Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Insects ; 14(7)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37504627

ABSTRACT

Hermetic storage methods are effective at protecting grain against insect pests. Biotic and abiotic factors influence oxygen depletion during hermetic storage. We investigated the dual effects of temperature and initial pest infestation level on oxygen depletion during airtight storage. Glass jars filled with cowpea grain were infested (25 or 50 adult cowpea bruchids), then hermetically sealed and stored at 20, 30, or 40 °C for 30 days. Oxygen depletion, relative humidity, and temperature were monitored. Germination, grain moisture content, grain damage and weight loss, and adult emergence were assessed. Oxygen depletion varied by temperature and insect infestation level. However, 30 °C was the optimum temperature for oxygen depletion (reaching 5% or less in 10 days) regardless of insect infestation level. No changes were observed in germination and grain moisture content, minimal grain damage, or weight loss (<1%). Only at 20 °C were adult insects able to survive after 30 days and emerged 45 days post-treatment under normoxia. Therefore, hermetic storage containers should remain closed for more than 30 days to minimize re-infestation of grain in areas where average ambient temperatures rarely exceed 23 °C. Further research is needed to assess the effect of low temperatures on oxygen depletion and insect survival in hermetic storage beyond 30 days.

2.
Insects ; 14(6)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37367350

ABSTRACT

The fall webworm Hyphantria cunea (Drury) is native to North America and Mexico and has currently expanded its distribution to the temperate areas of the Northern Hemisphere including Japan. According to the data on seasonal fluctuations of this moth for 18 years collected in western-central Japan, the abundance of adults of the overwintered generation showed a negative correlation with winter temperature. We investigated survival, weight loss, and fungal infection of diapausing pupae at 3.0 (an approximate temperature of cold winter) and 7.4 °C (a temperature of mild winter). In the results, mortality was higher and weight loss was larger in pupae exposed to 7.4 °C than in those exposed to 3.0 °C. In addition, pupae that were heavier at the start of cold exposure survived longer than lighter ones. Furthermore, almost all pupae that died at 7.4 °C were infected by fungi. It has been reported that the distribution range of this moth shifts to higher latitudes. According to the experiments conducted, it has been observed that warm winters can lead to a decrease in pupae weight and an increase in fungal deaths; however, the impact of warm winters on populations in the field can be more complicated and multifaceted.

3.
Biosci. j. (Online) ; 39: e39024, 2023. ilus, graf
Article in English | LILACS | ID: biblio-1425135

ABSTRACT

Whiteflies are a severe threat to soybean production in the tropics. This study aimed to evaluate the soybean resistance level of the whitefly Bemisia tabaci in controlled and uncontrolled environments that is associated with plant age, damage intensity, and trichome density. The research was conducted under two conditions: non-sprayed (NS) and sprayed (SP). This study used 50 soybean genotypes arranged in a randomized block design with three replicates. The whitefly population was derived from natural infestations. The results showed that the highest wild population of B. tabaci occurred at 40 days after planting (DAP), i.e., 126.08 adults/plant in the NS environment and 22.57 adults/plant in the SP environment. The peak damage intensity occurred at 50 DAP, 20.71% in the NS environment, and 17.15% in the SP environment. In the NS environment, there were six resistant genotypes (including the resistant control G100H), 25 moderate, and 19 susceptible genotypes. In the SP environment, 19 genotypes were resistant, 22 genotypes were moderate, and nine genotypes were susceptible, respectively. Six soybean genotypes showed consistent resistance to B. tabaci in NS and SP environments. The low density of leaf trichomes in soybean may influence the high resistance to B. tabaci. The resistant genotypes identified in this study could be utilized in breeding programs for B. tabaci resistance.


Subject(s)
Glycine max , Plant Immunity , Hemiptera , Plant Breeding
4.
Insects ; 13(2)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35206742

ABSTRACT

Effective teaching of complex concepts relies heavily on the ability to establish relevance of topics and to engage students in a constructive dialogue. To connect students with abstract concepts and basic theory, instructors foster and facilitate an engaging teaching environment. Population modeling is a cornerstone in applied entomology. However, it is also a topic and skill set that requires both basic mathematical and biological knowledge, and it may be perceived by students as being abstract and exceedingly theoretical. As a way to introduce entomology students at both that undergraduate and graduate levels to hands-on experience with population modeling, a well-established and widely used deterministic genetic population model is presented as an interactive teaching tool. Moreover, the general model describes three genotypes (SS = homozygous susceptible, SR = heterozygous, and RR = homozygous resistant) during 30 discrete and univoltine generations under a shared population density dependence (carrying capacity). Based on user inputs for each genotype (survival, fitness cost, reproductive rate, emigration, and immigration) and an initial resistance allele frequency, model outputs related to resistance evolution are produced. User inputs related to insecticide-based pest management (pest density action threshold, crop damage rate, insecticide treatment costs, and profit potential) can also be introduced to examine and interpret the basic economic effects of different insect pest management scenarios. The proposed model of resistance evolution and basic economics of pest management relies on a large number of important simplifications, so it may only have limited ability to predict the outcomes of real-world (commercial) scenarios. However, as a teaching tool and to introduce students to a well-known and widely used genetic population model structure, the interactive teaching tool is believed to have considerable utility and relevance.

