Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Foods ; 13(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38790802

ABSTRACT

This study investigated the meat quality, expression of myosin heavy chain (MyHC) and metabolism-related genes, ribonucleotides and fatty acids in Longissimus thoracis of Thai native pigs (TNPs) from different geographical regions (GR). Forty-one 9-10-month-old castrated TNPs (BW 60 kg), consisting of 18, 11 and 12 pigs from Northern (NT), Southern (ST) and Northeastern (NE) regions, respectively, were slaughtered. GR did not affect (p > 0.05) the expression of MyHC, phosphoglycerate mutase 1, cytosolic glycerol-3-phosphate dehydrogenase, triosephosphate isomerase 1 and adipocyte fatty acid binding protein genes. The trend of MyHC was MyHC IIx > MyHC IIb > MyHC IIa > MyHC I. The NT loin had higher (p < 0.05) glycogen, C18:2n6, C20:4n6 and cooking loss, lower inosine, inosine monophosphate and hypoxanthine and a shorter sarcomere length than the ST and NE loins. The ST loin had a lower (p < 0.05) a* compared to other loins. Principal component analysis established significant relationships between the TNP and specific meat quality traits. This finding suggests that GR affected the meat quality, ribonucleotides and selected fatty acids in TNPs. These results provide relevant information that can be used to optimize the use of Thai native pork.

2.
Antioxidants (Basel) ; 13(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38671934

ABSTRACT

An 88-day feeding trial was conducted to evaluate the effects of dietary inosine 5'-monophosphate (5'-IMP) on the growth performance and salinity and oxidative stress resistance in the juvenile gibel carp CAS III (Carassius auratus gibelio; initial body weight: 7.48 g). Four isonitrogenous and isoenergetic diets containing exogenous 5'-IMP were formulated. P1, P2, P3 and P4 were diets containing 5'-IMP at four concentrations (0, 1, 2 and 4 g kg-1). The four diets were randomly allotted to triplicate tanks in a recirculating system. After the feeding trial, six fish per tank were netted randomly and placed into 12‱ saline water to test their response to salinity stress. The results indicated that the feed conversion rate was enhanced by dietary supplementation with 5'-IMP. The appetite, plasma neuropeptide Y level and feeding rate of the P3 group were lower than those in the control treatment group. Dietary supplementation with 5'-IMP improved the osmoregulatory adaptation of gibel carp under acute salinity stress. Six hours after the salinity stress treatment, in the dietary 5'-IMP treatment group, the plasma cortisol and K+ concentrations were lower and the Na+/K+-ATPase activity was greater than that in the control group. Dietary supplementation with 5'-IMP promoted the expression of the glucocorticoid receptors NKA-α1b and NKCC and retarded the expression of Hsp70 in P4-treated gill filaments and kidneys. Dietary supplementation with 5'-IMP resulted in a stable oxidative-stress-resistant phenotype characterized by increased levels of cellular antioxidants, including SOD, catalase, glutathione peroxidase, glutathione reductase and MPO. The above results of the current study demonstrate that supplementation of 5'-IMP can promote feed utilization and have positive influences on the salinity and oxidative stress resistance of gibel carp.

