Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.967
Filter
1.
Proc Natl Acad Sci U S A ; 121(29): e2402126121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38980902

ABSTRACT

Upon sensing viral RNA, mammalian RIG-I-like receptors (RLRs) activate downstream signals using caspase activation and recruitment domains (CARDs), which ultimately promote transcriptional immune responses that have been well studied. In contrast, the downstream signaling mechanisms for invertebrate RLRs are much less clear. For example, the Caenorhabditis elegans RLR DRH-1 lacks annotated CARDs and up-regulates the distinct output of RNA interference. Here, we found that similar to mammal RLRs, DRH-1 signals through two tandem CARDs (2CARD) to induce a transcriptional immune response. Expression of DRH-1(2CARD) alone in the intestine was sufficient to induce immune gene expression, increase viral resistance, and promote thermotolerance, a phenotype previously associated with immune activation in C. elegans. We also found that DRH-1 is required in the intestine to induce immune gene expression, and we demonstrate subcellular colocalization of DRH-1 puncta with double-stranded RNA inside the cytoplasm of intestinal cells upon viral infection. Altogether, our results reveal mechanistic and spatial insights into antiviral signaling in C. elegans, highlighting unexpected parallels in RLR signaling between C. elegans and mammals.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Signal Transduction , Animals , Caenorhabditis elegans/immunology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/immunology , Signal Transduction/immunology , Intestines/immunology , Intestines/virology , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/immunology , Immunity, Innate , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , RNA, Viral/immunology , RNA, Viral/metabolism , RNA, Viral/genetics
2.
Pulm Circ ; 14(3): e12379, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962184

ABSTRACT

Acute kidney injury (AKI) causes distant organ dysfunction through yet unknown mechanisms, leading to multiorgan failure and death. The lungs are one of the most common extrarenal organs affected by AKI, and combined lung and kidney injury has a mortality as high as 60%-80%. One mechanism that has been implicated in lung injury after AKI involves molecules released from injured kidney cells (DAMPs, or damage-associated molecular patterns) that promote a noninfectious inflammatory response by binding to pattern recognition receptors (PRRs) constitutively expressed on the pulmonary endothelium. To date there are limited data investigating the role of PRRs and DAMPs in the pulmonary endothelial response to AKI. Understanding these mechanisms holds great promise for therapeutics aimed at ameliorating the devastating effects of AKI. In this study, we stimulate primary human microvascular endothelial cells with DAMPs derived from injured primary renal tubular epithelial cells (RTECs) as an ex-vivo model of lung injury following AKI. We show that DAMPs derived from injured RTECs cause activation of Toll-Like Receptor and NOD-Like Receptor signaling pathways as well as increase human primary pulmonary microvascular endothelial cell (HMVEC) cytokine production, cell signaling activation, and permeability. We further show that cytokine production in HMVECs in response to DAMPs derived from RTECs is reduced by the inhibition of NOD1 and NOD2, which may have implications for future therapeutics. This paper adds to our understanding of PRR expression and function in pulmonary HMVECs and provides a foundation for future work aimed at developing therapeutic strategies to prevent lung injury following AKI.

3.
Proc Natl Acad Sci U S A ; 121(29): e2320709121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38985760

ABSTRACT

The Type-I interferon (IFN-I) response is the major outcome of stimulator of interferon genes (STING) activation in innate cells. STING is more abundantly expressed in adaptive T cells; nevertheless, its intrinsic function in T cells remains unclear. Intriguingly, we previously demonstrated that STING activation in T cells activates widespread IFN-independent activities, which stands in contrast to the well-known STING-mediated IFN response. Here, we have identified that STING activation induces regulatory T cells (Tregs) differentiation independently of IRF3 and IFN. Specifically, the translocation of STING from the endoplasmic reticulum to the Golgi activates mitogen-activated protein kinase (MAPK) activity, which subsequently triggers transcription factor cAMP response element-binding protein (CREB) activation. The activation of the STING-MAPK-CREB signaling pathway induces the expression of many cytokine genes, including interleukin-2 (IL-2) and transforming growth factor-beta 2 (TGF-ß2), to promote the Treg differentiation. Genetic knockdown of MAPK p38 or pharmacological inhibition of MAPK p38 or CREB markedly inhibits STING-mediated Treg differentiation. Administration of the STING agonist also promotes Treg differentiation in mice. In the Trex1-/- autoimmune disease mouse model, we demonstrate that intrinsic STING activation in CD4+ T cells can drive Treg differentiation, potentially counterbalancing the autoimmunity associated with Trex1 deficiency. Thus, STING-MAPK-CREB represents an IFN-independent signaling axis of STING that may have profound effects on T cell effector function and adaptive immunity.


Subject(s)
Cell Differentiation , Cyclic AMP Response Element-Binding Protein , Membrane Proteins , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Mice , Signal Transduction , MAP Kinase Signaling System , Mice, Inbred C57BL , Protein Transport , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Mice, Knockout , p38 Mitogen-Activated Protein Kinases/metabolism
4.
Transpl Int ; 37: 12995, 2024.
Article in English | MEDLINE | ID: mdl-39010891

ABSTRACT

Antibody-mediated rejection (ABMR) remains one of the main causes of long-term graft failure after kidney transplantation, despite the development of powerful immunosuppressive therapy. A detailed understanding of the complex interaction between recipient-derived immune cells and the allograft is therefore essential. Until recently, ABMR mechanisms were thought to be solely caused by adaptive immunity, namely, by anti-human leucocyte antigen (HLA) donor-specific antibody. However recent reports support other and/or additive mechanisms, designating monocytes/macrophages as innate immune contributors of ABMR histological lesions. In particular, in mouse models of experimental allograft rejection, monocytes/macrophages are readily able to discriminate non-self via paired immunoglobulin receptors (PIRs) and thus accelerate rejection. The human orthologs of PIRs are leukocyte immunoglobulin-like receptors (LILRs). Among those, LILRB3 has recently been reported as a potential binder of HLA class I molecules, shedding new light on LILRB3 potential as a myeloid mediator of allograft rejection. In this issue, we review the current data on the role of LILRB3 and discuss the potential mechanisms of its biological functions.


Subject(s)
Graft Rejection , Kidney Transplantation , Receptors, Immunologic , Graft Rejection/immunology , Humans , Kidney Transplantation/adverse effects , Animals , Receptors, Immunologic/immunology , Mice , HLA Antigens/immunology , Monocytes/immunology , Antigens, CD/immunology , Macrophages/immunology
5.
Precis Clin Med ; 7(2): pbae013, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38946731

ABSTRACT

Background: Myeloid differentiation factor 88 (MyD88) is the core adaptor for Toll-like receptors defending against microbial invasion and initiating a downstream immune response during microbiota-host interaction. However, the role of MyD88 in the pathogenesis of inflammatory bowel disease is controversial. This study aims to investigate the impact of MyD88 on intestinal inflammation and the underlying mechanism. Methods: MyD88 knockout (MyD88-/-) mice and the MyD88 inhibitor (TJ-M2010-5) were used to investigate the impact of MyD88 on acute dextran sodium sulfate (DSS)-induced colitis. Disease activity index, colon length, histological score, and inflammatory cytokines were examined to evaluate the severity of colitis. RNA transcriptome analysis and 16S rDNA sequencing were used to detect the potential mechanism. Results: In an acute DSS-colitis model, the severity of colitis was not alleviated in MyD88-/- mice and TJ-M2010-5-treated mice, despite significantly lower levels of NF-κB activation being exhibited compared to control mice. Meanwhile, 16S rDNA sequencing and RNA transcriptome analysis revealed a higher abundance of intestinal Proteobacteria and an up-regulation of the nucleotide oligomerization domain-like receptors (NLRs) signaling pathway in colitis mice following MyD88 suppression. Further blockade of the NLRs signaling pathway or elimination of gut microbiota with broad-spectrum antibiotics in DSS-induced colitis mice treated with TJ-M2010-5 ameliorated the disease severity, which was not improved solely by MyD88 inhibition. After treatment with broad-spectrum antibiotics, downregulation of the NLR signaling pathway was observed. Conclusion: Our study suggests that the suppression of MyD88 might be associated with unfavorable changes in the composition of gut microbiota, leading to NLR-mediated immune activation and intestinal inflammation.

6.
J Infect Public Health ; 17(8): 102489, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964175

ABSTRACT

BACKGROUND: There are numerous human genes associated with viral infections, and their identification in specific populations can provide suitable therapeutic targets for modulating the host immune system response and better understanding the viral pathogenic mechanisms. Many antiviral signaling pathways, including Type I interferon and NF-κB, are regulated by TRIM proteins. Therefore, the identification of TRIM proteins involved in COVID-19 infection can play a significant role in understanding the innate immune response to this virus. METHODS: In this study, the expression of TRIM25 gene was evaluated in a blood sample of 330 patients admitted to the hospital (142 patients with severe disease and 188 patients with mild disease) as well as in 160 healthy individuals. The relationship between its expression and the severity of COVID-19 disease was assessed and compared among the study groups by quantitative Real-time PCR technique. The statistical analysis of the results demonstrated a significant reduction in the expression of TRIM25 in the group of patients with severe infection compared to those with mild infection. Furthermore, the impact of increased expression of TRIM25 gene in HEK-293 T cell culture was investigated on the replication of attenuated SARS-CoV-2 virus. RESULTS: The results of Real-time PCR, Western blot for the viral nucleocapsid gene of virus, and CCID50 test indicated a decrease in virus replication in these cells. The findings of this research indicated that the reduced expression of the TRIM25 gene was associated with increased disease severity of COVID-19 in individuals. Additionally, the results suggested the overexpression of TRIM25 gene can impress the replication of attenuated SARS-CoV-2 and the induction of beta-interferon. CONCLUSION: TRIM25 plays a critical role in controlling viral replication through its direct interaction with the virus and its involvement in inducing interferon during the early stages of infection. This makes TRIM25 a promising target for potential therapeutic interventions.

7.
Cells ; 13(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38995008

ABSTRACT

Accumulating evidence indicates that inflammatory and immunologic processes play a significant role in the development and progression of glomerular diseases. Podocytes, the terminally differentiated epithelial cells, are crucial for maintaining the integrity of the glomerular filtration barrier. Once injured, podocytes cannot regenerate, leading to progressive proteinuric glomerular diseases. However, emerging evidence suggests that podocytes not only maintain the glomerular filtration barrier and are important targets of immune responses but also exhibit many features of immune-like cells, where they are involved in the modulation of the activity of innate and adaptive immunity. This dual role of podocytes may lead to the discovery and development of new therapeutic targets for treating glomerular diseases. This review aims to provide an overview of the innate immunity mechanisms involved in podocyte injury and the progression of proteinuric glomerular diseases.


Subject(s)
Immunity, Innate , Podocytes , Podocytes/immunology , Podocytes/pathology , Humans , Animals , Kidney Diseases/immunology , Kidney Diseases/pathology , Kidney Glomerulus/pathology , Kidney Glomerulus/immunology
8.
Biomaterials ; 311: 122703, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39002516

ABSTRACT

An obstacle in current tumor immunotherapies lies in the challenge of achieving sustained and tumor-targeting T cell immunity, impeded by the limited antigen processing and cross-presentation of tumor antigens. Here, we propose a hydrogel-based multicellular immune factory within the body that autonomously converts tumor cells into an antitumor vaccine. Within the body, the scaffold, formed by a calcium-containing chitosan hydrogel complex (ChitoCa) entraps tumor cells and attracts immune cells to establish a durable and multicellular microenvironment. Within this context, tumor cells are completely eliminated by antigen-presenting cells (APCs) and processed for cross-antigen presentation. The regulatory mechanism relies on the Mincle receptor, a cell-phagocytosis-inducing C-type lectin receptor specifically activated on ChitoCa-recruited APCs, which serves as a recognition synapse, facilitating a tenfold increase in tumor cell engulfment and subsequent elimination. The ChitoCa-induced tumor cell processing further promotes the cross-presentation of tumor antigens to prime protective CD8+ T cell responses. Therefore, the ChitoCa treatment establishes an immune niche within the tumor microenvironment, resulting in effective tumor regression either used alone or in combination with other immunotherapies. This hydrogel-induced immune factory establishes a functional organ-like multicellular colony for tumor-specific immunotherapy, paving the way for innovative strategies in cancer treatment.