5.
Ecol Evol ; 12(12): e9668, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36619713

ABSTRACT

Senescence seems to be universal in living organisms and plays a major role in life-history strategies. Phenotypic senescence, the decline of body condition and/or performance with age, is a largely understudied component of senescence in natural insect populations, although it would be important to understand how and why insects age under natural conditions. We aimed (i) to investigate how body mass and thorax width change with age in a natural population of the univoltine Clouded Apollo butterfly (Parnassius mnemosyne, Lepidoptera: Papilionidae) and (ii) to assess the relationship of this change with sex and wing length. We studied a population between 2014 and 2020 using mark-recapture during the whole flight period each year. Repeated measurements of body mass and thorax width and single measurements of wing length were performed on marked individuals. We analyzed body mass and thorax width change with age (days since marking), wing length, and the date of the first capture. Both body mass and thorax width declined nonlinearly with age. Individuals appearing earlier in the flight period had significantly higher initial body mass and thorax width and their body mass declined faster than later ones. Initial body sizes of females were higher, but males' body sizes decreased slower. Initial thorax width showed higher annual variation than body mass. To our best knowledge, this is the first study that revealed phenotypic senescence in a natural butterfly population, using in vivo measurements. We found sexual differences in the rate of phenotypic senescence. Despite the annual variation of initial body sizes, the rate of senescence did not vary considerably across the years.

6.
J Sci Food Agric ; 102(1): 223-232, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34086293

ABSTRACT

BACKGROUND: Tribolium castaneum (Herbst) is one of the most important secondary storage pests of all types of flour and flour-based products. The present study focuses on the fragment producing behaviour of T. castaneum in wheat flour during storage and its effect on the quality parameters and defect action level (DAL) of fragments. The US Food and Drug Administration has set a DAL of 75 insect fragments in 50 g of flour. Box-Behnken design was used to optimize the storage conditions (storage period in days and temperature in degrees Celsius) and insect density (numbers) to keep insect fragments below the DAL. RESULTS: Optimization results indicated that the presence of single number of adult of T. castaneum is enough to cross the DAL of insect fragments within a storage period of 21 days at a storage temperature of 30 °C. Insect fragments cause perceptible changes in the quality of wheat flour. When sample attained DAL of T. castaneum fragments in wheat flour,the various quality parameters were analysed in that moisture content of wheat flour was 10.8 ± 0.26%, total colour change was 2.052 (ΔE value), T. castaneum progeny emergence was 19.66 ± 1, uric acid was 1.8 ± 0.16 g kg-1 and microbial count was 7.34 ± 0.5 cfu g-1 . CONCLUSIONS: Results from the present study indicate that the presence of even a single adult of stored pest in wheat flour should not be ignored. It is mandatory to determine the threshold level and frequent sampling is required to achieve zero tolerance of stored product insects in food commodities. © 2021 Society of Chemical Industry.


Subject(s)
Flour/analysis , Tribolium/chemistry , Triticum/chemistry , Animals , Color , Flour/parasitology , Food Contamination/analysis , Food Quality , Food Storage , Tribolium/metabolism , Triticum/parasitology , Uric Acid/analysis , Uric Acid/metabolism
7.
Bull Math Biol ; 83(9): 94, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34337694

ABSTRACT

As insect populations decline, due to climate change and other environmental disruptions, there has been an increased interest in understanding extinction probabilities. Generally, the life cycle of insects occurs in well-defined stages: when counting insects, questions naturally arise about which life stage to count. Using tsetse flies (vectors of trypanosomiasis) as a case study, we develop a model that works when different life stages are counted. Previous branching process models for tsetse populations only explicitly represent newly emerged adult female tsetse and use that subpopulation to keep track of population growth/decline. Here, we directly model other life stages. We analyse reproduction numbers and extinction probabilities and show that several previous models used for estimating extinction probabilities for tsetse populations are special cases of the current model. We confirm that the reproduction number is the same regardless of which life stage is counted, and show how the extinction probability depends on which life stage we start from. We demonstrate, and provide a biological explanation for, a simple relationship between extinction probabilities for the different life stages, based on the probability of recruitment between stages. These results offer insights into insect population dynamics and provide tools that will help with more detailed models of tsetse populations. Population dynamics studies of insects should be clear about life stages and counting points.


Subject(s)
Tsetse Flies , Animals , Climate Change , Female , Mathematical Concepts , Population Dynamics , Probability
8.
Math Biosci Eng ; 17(5): 5686-5708, 2020 08 28.
Article in English | MEDLINE | ID: mdl-33120573

ABSTRACT

Structured population models, which account for the state of individuals given features such as age, gender, and size, are widely used in the fields of ecology and biology. In this paper, we consider an age-structured population model describing the population of adults and juveniles. The model consists of a system of ordinary and neutral delay differential equations. We present an explicit solution to the model using a generalization of the Lambert W function called the r-Lambert W function. Numerical simulations with varying parameters and initial conditions are done to illustrate the obtained solution. The proposed method is also applied to an insect population model with long larval and short adult phases.


Subject(s)
Models, Biological , Adult , Humans
9.
FEMS Microbiol Ecol ; 96(8)2020 08 01.
Article in English | MEDLINE | ID: mdl-32658278

ABSTRACT

The gut microbial communities of beetles play crucial roles in their adaptive capacities. Environmental factors such as temperature or nutrition naturally affect the insect microbiome, but a shift in local conditions like the population density on a host tree could also lead to changes in the microbiota. The emerald ash borer (EAB), Agrilus planipennis Fairmaire, is an exotic wood borer that causes environmental and economic damage to ash trees in North America. This study aimed to describe the taxonomic structure of the EAB gut microbiome and explore its potential relationship with borer population size. The number of EAB adults collected per tree through a 75 km transect from an epicenter allowed the creation of distinct classes of population density. The Gammaproteobacteria and Ascomycota predominated in bacterial and fungal communities respectively, as determined by sequencing of the bacterial 16S rRNA gene and the fungal internal transcribed spacer ITS2. Species richness and diversity of the bacterial community showed significant dependence on population density. Moreover, α-diversity and ß-diversity analysis revealed some indicator amplicon sequence variants suggesting that the plasticity of the gut microbiome could be related to the EAB population density in host trees.


Subject(s)
Coleoptera , Fraxinus , Gastrointestinal Microbiome , Animals , Insecta , Larva , North America , Population Density , RNA, Ribosomal, 16S/genetics
10.
Vet World ; 12(4): 584-592, 2019.
Article in English | MEDLINE | ID: mdl-31190715

ABSTRACT

AIM: Wetlands are extremely suitable ecosystems to assess the effect of climate change on the density of aquatic insects. This study aimed to assess the effect of seasonality on populations of aquatic insects in the Hawr Al Azim and Shadegan wetlands. MATERIALS AND METHODS: The insect samplings were conducted at a large area of the Hawr Al Azim and five different sites of the Shadegan wetlands. In total, 18,534 arthropods of different life stages, including 12 orders containing 51 families, were collected and identified from the selected sites of the Shadegan and Hawr Al Azim wetlands. RESULTS: Results showed that the population density of wetland aquatic insects gradually increased as the average daily temperature decreased, positively increased with daily mean relative humidity and precipitation, and decreased with the mean daily evaporation between October and April. Conversely, the population density of wetland aquatic insects gradually decreased with increasing average daily temperature and reduction of the mean relative humidity and precipitation and increasing the average evaporation from April to September. When differences between the average daily and water temperatures reached minimum in April, the population density of wetland aquatic insects reached maximum and turned mainly to families that they have high level of biological indices, indicating that wetlands have clean waters around the spring. While around the autumn conversely, they mostly changed to families that they have low level of biological indices, indicating that wetlands have unclean waters. CONCLUSION: The present study showed an optimum condition for the growth of insects around spring. Seasonality affects the population density of wetland aquatic insects during a year.

11.
Theor Popul Biol ; 103: 93-102, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26025884

ABSTRACT

In this study, we use entropy related mixing rate modules to measure the effects of temperature on insect population stability and demographic breakdown. The uncertainty in the age of the mother of a randomly chosen newborn, and how it is moved after a finite act of time steps, is modeled using a stochastic transformation of the Leslie matrix. Age classes are represented as a cycle graph and its transitions towards the stable age distribution are brought forth as an exact Markov chain. The dynamics of divergence, from a non equilibrium state towards equilibrium, are evaluated using the Kolmogorov-Sinai entropy. Moreover, Kullback-Leibler distance is applied as information-theoretic measure to estimate exact mixing times of age transitions probabilities towards equilibrium. Using empirically data, we show that on the initial conditions and simulated projection's trough time, that population entropy can effectively be applied to detect demographic variability towards equilibrium under different temperature conditions. Changes in entropy are correlated with the fluctuations of the insect population decay rates (i.e. demographic stability towards equilibrium). Moreover, shorter mixing times are directly linked to lower entropy rates and vice versa. This may be linked to the properties of the insect model system, which in contrast to warm blooded animals has the ability to greatly change its metabolic and demographic rates. Moreover, population entropy and the related distance measures that are applied, provide a means to measure these rates. The current results and model projections provide clear biological evidence why dynamic population entropy may be useful to measure population stability.


Subject(s)
Insecta/physiology , Temperature , Animals , Models, Biological , Models, Theoretical , Uncertainty
12.
Plant Physiol Biochem ; 70: 61-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23770595

ABSTRACT

The present study aims to provide new in vitro and in vivo biochemical information about a novel Kunitz trypsin inhibitor purified from Piptadenia moniliformis seeds. The purification process was performed using TCA precipitation, Trypsin-Sepharose and reversed-phase C18 HPLC chromatography. The inhibitor, named PmTKI, showed an apparent molecular mass of around 19 kDa, visualized by SDS-PAGE, which was confirmed by mass spectrometry MALDI-ToF demonstrating a monoisotopic mass of 19.296 Da. The inhibitor was in vitro active against trypsin, chymotrypsin and papain. Moreover, kinetic enzymatic studies were performed aiming to understand the inhibition mode of PmTKI, which competitively inhibits the target enzyme, presenting Ki values of 1.5 × 10(-8) and 3.0 × 10(-1) M against trypsin and chymotrypsin, respectively. Also, the inhibitory activity was assayed at different pH ranges, temperatures and reduction environments (DTT). The inhibitor was stable in all conditions maintaining an 80% residual activity. N-terminal sequence was obtained by Edman degradation and the primary sequence presented identity with members of Kunitz-type inhibitors from the same subfamily. Finally after biochemical characterization the inhibitory effect was evaluated in vitro on insect digestive enzymes from different orders, PmTKI demonstrated remarkable activity against enzymes from Anthonomus grandis (90%), Plodia interpuncptella (60%), and Ceratitis capitata (70%). Furthermore, in vivo bioinsecticidal assays of C. capitata larvae were also performed and the concentration of PmTKI (w/w) in an artificial diet required to LD50 and ED50 larvae were 0.37 and 0.3% respectively. In summary, data reported here shown the biotechnological potential of PmTKI for insect pest control.


Subject(s)
Fabaceae/chemistry , Insecta/drug effects , Insecticides/pharmacology , Plant Proteins/pharmacology , Seeds/chemistry , Trypsin Inhibitors/pharmacology , Trypsin/metabolism , Amino Acid Sequence , Animals , Chymotrypsin/metabolism , Insecta/metabolism , Insecticides/chemistry , Insecticides/isolation & purification , Larva/drug effects , Lethal Dose 50 , Molecular Weight , Papain/antagonists & inhibitors , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/isolation & purification
13.
Bot Stud ; 54(1): 11, 2013 Dec.
Article in English | MEDLINE | ID: mdl-28510855

ABSTRACT

BACKGROUND: In the obligate plant/pollinator mutualism, pollinator abundance is conditioned by the host resource. In order to investigate the population fluctuation of pollinating wasps and the phenological processes involved, this study examined the dual dynamics of the pollinator and the syconium phenology of a seasonal fruited fig tree population, Ficus microparpa, in Taipei, Taiwan. RESULTS: Our results revealed three seasons in the annual phenology: spring crop, summer-fall crop and winter trough seasons. The syconium quantity was correlated most significantly with temperature based on the generalized linear model with the meteorological data transformed by a principal component analysis. The pollinator population showed an increasing trend in spring, reached the maximum abundance in summer, and then declined drastically in winter, consistent with the syconium production fluctuation. With the small amount of local pollinators from the winter syconia and potential immigrating foundresses from other populations, the pollinator population size can increase very quickly from almost zero to over 40,000 wasps for this 29-tree local population within a season. CONCLUSION: This syconium phenological scheme, coupled with the fast-recovery rate of pollinators, may explain the worldwide adaptation and invasion of Ficus microcarpa.

14.
Insects ; 3(4): 1171-89, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-26466733

ABSTRACT

The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.

15.
Oecologia ; 93(3): 367-373, 1993 Mar.
Article in English | MEDLINE | ID: mdl-28313437

ABSTRACT

Spreading of emergence over several years due to prolonged diapause in some larvae was shown in the chestnut weevil. Depending on the year the larvae buried themselves in the ground, 32-56% of live adults emerged after 2 or 3 years of underground life. