry
16.
J Ethnopharmacol ; 321: 117488, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38008277

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The emergence of antibiotic-resistant bacteria has rendered it more challenging to treat bacterial pneumonia. Traditional Chinese medicine (TCM) has superior efficacy in the treatment of pneumonia, and it has the unique advantage of antibacterial resistance against multi-drug resistant (MDR) bacteria, but the medication rule and pharmacological mechanism of its antibacterial activity are not clear. AIM OF THE STUDY: This study aims to reveal Chinese medication patterns in treating bacterial pneumonia to select bioactive constituents in core herbs, predict their pharmacological mechanisms and further explore their antibacterial ability against clinically isolated MDR Klebsiella pneumoniae (KP) and their antibacterial mechanisms. MATERIALS AND METHODS: The high-frequency medicinal herbs to treat lung diseases were first screened from Pharmacopoeia of the People's Republic of China (ChP.), and then bioactive compounds in core herbs and targets for compounds and disease were collected. Potential targets, signaling pathways, and drugs' core components were determined by constructing protein-protein interaction network, enrichment analysis and "component-target-pathway-disease" network were mapped by Cytoscape 3.8.2, and the potential therapeutic value of selected core components was verified by comparing the disease targets in the GEO database with the herbal component targets in the ITCM database. The clinically isolated KP were screened by drug sensitivity tests with meropenem (MEM), polymyxin E (PE), and tigecycline and biofilm-forming assay; broth microdilution, chessboard methods and biofilm morphology and permeability experiments were employed to determine the antibacterial, bactericidal and biofilm inhibition ability of selected bioactive constituents alone and in combination with antibiotics; The mechanism of bioactive components on quorum sensing (QS) genes LuxS and LuxR was predicted by molecular docking and tested by RT-PCR. RESULTS: The 13 core Chinese medicines were obtained by mining ChP., and 615 potential targets of core herbal medicine were screened, and the PI3K-Akt signaling pathway might play crucial roles in the therapeutic process. In-vitro experiments revealed that the selected core compounds, including forsythoside B, baicalin, baicalein, and forsythin, all have antibacterial activity, in which baicalein had the strongest ability and a synergistic effect in combination with MEM or PE. Their synergy exhibited a stronger effect on biofilms of MDR KP, inhibiting biofilm formation, disrupting formed biofilms, and removing the residual structures of dead bacteria. Baicalein was predicted to have stable binding capacity to LuxS and LuxR genes by molecular docking, and RT-PCR results verified that the combination of baicalein with MEM or PE was effective in inhibiting the expression of QS genes (LuxS and LuxR) and consequently suppressing biofilm formation. CONCLUSION: The core Chinese herbal medicine in the ChP. to treat lung diseases has a multi-component, multi-target, and multi-pathway synergy to improve bacterial pneumonia. Experimental studies have confirmed that the bioactive compound baicalein was able to combat MDR KP alone and synergistic with MEM or PE, inhibited and disrupted biofilms via regulating LuxS and LuxR genes, and further disturbed quorum sensing system to promote the therapeutic efficacy, which provides a new pathway and rationale for treating MDR KP-induced bacterial pneumonia.


Subject(s)
Drugs, Chinese Herbal , Lung Diseases , Pneumonia, Bacterial , Humans , Klebsiella pneumoniae , Medicine, Chinese Traditional , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Meropenem/pharmacology , Trans-Activators , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
17.
Int J Mol Sci ; 24(21)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37958953

ABSTRACT

Transmissible gastroenteritis virus (TGEV) is an important swine enteric coronavirus causing viral diarrhea in pigs of all ages. Currently, the development of antiviral agents targeting host proteins to combat viral infection has received great attention. The heat shock protein 90 (HSP90) is a critical host factor and has important regulatory effects on the infection of various viruses. However, its roles in porcine coronavirus infection remain unclear. In this study, the effect of HSP90 on TGEV infection was evaluated. In addition, the influence of its inhibitor VER-82576 on proinflammatory cytokine (IL-6, IL-12, TNF-α, CXCL10, and CXCL11) production induced by TGEV infection was further analyzed. The results showed that the knockdown of HSP90AB1 and HSP90 inhibitor VER-82576 treatment resulted in a reduction in TGEV M gene mRNA levels, the N protein level, and virus titers in a dose-dependent manner, while the knockdown of HSP90AA1 and KW-2478 treatment had no significant effect on TGEV infection. A time-of-addition assay indicated that the inhibitory effect of VER-82576 on TGEV infection mainly occurred at the early stage of viral replication. Moreover, the TGEV-induced upregulation of proinflammatory cytokine (IL-6, IL-12, TNF-α, CXCL10, and CXCL11) expression was significantly inhibited by VER-82576. In summary, these findings indicated that HSP90AB1 is a host factor enhancing TGEV infection, and the HSP90 inhibitor VER-82576 could reduce TGEV infection and proinflammatory cytokine production, providing a new perspective for TGEV antiviral drug target design.