3.
Article in English | MEDLINE | ID: mdl-38452850

ABSTRACT

Declining flesh quality has drawn considerable attention in the farmed large yellow croaker (LYC; Larimichthys crocea) industry. Inosine monophosphate (IMP) is the primary flavor substance in aquatic animals. Adenosine monophosphate deaminase 1 (AMPD1) plays a critical role in IMP formation by catalyzing the deamination of AMP to IMP in the purine nucleotide cycle. To further evaluate the correlation between ampd1 mRNA expression levels and IMP content in the LYC muscle tissue, the relevant open reading frame (ORF) of L. crocea (Lcampd1) was cloned, and the IMP content and Lcampd1 mRNA expression in the muscles of LYCs of different sizes were examined. The ORF cDNA of Lcampd1 was 2211 bp in length and encoded a polypeptide of 736 amino acids (AAs). The deduced protein, LcAMPD1, possesses conserved AMPD active regions (SLSTDDP) and shows high homology with AMPD proteins of other teleost fishes. The genomic DNA sequence of Lcampd1 exhibits a high degree of evolutionary conservation in terms of structural organization among species. Phylogenetic analysis of the deduced AA sequence revealed that teleost fish and mammalian AMPD1 were separate from each other and formed a cluster with AMPD3, suggesting that AMPD1 and AMPD3 arose by duplication of a common primordial gene. In healthy LYC, Lcampd1 mRNA was expressed only in the muscle tissue. The IMP content in the muscle of LYCs with different average body weights was measured by high-performance liquid chromatography; the results showed that the IMP content in the muscle of LYCs with greater body weight was significantly higher than that in LYC with lower body weight. Moreover, a similar trend in Lcampd1 expression was observed in these muscle tissues. The Pearson correlation analysis further showed that the Lcampd1 mRNA expression was positively correlated with IMP content in the muscles of different-sized LYCs. These results suggest the potential function of Lcampd1 in determining the IMP content in LYC and provide a theoretical basis for flesh quality improvement, as well as a scientific basis for the development of the molecular breeding of LYC.


Subject(s)
Inosine Monophosphate , Perciformes , Animals , Base Sequence , Amino Acid Sequence , Inosine Monophosphate/metabolism , Phylogeny , Perciformes/genetics , Perciformes/metabolism , Adenosine Monophosphate/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Body Weight/genetics , Fish Proteins/metabolism , Mammals/metabolism
4.
Cell Rep ; 43(2): 113821, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38368611

ABSTRACT

The titer of viruses that persist and propagate in their insect vector must be high enough for transmission yet not harm the insect, but the mechanism of this dynamic balance is unclear. Here, expression of inosine monophosphate dehydrogenase (LsIMPDH), a rate-limiting enzyme for guanosine triphosphate (GTP) synthesis, is shown to be downregulated by increased levels of N6-methyladenosine (m6A) on LsIMPDH mRNA in rice stripe virus (RSV)-infected small brown planthoppers (SBPHs; Laodelphax striatellus), the RSV vector, which decreases GTP content, thus limiting viral proliferation. Moreover, planthopper methyltransferase-like protein 3 (LsMETTL3) and m6A reader protein LsYTHDF3 are found to catalyze and recognize the m6A on LsIMPDH mRNA, respectively, and cooperate in destabilizing LsIMPDH transcripts. Co-silencing assays show that negative regulation of viral proliferation by both LsMETTL3 and LsYTHDF3 is partially dependent on LsIMPDH. This distinct mechanism limits virus replication in an insect vector, providing a potential gene target to block viral transmission.


Subject(s)
Adenosine/analogs & derivatives , Insect Vectors , Animals , Guanosine Triphosphate , RNA, Messenger/genetics , Cell Proliferation
5.
Anim Microbiome ; 6(1): 1, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184648

ABSTRACT

BACKGROUND: Different types of exogenous protease supplements have a positive impact on animal performance, but their effects on the nutritional value of meat and the gut microbial community of broilers have not been extensively studied. The objective of this investigation was to determine the impact of supplementation with a novel alkaline protease derived from Bacillus licheniformis (at doses of 0, 100, 200, 300, and 400 g/t) on the fatty acid and amino acid profiles, inosine monophosphate (IMP) levels, total volatile basic nitrogen (TVB-N) content found within the breast muscle, as well as the impact on the cecal microbiota and metabolites. RESULTS: Supplementation with 200-400 g/t of the novel protease resulted in a significant elevation in the concentration of essential amino acids (P < 0.001), flavor amino acids (P < 0.001), and total protein (P = 0.013) within the breast muscle. Results derived from the 16S rRNA sequencing and untargeted metabolomics analysis of the cecal content revealed that the novel protease reshaped the cecal microbial and metabolite profiles. In particular, it led to increased relative abundances of Bacteroides, Lactobacillus, Alistipes, and Eubacterium, while simultaneously causing a reduction in the metabolites of D-lactic acid and malonic acid. Moreover, correlation analyses unveiled significant relationships between distinct microbes and metabolites with the contents of IMP, fatty acids, and amino acids in the broiler's breast muscle. CONCLUSION: In summary, the novel protease regulated the intestinal microbial community and metabolism, thereby inducing changes in the compositions of fatty acids and amino acids profiles, as well as IMP levels in broiler meat. These alterations significantly contributed to the enhancement of the nutritional value and flavor of the meat.

