Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
Int J Biol Macromol ; 275(Pt 1): 133523, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38945336

ABSTRACT

Human pancreatic lipase (hPL) is a vital digestive enzyme responsible for breaking down dietary fats in humans, inhibiting hPL is a feasible strategy for preventing and treating obesity. This study aims to investigate the structure-activity relationships (SARs) of flavonoids as hPL inhibitors, and to find potent hPL inhibitors from natural and synthetic flavonoids. In this work, the anti-hPL effects of forty-nine structurally diverse naturally occurring flavonoids were assessed and the SARs were summarized. The results demonstrated that the pyrogallol group on the A ring was a key moiety for hPL inhibition. Subsequently, a series of baicalein derivatives were synthesized, while 4'-amino baicalein (ABA) and 4'-pyrrolidine baicalein (PBA) were identified as novel potent hPL inhibitors (IC50 < 1 µM). Further investigations showed that scutellarein, ABA and PBA potently inhibited hPL in a non-competitive manner (Ki < 1 µM). Among all tested flavonoids, PBA showed the most potent anti-hPL effect in vitro, while this agent also exhibited favorable safety profiles, unique tissue distribution (high exposure level to intestinal system but low exposure levels to deep organs) and impressive in vivo effects for lowering blood triglyceride levels in mice. Collectively, this work uncovers the SARs of flavonoids against hPL, while a newly synthetic flavonoid (PBA) emerges as a potent hPL inhibitor with favorable safety profiles and impressive anti-hPL effects in vivo.

2.
Mar Drugs ; 22(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38786597

ABSTRACT

Abnormal melanogenesis can lead to hyperpigmentation. Tyrosinase (TYR), a key rate-limiting enzyme in melanin production, is an important therapeutic target for these disorders. We investigated the TYR inhibitory activity of hydrolysates extracted from the muscle tissue of Takifugu flavidus (TFMH). We used computer-aided virtual screening to identify a novel peptide that potently inhibited melanin synthesis, simulated its binding mode to TYR, and evaluated functional efficacy in vitro and in vivo. TFMH inhibited the diphenolase activities of mTYR, reducing TYR substrate binding activity and effectively inhibiting melanin synthesis. TFMH indirectly reduced cAMP response element-binding protein phosphorylation in vitro by downregulating melanocortin 1 receptor expression, thereby inhibiting expression of the microphthalmia-associated transcription factor, further decreasing TYR, tyrosinase related protein 1, and dopachrome tautomerase expression and ultimately impeding melanin synthesis. In zebrafish, TFMH significantly reduced black spot formation. TFMH (200 µg/mL) decreased zebrafish TYR activity by 43% and melanin content by 52%. Molecular dynamics simulations over 100 ns revealed that the FGFRSP (T-6) peptide stably binds mushroom TYR via hydrogen bonds and ionic interactions. T-6 (400 µmol/L) reduced melanin content in B16F10 melanoma cells by 71% and TYR activity by 79%. In zebrafish, T-6 (200 µmol/L) inhibited melanin production by 64%. TFMH and T-6 exhibit good potential for the development of natural skin-whitening cosmetic products.


Subject(s)
Melanins , Melanoma, Experimental , Monophenol Monooxygenase , Takifugu , Zebrafish , Animals , Melanins/biosynthesis , Takifugu/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Mice , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Cell Line, Tumor , Microphthalmia-Associated Transcription Factor/metabolism , Muscles/drug effects , Muscles/metabolism , Intramolecular Oxidoreductases/metabolism , Receptor, Melanocortin, Type 1/metabolism , Molecular Dynamics Simulation , Cyclic AMP Response Element-Binding Protein/metabolism
3.
J Colloid Interface Sci ; 667: 723-730, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38641462