9.
Life Sci ; : 122895, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986896

ABSTRACT

AIMS: To investigate the SARS-CoV-2 Spike protein (Spk)-induced inflammatory response and its downmodulation by diminazene aceturate (DIZE). MATERIALS AND METHODS: Through inducing Spk inflammation in murine models, leukocyte migration to the peritoneum, levels of myeloperoxidase (MPO), malondialdehyde (MDA), rolling and adhesion of mesenteric leukocytes, and vascular permeability were investigated. Extracellular DNA traps (DETs) induced by Spk and the production of IL-6 and TNF-α were analyzed using human neutrophils, monocytes, and macrophages. In silico assays assessed the molecular interaction between DIZE and molecules related to leukocyte migration and DETs induction. KEY FINDINGS: Spk triggered acute inflammation, demonstrated by increasing leukocyte migration. Oxidative stress was evidenced by elevated levels of MPO and MDA in the peritoneal liquid. DIZE attenuated cell migration, rolling, and leukocyte adhesion, improved vascular barrier function, mitigated DETs, and reduced the production of Spk-induced pro-inflammatory cytokines. Computational studies supported our findings, showing the molecular interaction of DIZE with targets such as ß2 integrin, PI3K, and PAD2 due to its intermolecular coupling. SIGNIFICANCE: Our results outline a novel role of DIZE as a potential therapeutic agent for mitigating Spk-induced inflammation.

10.
Front Immunol ; 15: 1398955, 2024.
Article in English | MEDLINE | ID: mdl-38994355

ABSTRACT

Introduction: STAT1a is an essential signal transduction protein involved in the interferon pathway, playing a vital role in IFN-alpha/beta and gamma signaling. Limited information is available about the STAT protein in fish, particularly in Indian major carps (IMC). This study aimed to identify and characterize the STAT1a protein in Labeo rohita (LrSTAT1a). Methods: The full-length CDS of LrSTAT1a transcript was identified and sequenced. Phylogenetic analyses were performed based on the nucleotide sequences. The in-vivo immune stimulant poly I: C was used to treat various tissues, and the expression of LrSTAT1a was determined using quantitative real-time polymerase chain reaction (qRT-PCR). A 3D model of the STAT1a protein was generated using close structure homologs available in the database and checked using molecular dynamics (MD) simulations. Results: The full-length CDS of Labeo rohita STAT1a (LrSTAT1a) transcript consisted of 3238 bp that encoded a polypeptide of 721 amino acids sequence was identified. Phylogenetic analyses were performed based on the nucleotide sequences. Based on our findings, other vertebrates share a high degree of conservation with STAT1a. Additionally, we report that the in vivo immune stimulant poly I: C treatment of various tissues resulted in the expression of LrSTAT1a as determined by quantitative real-time polymerase chain reaction (qRT-PCR). In the current investigation, treatment with poly I: C dramatically increased the expression of LrSTAT1a in nearly every organ and tissue, with the brain, muscle, kidney, and intestine showing the highest levels of expression compared to the control. We made a 3D model of the STAT1a protein by using close structure homologs that were already available in the database. The model was then checked using molecular dynamics (MD) simulations. Consistent with previous research, the MD study highlighted the significance of the STAT1a protein, which is responsible for Src homology 2 (SH2) recognition. An important H-bonding that successfully retains SH2 inside the STAT1a binding cavity was determined to be formed by the conserved residues SER107, GLN530, SER583, LYS584, MET103, and ALA106. Discussion: This study provides molecular insights into the STAT1a protein in Rohu (Labeo rohita) and highlights the potential role of STAT1a in the innate immune response in fish. The high degree of conservation of STAT1a among other vertebrates suggests its crucial role in the immune response. The in-vivo immune stimulation results indicate that STAT1a is involved in the immune response in various tissues, with the brain, muscle, kidney, and intestine being the most responsive. The 3D model and MD study provide further evidence of the significance of STAT1a in the immune response, specifically in SH2 recognition. Further research is necessary to understand the specific mechanisms involved in the IFN pathway and the role of STAT1a in the immune response of IMC.