6.
Neurobiol Aging ; 134: 43-56, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37992544

ABSTRACT

We explored mechanisms involved in the age-dependent degeneration of human substantia nigra (SN) dopamine (DA) neurons. Owing to its important metabolic functions in post-mitotic neurons, we investigated the developmental and age-associated changes in the purine biosynthetic enzyme inosine monophosphate dehydrogenase (IMPDH). Tissue microarrays prepared from post-mortem samples of SN from 85 neurologically intact participants humans spanning the age spectrum were immunostained for IMPDH combined with other proteins. SN DA neurons contained two types of IMPDH structures: cytoplasmic IMPDH filaments and intranuclear IMPDH inclusions. The former were not age-restricted and may represent functional units involved in sustaining purine nucleotide supply in these highly metabolically active cells. The latter showed age-associated changes, including crystallization, features reminiscent of pathological inclusion bodies, and spatial associations with Marinesco bodies; structures previously associated with SN neuron dysfunction and death. We postulate dichotomous roles for these two subcellularly distinct IMPDH structures and propose a nucleus-based model for a novel mechanism of SN senescence that is independent of previously known neurodegeneration-associated proteins.


Subject(s)
Inosine Monophosphate , Intranuclear Inclusion Bodies , Humans , Inosine Monophosphate/metabolism , Substantia Nigra/metabolism , Aging , Dopaminergic Neurons/metabolism , Oxidoreductases/metabolism
7.
J Agric Food Chem ; 71(41): 15224-15236, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37811818

ABSTRACT

Saccharomyces cerevisiae has emerged as a preferred source for industrial production of ribonucleic acids (RNAs) and their derivatives, which find wide applications in the food and pharmaceutical sectors. In this study, we employed a modified RNA polymerase I-mediated green fluorescent protein expression system, previously developed by our team, to screen and identify an industrial S. cerevisiae strain with an impressive 18.2% increase in the RNA content. Transcriptome analysis revealed heightened activity of genes and pathways associated with rRNA transcription, purine metabolism, and phosphate transport in the high nucleic acid content mutant strains. Our findings highlighted the crucial role of the transcription factor Sfp1p in enhancing the expression of two key components of the transcription initiation factor complex, Rrn7p and Rrn11p, thereby promoting rRNA synthesis. Moreover, elevated expression of 5'-inosine monophosphate dehydrogenases, regardless of the specific isoform (IMD2, 3, or 4), resulted in increased rRNA synthesis through heightened GTP levels. Additionally, exogenous phosphate application, coupled with overexpression of the phosphate transporter PHO84, led to a 61.4% boost in the RNA yield, reaching 2050.4 mg/L. This comprehensive study provides valuable insights into the mechanism of RNA synthesis and serves as a reference for augmenting RNA production in the food industry.


Subject(s)
Nucleic Acids , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , RNA/metabolism , Phosphates/metabolism , Nucleic Acids/metabolism
8.
Bioorg Med Chem Lett ; 95: 129490, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37770001

ABSTRACT

Mizoribine is a well-known immunosuppressive drug, based on a nucleoside scaffold, that targets inosine-monophosphate dehydrogenase (IMPDH). In an effort to increase its in vivo efficacy, three different types of prodrugs (a phosphoramidate prodrug, a lipophilic ester derivative and an amino acid conjugate) were prepared. Screening of these prodrugs in a rapid whole blood assay revealed that the two ester-based mizoribine prodrugs potently inhibited interleukin 2 secretion. Moreover, these prodrugs were able to prolong graft survival, when evaluated in a mouse model of cardiac allograft transplantation. Strikingly, a combination therapy of these mizoribine prodrugs with tacrolimus had a synergistic in vivo effect.

9.
Front Physiol ; 14: 1199311, 2023.
Article in English | MEDLINE | ID: mdl-37265843

ABSTRACT

The inosine monophosphate (IMP) content in chicken meat is closely related to muscle quality and is an important factor affecting meat flavor. However, the molecular regulatory mechanisms underlying the IMP-specific deposition in muscle remain unclear. This study performed transcriptome analysis of muscle tissues from different parts, feeding methods, sexes, and breeds of 180-day-old Jingyuan chickens, combined with differential expression and weighted gene co-expression network analysis (WGCNA), to identify the functional genes that regulate IMP deposition. Out of the four comparison groups, 1,775, 409, 102, and 60 differentially expressed genes (DEGs) were identified, of which PDHA2, ACSS2, PGAM1, GAPDH, PGM1, GPI, and TPI1 may be involved in the anabolic process of muscle IMP in the form of energy metabolism or amino acid metabolism. WGCNA identified 11 biofunctional modules associated with IMP deposition. The brown, midnight blue, red, and yellow modules were strongly correlated with IMP and cooking loss (p < 0.05). Functional enrichment analysis showed that glycolysis/gluconeogenesis, arginine and proline metabolism, and pyruvate metabolism, regulated by PYCR1, SMOX, and ACSS2, were necessary for muscle IMP-specific deposition. In addition, combined analyses of DEGs and four WGCNA modules identified TGIF1 and THBS1 as potential candidate genes affecting IMP deposition in muscle. This study explored the functional genes that regulate muscle development and IMP synthesis from multiple perspectives, providing an important theoretical basis for improving the meat quality and molecular breeding of Jingyuan chickens.

10.
Anim Nutr ; 13: 50-63, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37009072

ABSTRACT

Since the aquaculture industry is currently observing a deterioration in the flesh quality of farmed fish, the use of nutrients as additives to improve the flesh quality of farmed fish species is a viable strategy. The aim of this study was to investigate the effect of dietary D-ribose (RI) on the nutritional value, texture and flavour of gibel carp (Carassius auratus gibelio). Four diets were formulated containing exogenous RI at 4 gradient levels: 0 (Control), 0.15% (0.15RI), 0.30% (0.30RI) and 0.45% (0.45RI). A total of 240 fish (150 ± 0.31 g) were randomly distributed into 12 fibreglass tanks (150 L per tank). Triplicate tanks were randomly assigned to each diet. The feeding trial was carried out in an indoor recirculating aquaculture system for 60 d. After the feeding trial, the muscle and liver of gibel carp were analysed. The results showed that RI supplementation did not result in any negative impact on the growth performance and 0.30RI supplementation significantly increased the whole-body protein content compared to the control group. The contents of collagen and glycogen in muscle were enhanced by RI supplementation. The alterations in the flesh indicated that RI supplementation improved the texture of the flesh in terms of its water-holding capacity and hardness, therefore improving the taste. Dietary RI facilitated the deposition of amino acids and fatty acids in the muscle that contributed to the meaty taste and nutritional value. Furthermore, a combination of metabolomics and expression of key genes in liver and muscle revealed that 0.30RI activated the purine metabolism pathways by supplementing the substrate for nucleotide synthesis and thereby promoting the deposition of flavour substance in flesh. This study offers a new approach for providing healthy, nutritious and flavourful aquatic products.

11.
Meat Sci ; 201: 109177, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37023593

ABSTRACT

This study aimed to determine the effects of fermented mixed feed (FMF) supplementation (0%, 5% and 10%) on the intestinal microbial community and metabolism, and the compositions of volatile flavor compounds and inosine monophosphate (IMP) contents in the longissimus thoracis. In this study, 144 finishing pigs (Duroc × Berkshire × Jiaxing Black) were randomly allocated to 3 groups with 4 replicate pens per group and 12 pigs per pen. The experiment lasted 38 days after 4 days of acclimation. The 16S rRNA gene sequences and an untargeted metabolomics analysis showed FMF altered the profiles of microbes and metabolites in the colon. Heracles flash GC e-nose analysis showed that 10% FMF (treatment 3) had a greater influence on the compositions of volatile flavor compounds than 5% FMF (treatment 2). Compared to 0% FMF (treatment 1), the contents of total aldehydes, (E,E)-2,4-nonadienal, dodecanal, nonanal and 2-decenal were significantly increased by treatment 3, and treatment 3 increased IMP concentrations and gene expressions related to its synthesis. Correlations analysis showed significantly different microbes and metabolites had strong correlations with the contents of IMP and volatile flavor compounds. In conclusion, treatment 3 regulated intestinal microbial community and metabolism, that in turn altered the compositions of volatile compounds, which contributed to improving pork flavor and umami.


Subject(s)
Pork Meat , Red Meat , Animals , Metabolomics , RNA, Ribosomal, 16S/genetics , Swine
12.
Biomed Rep ; 18(3): 22, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36846616

ABSTRACT

Colorectal cancer (CRC) is the most common gastrointestinal malignancy worldwide. The poor specificity and sensitivity of the fecal occult blood test has prompted the development of CRC-related genetic markers for CRC screening and treatment. Gene expression profiles in stool specimens are effective, sensitive and clinically applicable. Herein, a novel advantage of using cells shed from the colon is presented for cost-effective CRC screening. Molecular panels were generated through a series of leave-one-out cross-validation and discriminant analyses. A logistic regression model following reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry was used to validate a specific panel for CRC prediction. The panel, consisting of ubiquitin-conjugating enzyme E2 N (UBE2N), inosine monophosphate dehydrogenase 1 (IMPDH1), dynein cytoplasmic 1 light intermediate chain 1 (DYNC1LI1) and phospholipase A and acyltransferase 2 (HRASLS2), accurately recognized patients with CRC and could thus be further investigated as a potential prognostic and predictive biomarker for CRC. UBE2N, IMPDH1 and DYNC1LI1 expression levels were upregulated and HRASLS2 expression was downregulated in CRC tissues. The predictive power of the panel was 96.6% [95% confidence interval (CI), 88.1-99.6%] sensitivity and 89.7% (95% CI, 72.6-97.8%) specificity at a predicted cut-off value at 0.540, suggesting that this four-gene panel testing of stool specimens can faithfully mirror the state of the colon. On the whole, the present study demonstrates that screening for CRC or cancer detection in stool specimens collected non-invasively does not require the inclusion of an excessive number of genes, and colonic defects can be identified via the detection of an aberrant protein in the mucosa or submucosa.

13.
Parkinsonism Relat Disord ; 107: 105294, 2023 02.
Article in English | MEDLINE | ID: mdl-36657279

ABSTRACT

The inosine monophosphate dehydrogenase gene (IMPDH2) was recently reported as a novel gene associated with autosomal dominantly inherited dystonia. We investigated 245 Taiwanese patients with molecularly unassigned isolated or combined dystonia without features of neurodevelopmental disorders and found none had pathogenic variants. Our findings suggest that IMPDH2 may not play a major role in dystonia.


Subject(s)
Dystonia , Humans , Dystonia/genetics , Asian People/genetics , IMP Dehydrogenase/genetics
14.
Front Vet Sci ; 10: 1276582, 2023.
Article in English | MEDLINE | ID: mdl-38164393

ABSTRACT

Background: Inosine monophosphate (IMP) is naturally present in poultry muscle and plays a key role in improving meat flavour. However, IMP deposition is regulated by numerous genes and complex molecular networks. In order to excavate key candidate genes that may regulate IMP synthesis, we performed proteome and metabolome analyses on the leg muscle, compared to the breast muscle control of 180-day-old Jingyuan chickens (hens), which had different IMP content. The key candidate genes identified by a differential analysis were verified to be associated with regulation of IMP-specific deposition. Results: The results showed that the differentially expressed (DE) proteins and metabolites jointly involve 14 metabolic pathways, among which the purine metabolic pathway closely related to IMP synthesis and metabolism is enriched with four DE proteins downregulated (with higher expression in breast muscles than in leg muscles), including adenylate kinase 1 (AK1), adenosine monophosphate deaminase 1 (AMPD1), pyruvate kinase muscle isoenzyme 2 (PKM2) and phosphoglucomutase 1 (PGM1), six DE metabolites, Hypoxanthine, Guanosine, L-Glutamine, AICAR, AMP and Adenylsuccinic acid. Analysis of PGM1 gene showed that the high expression of PGM1 promoted the proliferation and differentiation of myoblasts and inhibited the apoptosis of myoblasts. ELISA tests have shown that PGM1 reduced adenosine triphosphate (ATP) and IMP and uric acid (UA), while enhancing the biosynthesis of hypoxanthine (HX). In addition, up-regulation of PGM1 inhibited the expression of purine metabolism pathway related genes, and promoted the IMP de novo and salvage synthesis pathways. Conclusion: This study preliminarily explored the mechanism of action of PGM1 in regulating the growth and development of myoblasts and specific IMP deposition in Jingyuan chickens, which provided certain theoretical basis for the development and utilization of excellent traits in Jingyuan chickens.

15.
Res Pharm Sci ; 18(6): 638-647, 2023 Dec.
Article in English | MEDLINE | ID: mdl-39005562

ABSTRACT

Background and purpose: Retinitis pigmentosa (RP) accounts for 2 percent of global cases of blindness. The RP10 form of the disease results from mutations in isoform 1 of inosine 5'-monophosphate dehydrogenase (IMPDH1), the rate-limiting enzyme in the de novo purine nucleotide synthesis pathway. Retinal photoreceptors contain specific isoforms of IMPDH1 characterized by terminal extensions. Considering previously reported significantly varied kinetics among retinal isoforms, the current research aimed to investigate possible structural explanations and suitable functional sites for the pharmaceutical targeting of IMPDH1 in RP. Experimental approach: A recombinant 604-aa IMPDH1 isoform lacking the carboxyl-terminal peptide was produced and underwent proteolytic digestion with α-chymotrypsin. Dimer models of wild type and engineered 604-aa isoform were subjected to molecular dynamics simulation. Findings/Results: The IMPDH1 retinal isoform lacking C-terminal peptide was shown to tend to have more rapid proteolysis (~16% digestion in the first two minutes). Our computational data predicted the potential of the amino-terminal peptide to induce spontaneous inhibition of IMPDH1 by forming a novel helix in a GTP binding site. On the other hand, the C-terminal peptide might block the probable inhibitory role of the N-terminal extension. Conclusion and implications: According to the findings, augmenting IMPDH1 activity by suppressing its filamentation is suggested as a suitable strategy to compensate for its disrupted activity in RP. This needs specific small molecule inhibitors to target the filament assembly interface of the enzyme.