ABSTRACT

HYPOTHESIS: Graphene quantum dots (GQDs) with various functional groups are hypothesized to inhibit the α-synuclein (αS) dimerization, a crucial step in Parkinson's disease pathogenesis. The potential of differently functionalized GQDs is systematically explored. EXPERIMENTS: All-atom replica-exchange molecular dynamics simulations (accumulating to 75.6 µs) in explicit water were performed to study the dimerization of the αS non-amyloid component region and the influence of GQDs modified with various functional groups. Conformation ensemble, binding behavior, and free energy analysis were conducted. FINDINGS: All studied GQDs inhibit ß-sheet and backbone hydrogen bond formation in αS dimers, leading to looser oligomeric conformations. Charged GQDs severely impede the growth of extended ß-sheets by providing extra contact surface. GQD binding primarily disrupts αS inter-peptide interactions through π-π stacking, CH-π interactions, and for charged GQDs, additionally through salt-bridge and hydrogen bonding interactions. GQD-COO- showed the most optimal inhibitory effect, binding mode, and intensity, which holds promise for the development of nanomedicines targeting amyloid aggregation in neurodegenerative diseases.


Subject(s)
Graphite , Molecular Dynamics Simulation , Quantum Dots , alpha-Synuclein , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , alpha-Synuclein/antagonists & inhibitors , Graphite/chemistry , Hydrogen Bonding , Protein Multimerization , Quantum Dots/chemistry
4.
Int J Biol Macromol ; 268(Pt 1): 131773, 2024 May.
Article in English | MEDLINE | ID: mdl-38657930

ABSTRACT

The antigenicity of ß-lactoglobulin (ß-LG) can be influenced by pH values and reduced by epigallocatechin-3-gallate (EGCG). However, a detailed mechanism concerning EGCG decreasing the antigenicity of ß-LG at different pH levels lacks clarity. Here, we explore the inhibition mechanism of EGCG on the antigenicity of ß-LG at pH 6.2, 7.4 and 8.2 using enzyme-linked immunosorbent assay, multi-spectroscopy, mass spectrometry and molecular simulations. The results of Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) elucidate that the noncovalent binding of EGCG with ß-LG induces variations in the secondary structure and conformations of ß-LG. Moreover, EGCG inhibits the antigenicity of ß-LG the most at pH 7.4 (98.30 %), followed by pH 6.2 (73.18 %) and pH 8.2 (36.24 %). The inhibitory difference is attributed to the disparity in the number of epitopes involved in the interacting regions of EGCG and ß-LG. Our findings suggest that manipulating pH conditions may enhance the effectiveness of antigenic inhibitors, with the potential for further application in the food industry.


Subject(s)
Catechin , Lactoglobulins , Lactoglobulins/chemistry , Lactoglobulins/immunology , Catechin/analogs & derivatives , Catechin/chemistry , Catechin/pharmacology , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Protein Structure, Secondary , Circular Dichroism , Spectroscopy, Fourier Transform Infrared/methods , Molecular Docking Simulation , Antigens/immunology , Antigens/chemistry
5.
Molecules ; 29(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38542966

ABSTRACT

Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is a pivotal immune checkpoint receptor, playing a crucial role in modulating T-cell activation. In this study, we delved into the underlying mechanism by which a common mutation, G199R, in the cytoplasmic domain of CTLA-4 impacts its inhibitory function. Utilizing nuclear magnetic resonance (NMR) spectroscopy and biochemical techniques, we mapped the conformational changes induced by this mutation and investigated its role in CTLA-4 activity. Our findings reveal that this mutation leads to a distinct conformational alteration, enhancing protein-membrane interactions. Moreover, functional assays demonstrated an improved capacity of the G199R mutant to downregulate T-cell activation, underscoring its potential role in immune-related disorders. These results not only enhance our understanding of CTLA-4 regulatory mechanisms but also provide insights for targeted therapeutic strategies addressing immune dysregulation linked to CTLA-4 mutations.