Subject(s)
Fish Proteins , Phylogeny , Poly I-C , STAT1 Transcription Factor , Animals , Poly I-C/immunology , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , src Homology Domains , Protein Binding , Amino Acid Sequence , Molecular Dynamics Simulation , Carps/immunology , Carps/genetics , Carps/metabolism , Gene Expression Profiling , Cyprinidae/immunology , Cyprinidae/genetics , Cyprinidae/metabolism
12.
Mol Pharm ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959154

ABSTRACT

The antitumor strategies based on innate immunity activation have become favored by researchers in recent years. In particular, strategies targeting antiphagocytic signaling blockade to enhance phagocytosis have been widely reported. For example, the addition of prophagocytic signals such as calreticulin could make the strategy significantly more effective. In this study, an antitumor strategy that combines photodynamic therapy (PDT) with CD47 blockade has been reported. This approach promotes the maturation of dendritic cells and the presentation of tumor antigens by PDT-mediated tumor immunogenic cell death, as well as the enhancement of cytotoxic T lymphocyte infiltration in tumor areas and the phagocytic activity of phagocytes. Furthermore, the downregulation and blockage of CD47 protein could further promote phagocytic activity, strengthen the innate immune system, and ultimately elevate the antitumor efficacy and inhibit tumor metastasis.

14.
Trends Parasitol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955655

ABSTRACT

Two studies defined how tuft cell acetylcholine promotes parasite expulsion. Billip et al. demonstrated that acetylcholine increases water secretion, to promote the 'weep' response. Ndjim et al. found that tuft cell acetylcholine has a direct effect on worm fecundity. Both processes are only effective in the remodeled epithelium when the rare tuft cells have become abundant.

15.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000140

ABSTRACT

Renal involvement is an important cause of morbidity and mortality in systemic lupus erythematosus (SLE). The present study included patients with recently diagnosed Class III and Class IV lupus nephritis (LN) treated by Rheumatology who, upon the detection of alterations in their kidney function, were referred to Nephrology for the joint management of both medical specialties. The purpose of this study was to compare the plasma expression of Toll-Like Receptor 7 (TLR7) and TLR9 in healthy control (HC) subjects and newly diagnosed Class III and Class IV LN patients with 12-month follow-ups. The plasma expression of TLR7 and TLR9 proteins was determined by the ELISA method. A significant increase in the expression of TLR7 protein was found in Class III LN in the basal determination compared to the expression in the HC (p = 0.002) and at 12 months of follow-up (p = 0.03) vs. HC. The expression of TLR9 showed a behavior opposite to that of TLR7. TLR9 showed decreased protein expression in LN Class III patients' baseline and final measurements. The result was similar in the basal and final determinations of LN Class IV compared to the expression in HC. A significant decrease in SLEDAI -2K was observed at 12 months of follow-up in patients in Class III (p = 0.01) and Class IV (p = 0.0001) of LN. Complement C3 levels improved significantly at 12-month follow-up in Class IV patients (p = 0.0001). Complement C4 levels decreased significantly at 12-month follow-up in LN Class III compared to baseline (p = 0.01). Anti-DNA antibodies decreased significantly at 12 months of follow-up in Class IV LN (p = 0.01). A significant increase in proteinuria was found at 12 months of follow-up in Class III LN, compared to the baseline determination (p = 0.02). In LN Class IV, proteinuria decreased at 12 months of follow-up compared to baseline (p = 0.0001). Albuminuria decreased at 12 months of follow-up in LN Class IV (p = 0.006). Class IV LN, albuminuria also decreased at 12 months of follow-up (p = 0.009). Hematuria persisted in all patients and the glomerular filtration rate did not change. Three Class IV patients died before 12 months of follow-up from various causes. In conclusion, although the rheumatologic data appeared to improve, the renal function data remained inconsistent. Decreased expression of TLR9 and increased expression of TLR7 could be useful in the early diagnosis of Class III and Class IV LN is correct.