16.
Biomedicines ; 10(11)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36359401

ABSTRACT

Mycophenolic acid (MPA) is a widely used immunosuppressive agent and exerts its effect by inhibiting inosine 5'-monophosphate dehydrogenase (IMPDH), the main regulating enzyme of purine metabolism. However, significant unexplained differences in the efficacy and tolerability of MPA therapy pose a clinical challenge. Therefore, broad pharmacogenetic, pharmacokinetic, and pharmacodynamic approaches are needed to individualize MPA therapy. In this prospective cohort study including 277 renal transplant recipients, IMPDH2 rs11706052 SNP status was assessed by genetic sequencing, and plasma MPA trough levels were determined by HPLC and IMPDH enzyme activity in peripheral blood mononuclear cells (PBMCs) by liquid chromatography-mass spectrometry. Among the 277 patients, 84 were identified with episodes of biopsy-proven rejection (BPR). No association was found between rs11706052 SNP status and graft rejection (OR 1.808, and 95% CI, 0.939 to 3.479; p = 0.076). Furthermore, there was no association between MPA plasma levels and BPR (p = 0.69). However, the patients with graft rejection had a significantly higher predose IMPDH activity in PBMCs compared to the controls without rejection at the time of biopsy (110.1 ± 50.2 vs. 95.2 ± 45.4 pmol/h; p = 0.001), and relative to the baseline IMPDH activity before transplantation (p = 0.042). Our results suggest that individualization of MPA therapy, particularly through pharmacodynamic monitoring of IMPDH activity in PBMCs, has the potential to improve the clinical outcomes of transplant patients.

17.
Front Physiol ; 13: 970939, 2022.
Article in English | MEDLINE | ID: mdl-36111156

ABSTRACT

Inosine monophosphate (IMP) is the main flavoring substance in aquatic animal, and adenosine monophosphate deaminase1 (AMPD1) gene is a key gene in IMP formation. At present, the research on the mechanism of AMPD1 regulating IMP formation in aquatic animal is still blank. In this study, in order to study the mechanism of AMPD1 regulating IMP formation in fish, the full open reading frame (ORF) of AMPD1 which was 2160bp was obtained for the first time in triploid crucian carp (Carassius auratus). It encoded 719 amino acids with a molecular mass of 82.97 kDa, and the theoretical isoelectric point value was 6.31. The homology analysis showed that the homology of triploid crucian carp and diploid Carassius auratus was the highest, up to 99%. And the phylogenetic tree showed that triploid crucian carp was grouped with diploid Carassius auratus, Culter alburnus, and Danio rerio. And real-time fluorescence quantitative results showed that AMPD1 was expressed specifically in muscle of triploid crucian carp (p < 0.05). The results of detection the localization of AMPD1 in cells indicated that the AMPD1 was mainly localized in cytoplasm and cell membrane. Further, we examined the effects of glutamate which was the promotor of IMP formation on the expression of AMPD1 and the formation of IMP in vivo and in vitro experiments, the results showed that 3% glutamate and 2 mg/ml glutamate could significantly promote AMPD1 expression and IMP formation in triploid crucian carp muscle tissue and muscle cells (p < 0.05). Then we inhibited the expression of AMPD1 in vivo and in vitro experiments, we found the formation of IMP in muscle tissue and muscle cells of triploid crucian carp all were inhibited and they affected the gene expression of AMPK-mTOR signaling pathway. The all results showed that AMPD1 mediated glutamate through AMPK-mTOR signaling pathway to regulate the formation of fish IMP.

18.
Foods ; 11(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35885289

ABSTRACT

This study investigated the effects of dietary energy density in rice straw and cassava pulp fermented total mixed ration on pH, cooking loss, Warner−Bratzler shear force (WBSF), and collagen content of 2- or 14-d-aged native Thai cattle (NTC) Longissimus thoracic (LT) muscles and fatty acids and ribonucleotides of 2-d-aged LT. Eighteen yearling NTC (Bos indicus) were randomly divided into three dietary treatments (T1 = 8.9, T2 = 9.7, and T3 = 10.5 MJ ME/kg), with six bulls per treatment. The results showed that T1 had the highest WBSF (p < 0.05). However, T2 had similar WBSF to T3 (p > 0.05). With aging, cooking loss increased (p < 0.01), while WBSF decreased (p < 0.01). Insoluble and total collagen decreased with aging (p < 0.05). Dietary energy density had no effect (p > 0.05) on collagen content, ribonucleotides and most fatty acids. However, T1 had more (p < 0.05) decanoic (C10:0), vaccenic (C18:1n9t), trans-linolelaidic (C18:2n6t), eicosatrienoic (C20:3n6), and docosadienoic (C22:2) acids than T2 and T3. In terms of lowest feed cost with comparable tenderness to T2 and highest energy density, T3 may be well suited for feeding NTC. Aging for 14 days improves LT tenderness, but its cooking loss may affect yield and juiciness.