Subject(s)
Cell Communication , Lymphocyte Activation , CTLA-4 Antigen/genetics , Mutation , Lymphocyte Activation/genetics
6.
J Fungi (Basel) ; 10(3)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38535181

ABSTRACT

The control of Aspergillus niger (A. niger) is of great significance for the agricultural economy and food safety. In this study, the antifungal effect and mechanism of iturin A from Bacillus amyloliquefaciens (CGMCC No. 8473) against A. niger (ATCC 16404) were investigated using biochemical analyses and proteomics. Changes in a mycelium treated with iturin A were observed using scanning electron microscopy and transmission electron microscopy, including mycelial twisting and collapse, organelle disintegration, and intracellular vacuolization. The cytomembrane integrity of A. niger was affected by iturin A, as detected by propidium iodide staining. In addition, the generation of excess reactive oxygen species, the hyperpolarization of the mitochondrial membrane potential and malondialdehyde accumulation also indicated that iturin A induced apoptosis in A. niger through the oxidative stress pathway. Proteomics results showed that 310 proteins were differentially expressed in the A. niger mycelium exposed to iturin A, including 159 upregulated proteins and 151 downregulated proteins, which were mainly associated with energy metabolism of A. niger. We propose that iturin A might inhibit the growth of A. niger by disrupting cytomembrane integrity, via oxidative stress, and by interfering with glycolysis/gluconeogenesis and the tricarboxylic acid cycle. Overall, iturin A is a promising antifungal agent that provides a rationale for controlling A. niger contamination in food.

7.
Foods ; 13(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38472885

ABSTRACT

Seedless chestnut rose (Rosa sterilis S. D. Shi, RS) is a fresh type of R. roxburghii Tratt with copious functional components in its fruit. Polysaccharides are recognized as one of the vital bioactive compounds in RS fruits, but their antioxidant and hypoglycemic properties have not been extensively explored. Hence, in this study, accelerated solvent extraction (RSP-W), citric acid (RSP-C), 5% sodium hydroxide/0.05% sodium borohydride (RSP-A), and 0.9% sodium chloride (RSP-S) solution extraction were individually utilized to obtain RS fruit polysaccharides. The physicochemical properties, structural characteristics, and biological activities were then compared. Results indicated that extraction methods had significant influences on the extraction yield, uronic acid content, monosaccharide composition, molecular weight, particle size, thermal stability, triple-helical structure, and surface morphology of RSPs apart from the major linkage bands and crystalline characteristics. The bioactivity tests showed that the RSP-S, which had the greatest amount of uronic acid and a comparatively lower molecular weight, exhibited more potent antioxidant and α-glucosidase inhibitory property. Furthermore, all RSPs inhibited α-glucosidase through a mixed-type manner and quenched their fluorescence predominantly via a static quenching mechanism, with RSP-S showing the highest binding efficiency. Our findings provide a theoretical basis for utilizing RSPs as functional ingredients in food industries.

8.
Article in English | MEDLINE | ID: mdl-38446299

ABSTRACT

A convenient synthesis of a novel 1,3,4-oxadiazole derivative, specifically known as, 2-(5-methylthiophen-2-yl)-5-(pyridin-3-yl)-1,3,4-oxadiazole (MTPO), is reported along with a comprehensive evaluation of its ability to inhibit the corrosion of mild steel (MS) in a 1 N HCl environment using weight loss, EIS, PDP, SEM, EDX, and UV-Vis spectroscopy. The investigated inhibitor expressed excellent inhibition efficiency (99.05% at 500 ppm, 298 K) with a mixed-type inhibitory mechanism as demonstrated by the PDP technique. Furthermore, MTPO followed Langmuir adsorption isotherm, which provides insights into the adsorption phenomena, demonstrating that it exhibits superior adsorption behavior on the MS surface compared. In silico investigations, using DFT computation and MD simulation complements the experimental outcomes revealing strong adsorbing attributes of the MTPO hybrid with the ω - and ω + values of 8.8882 eV and 4.4787 eV, respectively. In addition, the radial distribution function also addressed the chemisorption behavior of MTPO. This article also takes into consideration the various ways in which the inhibitor interacts with the mild steel, offering potential insights for developing strategies to mitigate metal dissolution in acidic environments.

9.
J Biomol Struct Dyn ; : 1-13, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38289727

ABSTRACT

Inhibition of α-glucosidase activity is a promising method to prevent postprandial hyperglycemia. The inhibitory effect and interaction of chrysin and diosmetin on α-glucosidase were studied in this study. The results of inhibition kinetics showed that chrysin and diosmetin reversibly inhibited α-glucosidase activity with IC50 value of 26.445 ± 1.406 µmol L-1 and 18.380 ± 1.264 µmol L-1, respectively. Further research revealed that chrysin exhibited a mixed-type inhibitory pattern against α-glucosidase, while diosmetin was noncompetitive inhibitory with Ki value of (2.6 ± 0.04) ×10-4 mol L-1. Fluorescence spectroscopy showed that both chrysin and diosmetin could quench the intrinsic fluorescence of α-glucosidase, the maximum emission wavelength of tyrosine (Tyr) and tryptophan (Trp) were not moved by chrysin, but red shifted by diosmetin. UV-Vis, fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD) measurements showed that the secondary structure and microenvironment of α-glucosidase were changed by chrysin and diosmetin. Further analysis of molecular docking showed that chrysin and diosmetin could bind with α-glucosidase and might cause the decrease of α-glucosidase activity. The results of molecular dynamics (MD) simulation showed that the stability of chrysin (or diosmetin)-α-glucosidase complex system was changed during binding process. In conclusion, chrysin and diosmetin are good α-glucosidase inhibitors.Communicated by Ramaswamy H. Sarma.

10.
Microb Pathog ; 187: 106540, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38190945

ABSTRACT

This study synthesized an antimicrobial peptide based on the bovine cathelicidin BMAP 27 sequence. It was found to have a broad spectrum of antibacterial activity, with exceptionally high activity against Salmonella. However, the antibacterial mechanism of BMAP 27 against Salmonella remains unclear. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of BMAP 27 against Salmonella enterica serovar Typhimurium were determined to be 2 µM and 4 µM, respectively. After treatment with 2 MIC of BMAP 27, the absorbance of DNA in centrifugal supernatant increased from 0.244 to 1.464, and that of protein rose from 0.174 to 0.774, respectively. BMAP 27 has compromised the cell membrane as observed through field emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM), and confirmed by the propidium iodide (PI) test. The alkaline phosphatase (AKP) enzyme activity in the supernatant of the 2 MIC treatment group was 2.15 times higher than the control group, indicating extracellular membrane damage. BMAP 27 treatment increased intracellular ROS levels as tested by dichlorofluorescein diacetate (DCFH) staining. DNA interaction analysis revealed that BMAP 27 has a binding affinity towards DNA, causing its characteristic bands to disappear and peak intensity at 260 nm to reduce. Molecular docking identified its potential binding mode with DNA. The crystal violet biofilm staining results demonstrated that BMAP 27 inhibited S. Typhimurium biofilm formation by 43.1 % and cleared mature biofilms by 53.62 %. Confocal Laser scanning electron microscopy (CLSM) observed that BMAP 27 could kill bacteria within the biofilm and dislodge bacteria from the surface of glasses. Swimming tests identified that the motor capacity of S. Typhimurium was diminished by BMAP 27. By counting the total bacteria, BMAP 27 was revealed to exert bacteriostatic effects in chilled pork and orange juice, which might provide a basis for its application in the inhibition of Salmonella.


Subject(s)
Cathelicidins , Salmonella typhimurium , Animals , Cattle , Cathelicidins/pharmacology , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Biofilms , Bacteria , DNA
11.
J Biosci Bioeng ; 137(3): 165-172, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38212152

ABSTRACT

6,7-Bis-(2-methoxyethoxy)-4(3H)-quinazolinone (BMEQ) was selected from quinazolinones for its strong tyrosinase inhibitory activity (IC50 = 160 ± 6 µM). It suppressed tyrosinase activity in a competitive way and quenched the fluorescence of the enzyme through a static mechanism. The binding of BMEQ to tyrosinase increased the hydrophobicity of the latter and facilitated non-radiative energy transfer between them. The formation of BMEQ-tyrosinase complex was driven by hydrogen bonds and hydrophobic interactions, and it loosened the basic framework structure of tyrosinase, affecting the conformation of the enzyme, and leading to a decrease in tyrosinase activity. In addition, the BMEQ postponed the oxidation of phenolics and flavonoids by inhibiting polyphenol oxidase (PPO) and peroxidase (POD), which resulted in the inhibition of the browning of fresh-cut apples. This study identified a novel tyrosinase inhibitor BMEQ and verified its potential application for improving the preservation of postharvest fruits.