Subject(s)
Lupus Nephritis , Toll-Like Receptor 7 , Toll-Like Receptor 9 , Humans , Lupus Nephritis/diagnosis , Lupus Nephritis/blood , Lupus Nephritis/metabolism , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , Toll-Like Receptor 9/metabolism , Female , Adult , Male , Follow-Up Studies , Middle Aged , Case-Control Studies , Young Adult
16.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000143

ABSTRACT

Infections, such as that by the multiresistant opportunistic bacterial pathogen Pseudomonas aeruginosa, may pose a serious health risk, especially on vulnerable patient populations. The nematode Caenorhabditis elegans provides a simple organismal model to investigate both pathogenic mechanisms and the emerging role of innate immunity in host protection. Here, we review the virulence and infection strategies of P. aeruginosa and host defenses of C. elegans. We summarize the recognition mechanisms of patterns of pathogenesis, including novel pathogen-associated molecular patterns and surveillance immunity of translation, mitochondria, and lysosome-related organelles. We also review the regulation of antimicrobial and behavioral defenses by the worm's neuroendocrine system. We focus on how discoveries in this rich field align with well-characterized evolutionary conserved protective pathways, as well as on potential crossovers to human pathogenesis and innate immune responses.


Subject(s)
Caenorhabditis elegans , Host-Pathogen Interactions , Immunity, Innate , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Caenorhabditis elegans/microbiology , Caenorhabditis elegans/immunology , Pseudomonas aeruginosa/pathogenicity , Host-Pathogen Interactions/immunology , Pseudomonas Infections/microbiology , Pseudomonas Infections/immunology , Humans , Disease Models, Animal , Virulence
17.
Sci Rep ; 14(1): 16274, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009614

ABSTRACT

The α-helical antimicrobial peptide Kn2-7 enhances the activation of mouse macrophage-like RAW264.7 induced by DNA containing unmethylated cytosine-guanine motifs (CpG DNA). This enhancement is related to increased cellular uptake of DNA by Kn2-7, but the relevant properties of Kn2-7 are unknown. Physicochemical property analysis revealed that Kn2-7 has high amphipathicity. In contrast, the α-helical antimicrobial peptide L5, which increases the cellular uptake of CpG DNA but does not enhance CpG DNA-induced activation, has low amphipathicity. Kn2-7 derivatives with decreased amphipathicity but the same amino acid composition as Kn2-7 did not enhance CpG DNA-induced activation. On the other hand, L5 derivatives with high amphipathicity but the same amino acid composition as L5 enhanced CpG DNA-induced activation. Cellular uptake of DNA was not increased by the L5 derivatives, indicating that high amphipathicity does not affect DNA uptake. Furthermore, α-helical peptides with reversed sequences relative to the Kn2-7 and L5 derivatives with high amphipathicity were synthesized. The reversed-sequence peptides, which had the same amphipathicity but different amino acid sequences from their counterparts, enhanced CpG DNA-induced activation. Taken together, these observations indicate that the high amphipathicity of α-helical peptides enhances the CpG DNA-induced activation of RAW264.7.


Subject(s)
CpG Islands , Macrophages , Animals , Mice , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/metabolism , DNA/chemistry , DNA/metabolism , Macrophage Activation/drug effects , Protein Conformation, alpha-Helical , DNA Methylation/drug effects , Peptides/chemistry , Peptides/pharmacology , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry
18.
Mol Cell ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39019044

ABSTRACT

Mitochondria are essential regulators of innate immunity. They generate long mitochondrial double-stranded RNAs (mt-dsRNAs) and release them into the cytosol to trigger an immune response under pathological stress conditions. Yet the regulation of these self-immunogenic RNAs remains largely unknown. Here, we employ CRISPR screening on mitochondrial RNA (mtRNA)-binding proteins and identify NOP2/Sun RNA methyltransferase 4 (NSUN4) as a key regulator of mt-dsRNA expression in human cells. We find that NSUN4 induces 5-methylcytosine (m5C) modification on mtRNAs, especially on the termini of light-strand long noncoding RNAs. These m5C-modified RNAs are recognized by complement C1q-binding protein (C1QBP), which recruits polyribonucleotide nucleotidyltransferase to facilitate RNA turnover. Suppression of NSUN4 or C1QBP results in increased mt-dsRNA expression, while C1QBP deficiency also leads to increased cytosolic mt-dsRNAs and subsequent immune activation. Collectively, our study unveils the mechanism underlying the selective degradation of light-strand mtRNAs and establishes a molecular mark for mtRNA decay and cytosolic release.

19.
Adv Exp Med Biol ; 1459: 159-195, 2024.
Article in English | MEDLINE | ID: mdl-39017844

ABSTRACT

NFE2-related factor 2 (NRF2) is a master transcription factor (TF) that coordinates key cellular homeostatic processes including antioxidative responses, autophagy, proteostasis, and metabolism. The emerging evidence underscores its significant role in modulating inflammatory and immune processes. This chapter delves into the role of NRF2 in myeloid cell differentiation and function and its implication in myeloid cell-driven diseases. In macrophages, NRF2 modulates cytokine production, phagocytosis, pathogen clearance, and metabolic adaptations. In dendritic cells (DCs), it affects maturation, cytokine production, and antigen presentation capabilities, while in neutrophils, NRF2 is involved in activation, migration, cytokine production, and NETosis. The discussion extends to how NRF2's regulatory actions pertain to a wide array of diseases, such as sepsis, various infectious diseases, cancer, wound healing, atherosclerosis, hemolytic conditions, pulmonary disorders, hemorrhagic events, and autoimmune diseases. The activation of NRF2 typically reduces inflammation, thereby modifying disease outcomes. This highlights the therapeutic potential of NRF2 modulation in treating myeloid cell-driven pathologies.


Subject(s)
Cell Differentiation , Myeloid Cells , NF-E2-Related Factor 2 , NF-E2-Related Factor 2/metabolism , Humans , Animals , Myeloid Cells/metabolism , Dendritic Cells/metabolism , Dendritic Cells/immunology , Macrophages/metabolism , Phagocytosis , Signal Transduction , Inflammation/metabolism , Inflammation/pathology , Neutrophils/metabolism , Neutrophils/immunology , Cytokines/metabolism
20.
Virus Genes ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017941

ABSTRACT

Canid alphaherpesvirus 1 (CHV-1) infection can cause spontaneous abortions in pregnant dams, and in young puppies, fatal systemic infections are common. MicroRNAs (miRNAs) affect viral infection by binding to messenger RNAs, and inhibiting expression of host and/or viral genes. We conducted deep sequencing of small RNAs in CHV-1-infected and mock-infected Madin-Darby Canine Kidney (MDCK) epithelial cells, and detected sequences corresponding to 282 cellular miRNAs. Of these, 18 were significantly upregulated at 12 h post-infection, most of which were encoded on the X chromosome. We next quantified the mature forms of several of the miRNAs using stem loop RT-qPCR. Our results revealed a discordance between the levels of small RNAs corresponding to canine miRNAs, and levels of the corresponding mature miRNAs, which suggests a block in miRNA biogenesis in infected cells. Nevertheless, we identified several mature miRNAs that exhibited a statistically significant increase upon infection. These included cfa-miR-8908b, a miRNA of unknown function, and cfa-miR-146a, homologs of which target innate immune pathways and are known to play a role in other viral infections. Interestingly, ontology analysis predicted that cfa-miR-8908b targets factors involved in the ubiquitin-like protein conjugation pathway and peroxisome biogenesis among other cellular functions. This is the first study to evaluate changes in miRNA levels upon CHV-1 infection. Based on our findings, we developed a model whereby CHV-1 infection results in changes in levels of a limited number of cellular miRNAs that target elements of the host immune response, which may provide clues regarding novel therapeutic targets.

SELECTION OF CITATIONS
SEARCH DETAIL
...