Subject(s)
Gastroenteritis, Transmissible, of Swine , Transmissible gastroenteritis virus , Swine , Animals , Transmissible gastroenteritis virus/genetics , Gastroenteritis, Transmissible, of Swine/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/pharmacology , Interleukin-6/pharmacology , Cytokines/genetics , Cytokines/pharmacology , Interleukin-12/pharmacology
18.
J Appl Microbiol ; 134(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37960923

ABSTRACT

AIMS: This study aimed to investigate the inhibitory effect of tannic acid (TA) on the growth of Apiospora arundinis and 3-Nitropropionic acid (3-NPA) production. METHODS AND RESULTS: To investigate the antifungal mechanism, the effects of TA on the hypha growth, electrical conductivity, hypha morphology, defense-related enzymes, and 3-NPA production of A. arundinis were studied. TA concentrations of 640 and 1280 µg ml-1 exhibited strong antifungal activity against A. arundinis. The results of scanning electron microscopy and transmission electron microscopy showed that the hypha of the A. arundinis was severely deformed after TA treatment, and the cell membrane was blurred and thin, vacuoles were obviously shrunken and smaller, and most of the organelles were decomposed into irregular fragments. The increased electrical conductivity and malondialdehyde content indicated that TA caused peroxidation of unsaturated fatty acids and damaged the structure of the cell membrane. The decrease of intracellular ATPase and succinate dehydrogenase content indicated that TA damaged the function of mitochondria, and participated in the inhibition of respiratory metabolism. In addition, TA significantly reduced 3-NPA production and completely inhibited 3-NPA production at 640 and 1280 µg ml-1. CONCLUSION: TA effectively inhibited both growth of A. arundinis in vitro and 3-NPA production.


Subject(s)
Antifungal Agents , Mitochondria , Antifungal Agents/pharmacology , Propionates/pharmacology
19.
J Biomol Struct Dyn ; : 1-7, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37975333

ABSTRACT

Sulfate polysaccharides can inhibit DNA digestion in simulated gastric juice in vitro, which is important for regulating dietary nucleic acids metabolism, but the mechanism of inhibition is unclear. This study used dextran sulfate (DS) with different sulfate groups and molecular weights to explore the effect of DS on DNA digestion. Molecular interactions between DS and DNA were investigated by biolayer interferometry (BLI), isothermal titration calorimetry (ITC) and molecular dynamics simulations. Results indicated that DS with higher molecular weight and sulfate group content showed stronger inhibitory effect of DNA digestion. ITC results showed that the combined Kd value of DNA and DS was about 2.53 mM. The main reason for inhibition of DNA digestion is that the formation of hydrogen bonds between the sulfate group of DS and DNA bases hinders the binding of DNA to pepsin. This finding will facilitate new strategies for nucleic acid metabolism and oral drug delivery.Communicated by Ramaswamy H. Sarma.

20.
Protein Pept Lett ; 30(11): 930-940, 2023.
Article in English | MEDLINE | ID: mdl-37870056

ABSTRACT

BACKGROUND: Increasingly convincing evidence has revealed that circular RNAs (circRNAs) are critical regulatory components of hepatocellular carcinoma (HCC) genesis. However, the expression of circRNAs in HCC and the relevance of circRNAs to HCC progression remain largely unexplained. METHODS: qRT-PCR or western blotting was utilized to confirm circ_0001687, miR-140-3p, and Forkhead Box q1 (FOXQ1) levels in HCC tissues or cells. Cell proliferation ability was evaluated via CCK-8 and colony formation assay. The correlation of circ_0001687 or FOXQ1 and miR-140- 3p was determined using dual luciferase reporter assay. Nude mice xenograft tumor model was constructed to verify the effect of circ_0001687 on tumor growth. RESULTS: Circ_0001687 was elevated in HCC. Function assays and the nude mice xenograft tumor model indicated that circ_0001687 acts as a promoting gene in HCC to regulate the proliferation of the tumor cell and foster tumor growth. Further mechanistic exploration revealed that the tumor growth-promoting mechanism of circ_0001687 relied on blocking the inhibitory effect of miR-140- 3p on FOXQ1 and activating FOXQ1 expression. CONCLUSION: This research indicated the role of circ_0001687/miR-140-3p/FOXQ1 network in regulating HCC development. These may provide new insights into the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Animals , Mice , Humans , Carcinoma, Hepatocellular/genetics , RNA, Competitive Endogenous , Mice, Nude , RNA, Circular/genetics , Liver Neoplasms/genetics , Cell Proliferation , Disease Models, Animal , MicroRNAs/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Forkhead Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...