Subject(s)
Malus , Monophenol Monooxygenase , Quinazolinones/pharmacology , Fruit
12.
Int J Mol Sci ; 25(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38256044

ABSTRACT

Tyrosinase is vital in fruit and vegetable browning and melanin synthesis, crucial for food preservation and pharmaceuticals. We investigated 6'-O-caffeoylarbutin's inhibition, safety, and preservation on tyrosinase. Using HPLC, we analyzed its effect on mushroom tyrosinase and confirmed reversible competitive inhibition. UV_vis and fluorescence spectroscopy revealed a stable complex formation with specific binding, causing enzyme conformational changes. Molecular docking and simulations highlighted strong binding, enabled by hydrogen bonds and hydrophobic interactions. Cellular tests showed growth reduction of A375 cells with mild HaCaT cell toxicity, indicating favorable safety. Animal experiments demonstrated slight toxicity within safe doses. Preservation trials on apple juice showcased 6'-O-caffeoylarbutin's potential in reducing browning. In essence, this study reveals intricate mechanisms and applications of 6'-O-caffeoylarbutin as an effective tyrosinase inhibitor, emphasizing its importance in food preservation and pharmaceuticals. Our research enhances understanding in this field, laying a solid foundation for future exploration.


Subject(s)
Arbutin/analogs & derivatives , Caffeic Acids , Monophenol Monooxygenase , Tea , Animals , Molecular Docking Simulation , Pharmaceutical Preparations
13.
Int J Biol Macromol ; 256(Pt 1): 128406, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38007009

ABSTRACT

Utilising bacteria to produce silver nanoparticles was highly favoured due to its ability to minimise costs and mitigate any potential negative environmental impact. Exopolysaccharides (EPS) extracted from the human gut microbe have demonstrated remarkable efficacy in combating various bacterial infections. Exopolysaccharide (EPS), a naturally occurring biomolecule found in the human gut isolate Proteus mirabilis DMTMMR-11, was characterised using analytical techniques such as Fourier transform infrared spectroscopy (FTIR), 1H-nuclear magnetic resonance, 13C-nuclear magnetic resonance (NMR), and chemical composition analysis, which confirms the presence of carbohydrates (81.03 ± 0.23), proteins (4.22 ± 1.2), uronic acid (12.1 ± 0.12), and nucleic acid content (2.44 ± 0.15) in exopolysaccharide. The one factor at a time (OFAT) and response surface methodology (RSM) - central composite design (CCD) approaches were used to optimise the production of Bio-Pm-AgNPs, leading to an increase in yield of up to 1.86 g/l. The Bio-Pm-AgNPs were then subjected to Fourier transform infrared spectroscopy (FTIR) which determines the functional groups, X-ray diffractometer confers that Bio-Pm-AgNPs are crystalline in nature, field emission-scanning electron microscopy (FE-SEM) reveals the morphology of Bio-Pm-AgNPs, energy dispersive X-ray spectroscopy (EDX) confirms the presence of elements like Ag, C and O, high-resolution transmission electron microscopy (HR-TEM) determines that the Bio-Pm-AgNPs are sphere-shaped at 75 nm. Dynamic light scattering (DLS) and zeta potential analysis were also carried out to reveal the physiological nature of Bio-Pm-AgNPs. Bio-Pm-AgNPs have a promising effect on the inhibitory mechanism of Vibrio cholerae cells at a MIC concentration of 20 µg/ml which significantly affects cellular respiration and energy metabolism through glycolysis and TCA cycles by deteriorating the enzyme responsible for ATP and NADH utilisation. The action of Bio-Pm-AgNPs reduces the purity and concentration of nucleic acids, which leads to higher DNA damage. In-vivo analysis reveals that the treatment of Bio-Pm-AgNPs decreased the colonisation of V. cholerae and improved the survival rates in C. elegans.