19.
Br Poult Sci ; 63(6): 821-832, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35895079

ABSTRACT

1. Inosine monophosphate (IMP), is an essential component for meat flavour and microRNAs (miRNAs) play a vital role in its post-transcriptional regulation. However, the mechanism of how miRNA expression affects muscle-specific IMP deposition is unclear.2. The following study performed transcriptome sequencing and bioinformatics analysis of breast and leg muscle, which have significantly different IMP content in Jingyuan chicken. The differential miRNA-mRNAs were screened out and correlation analysis with IMP content was performed.3. A total of 39 differentially expressed miRNAs (DE miRNAs) and 666 differentially expressed mRNAs (DE mRNAs) were identified between breast muscles and leg muscles. Using miRNA-mRNA integrated analysis, 29 miRNA-target gene pairs were obtained, composed of 13 DE miRNAs and 28 DE mRNAs. Next, purine metabolism, glycolysis/gluconeogenesis, pyruvate metabolism and the biosynthesis of amino acid pathways as necessary for muscle IMP-specific deposition were identified. The differentially expressed gene PKM2, which was significantly enriched in all four pathways, is involved in IMP anabolism in the form of energy metabolism and enzyme activity regulation. The correlation analysis suggested that the gga-miR-107-3p-KLHDC2 negative interaction may be a key regulator in IMP deposition.4. This study explores the functional mechanism of IMP-specific deposition in Jingyuan chicken muscles at the miRNA and mRNA levels and highlights multiple candidate miRNAs and mRNAs for molecular-assisted breeding.


Subject(s)
Chickens , MicroRNAs , Animals , Chickens/physiology , Inosine Monophosphate/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Gene Expression Profiling/veterinary
20.
Brain Dev ; 44(9): 645-649, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35637059

ABSTRACT

BACKGROUND: AICA (5-aminoimidazole-4-carboxamide) ribosiduria is an inborn error in purine biosynthesis caused due to biallelic pathogenic variants in the 5-aminoimidazole-4-carboxamide ribonucleotide-formyltransferase/imp cyclohydrolase (ATIC) gene located on chromosome 2q35. ATIC codes for a bifunctional enzyme, AICAR transformylase and inosine monophosphate (IMP) cyclohydrolase, which catalyse the last two steps of de novo purine synthesis. This disorder has been previously reported in only 4 cases worldwide, and herein, we report the first from India. CASE REPORT: The proband presented with global developmental delay, developmental hip dysplasia (DDH), acyanotic heart disease and nystagmoid eye movements. Whole exome sequencing (WES) identified compound heterozygous pathogenic variants in the ATIC. A novel splice site variant; c.1321-2A > G and a previously reported missense variant; c.1277A > G (p.Lys426Arg) were identified. Segregation analysis of parents showed the father to be a heterozygous carrier for the splice site variant and the mother, a heterozygous carrier for the missense variant. CONCLUSION: This case of a rare genetic disorder of purine biosynthesis of ATIC deficiency is the first case reported from India. Early diagnosis lead to early interventional therapy and genetic counselling.


Subject(s)
Hydroxymethyl and Formyl Transferases , Aminoimidazole Carboxamide/analogs & derivatives , Humans , Imidazoles , Purines , Ribonucleotides
SELECTION OF CITATIONS
SEARCH DETAIL
...