Subject(s)
Gastrointestinal Microbiome , Metal Nanoparticles , Vibrio cholerae , Animals , Humans , Silver/pharmacology , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Caenorhabditis elegans , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared
14.
Molecules ; 28(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38138487

ABSTRACT

Inhibition of the Embryonic Ectoderm Development (EED) subunit in Polycomb Repressive Complex 2 (PRC2) can inhibit tumor growth. In this paper, we selected six experimentally designed EED competitive Inhibitors of the triazolopyrimidine derivatives class. We investigated the difference in the binding mode of the natural substrate to the Inhibitors and the effects of differences in the parent nuclei, heads, and tails of the Inhibitors on the inhibitory capacity. The results showed that the binding free energy of this class of Inhibitors was close to or lower compared to the natural substrate, providing an energetic basis for competitive inhibition. For the Inhibitors, the presence of a strong negatively charged group at the 6-position of the parent nucleus or the 8'-position of the head would make the hydrogen atom on the head imino group prone to flip, resulting in the vertical movement of the parent nucleus, which significantly decreased the inhibitory ability. When the 6-position of the parent nucleus was a nonpolar group, the parent nucleus would move horizontally, slightly decreasing the inhibitory ability. When the 8'-position of the head was methylene, it formed an intramolecular hydrophobic interaction with the benzene ring on the tail, resulting in a significant increase in inhibition ability.


Subject(s)
Ectoderm , Molecular Dynamics Simulation , Ectoderm/metabolism , Polycomb Repressive Complex 2/chemistry , Polycomb Repressive Complex 2/metabolism
15.
Stud Health Technol Inform ; 308: 365-371, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38007761

ABSTRACT

Metabolomics has been widely used to identify changes in relevant differential metabolites. The metabolites of Saccharomyces cerevisiae cells supplemented with ferulic acid and p-coumaric acid were prepared and extracted. Untargeted metabolomics analysis of saccharomyces cerevisiae metabolites was performed. In addition, GNPS, Respect and MassBank databases were used to search and compare the information in the whole database. It was found that 100 and 92 different metabolites were significantly changed (P value < 0.05,VIP value > 1,) in Saccharomyces cerevisiae cells treated with ferulic acid and p-coumaric acid respectively. Including isothiocyanate, L-threonine, adenosine, glycerin phospholipid choline, niacinamide and palmitic acid. These metabolites with significant differences were enriched by KEGG pathway using MetPA database.


Subject(s)
Coumaric Acids , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Coumaric Acids/pharmacology , Coumaric Acids/metabolism , Metabolomics
16.
J Biomol Struct Dyn ; : 1-14, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37937774

ABSTRACT

Histone deacetylases (HDACs) have emerged as promising targets for anticancer drug development. They regulate gene expression by removing acetyl groups from lysine residues on histone tails, leading to chromatin condensation. A hydrazide-based HDAC inhibitor, N-(4-(2-Propylhydrazine-1-carbonyl)benzyl)-1H-indole-2-carboxamide (11h), has been reported to exhibit significant in vivo antitumor activity. In comparison to the lead compound N-(4-(2-Propylhydrazine-1-carbonyl)benzyl)cinnamamide (17), compound 11h demonstrates 2- to 5-fold higher HDAC inhibition and cell-based antitumor activity. However, the inhibitory mechanism of 11h remains insufficiently explored. In this study, we conducted 500 ns Gaussian Accelerated Molecular Dynamics (GaMD) simulations on Histone deacetylase 3 (HDAC3) and two complex systems (HDAC3-17 and HDAC3-11h). Our findings revealed that upon inhibitor binding, the active pocket volume of HDAC3 undergone alterations, and the movement of the L6-loop toward the active site impeded substrate entry. Moreover, we observed a destabilization of the α-helix in the aa75-89 region of HDAC3 compared to the two complex systems, indicating partial unwinding. Notably, 11h exhibited a closer proximity of its carbonyl oxygen to the active pocket's Zn2+ metal compared to 17, increasing the likelihood of coordination with the Zn2+ metal. The analysis of protein-ligand interactions highlighted a greater number of hydrogen bonds and other interactions between 11h and the receptor protein when compared to 17, underscoring the stronger binding of 11h to HDAC3. In conclusion, our study provided theoretical insights into the inhibitory mechanism of hydrazide-based HDAC inhibitors on HDAC3, thereby contributing to the development of improved drug targets for cancer therapy.Communicated by Ramaswamy H. Sarma.

17.
J Med Virol ; 95(11): e29208, 2023 11.
Article in English | MEDLINE | ID: mdl-37947293

ABSTRACT

The main proteases (Mpro ) are highly conserved cysteine-rich proteins that can be covalently modified by numerous natural and synthetic compounds. Herein, we constructed an integrative approach to efficiently discover covalent inhibitors of Mpro from complex herbal matrices. This work begins with biological screening of 60 clinically used antiviral herbal medicines, among which Lonicera japonica Flos (LJF) demonstrated the strongest anti-Mpro effect (IC50 = 37.82 µg/mL). Mass spectrometry (MS)-based chemical analysis and chemoproteomic profiling revealed that LJF extract contains at least 50 constituents, of which 22 exhibited the capability to covalently modify Mpro . We subsequently verified the anti-Mpro effects of these covalent binders. Gallic acid and quercetin were found to potently inhibit severe acute respiratory syndrome coronavirus 2 Mpro in dose- and time- dependent manners, with the IC50 values below 10 µM. The inactivation kinetics, binding affinity and binding mode of gallic acid and quercetin were further characterized by fluorescence resonance energy transfer, surface plasmon resonance, and covalent docking simulations. Overall, this study established a practical approach for efficiently discovering the covalent inhibitors of Mpro from herbal medicines by integrating target-based high-throughput screening and MS-based assays, which would greatly facilitate the discovery of key antiviral constituents from medicinal plants.


Subject(s)
COVID-19 , Plants, Medicinal , Humans , SARS-CoV-2 , High-Throughput Screening Assays , Quercetin/pharmacology , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Plant Extracts/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Gallic Acid/pharmacology , Molecular Docking Simulation
18.
J Agric Food Chem ; 71(46): 17723-17732, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37938806

ABSTRACT

Ustilaginoidea virens is a destructive phytopathogenic fungus that causes false smut disease in rice. In this study, the natural product 2,4-di-tert-butylphenol (2,4-DTBP) was found to be an environmentally friendly and effective agent for the first time, which exhibited strong antifungal activity against U. virens, with an EC50 value of 0.087 mmol/L. The scanning electron microscopy, fluorescence staining, and biochemical assays indicated that 2,4-DTBP could destroy the cell wall, cell membrane, and cellular redox homeostasis of U. virens, ultimately resulting in fungal cell death. Through the transcriptomic analysis, a total of 353 genes were significantly upregulated and 367 genes were significantly downregulated, focusing on the spindle microtubule assembly, cell wall and membrane, redox homeostasis, mycotoxin biosynthesis, and intracellular metabolism. These results enhanced the understanding of the antifungal activity and action mechanisms of 2,4-DTBP against U. virens, supporting it to be a potential antifungal agent for the control of false smut disease.


Subject(s)
Hypocreales , Oryza , Antifungal Agents/pharmacology , Hypocreales/genetics , Phenols/pharmacology , Oryza/genetics , Plant Diseases/microbiology
19.
Food Res Int ; 173(Pt 2): 113412, 2023 11.
Article in English | MEDLINE | ID: mdl-37803752

ABSTRACT

Lotus seedpod oligomeric procyanidins (LSOPC) are potent inhibitors of advanced glycation end products (AGEs), whose gastrointestinal susceptibility to degradation limits their use in vivo. In this study, carboxymethyl chitosan-lotus seedpod oligomeric procyanidin nanoparticles (CMC-LSOPC NPs) were constructed with a binding ratio of 1:6.51. CMC-LSOPC NPs significantly inhibited the release of AGEs from glycated casein (G-CS) during digestion, increasing the inhibition rate by 25.76% in the gastric phase and by 14.33% in the intestinal phase compared with LSOPC alone. To further investigate the inhibition mechanism, fluorescence microscopy, scanning electron microscopy and FTIR were used to find that CMC-LSOPC NPs could form cohesions to encapsulate G-CS in the gastric phase and hinder G-CS hydrolysis. In the intestinal phase, LSOPC was targeted for release and bound to trypsin through hydrophobic interactions and hydrogen bonding, resulting in protein peptide chain rearrangement, changes in secondary structure and significant reduction in trypsin activity. In addition, CMC-LSOPC NPs increased the antioxidant capacity of digestive fluid and could reduce the oxidative stress in the gastrointestinal tract caused by the release of AGEs. It's the first time that CMC-LSOPC NPs were constructed to enhance the stability of LSOPC during digestion and explain the mechanism by which CMC-LSOPC NPs inhibit the release of AGEs from G-CS in both stomach and intestine. This finding will present a novel approach for reducing AGEs during gastrointestinal digestion.


Subject(s)
Chitosan , Lotus , Nanoparticles , Proanthocyanidins , Dietary Advanced Glycation End Products , Caseins/analysis , Proanthocyanidins/analysis , Lotus/chemistry , Chitosan/chemistry , Trypsin/analysis , Digestion , Nanoparticles/chemistry , Seeds/chemistry
20.
Fitoterapia ; 171: 105669, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37683877

ABSTRACT

Obesity has been recognized as a key risk factor for multiple metabolic disorders, including diabetes, cardiovascular diseases and many types of cancer. Herbal medicines have been frequently used for preventing and treating obesity in many countries, but in most cases, the key anti-obesity constituents in herbs and their anti-obesity mechanisms are poorly understood. This study demonstrated a case study for uncovering the anti-obesity constituents in an anti-obesity herbal medicine (Ginkgo biloba extract) and deciphering their synergistic effects via targeting human pancreatic lipase (hPL). Following screening the anti-hPL effects of eighty herbal medicines, Ginkgo biloba extract (GBE50) was found with the most potent anti-hPL activity. Global chemical profiling of herbal constituents coupling with hPL inhibition assay revealed that the bioflavonoids and several flavonoids in GBE50 were key anti-hPL constituents. Among all tested thirty-eight constituents, sciadopitysin, bilobetin, quercetin, isoginkgetin, and ginkgetin showed potent anti-hPL effects (IC50 values <2.5 µM). Inhibition kinetic analyses suggested that sciadopitysin, bilobetin, quercetin, isoginkgetin, and ginkgetin acted as non-competitive inhibitors of hPL, with the Ki values were <2 µM. Docking simulations revealed that four bioflavonoids (sciadopitysin, bilobetin, isoginkgetin, and ginkgetin) could tightly bind on hPL at cavity 2, which it is different from the binding cavity of quercetin on hPL. Further investigations demonstrated that the combinations of quercetin and one bioflavonoid-type hPL inhibitor (sciadopitysin or bilobetin) showed synergistic anti-hPL effects, suggesting that the multi-components in GBE50 may generate more potent anti-hPL effect. Collectively, our findings uncovered the anti-obesity constituents in GBE50, and explored their anti-hPL mechanisms as well as synergistic effects at molecular levels, which will be very helpful for further understanding the anti-obesity mechanisms of Ginkgo biloba.


Subject(s)
Flavones , Plants, Medicinal , Humans , Quercetin/pharmacology , Molecular Structure , Plant Extracts/pharmacology , Plant Extracts/chemistry , Ginkgo biloba/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry , Obesity/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...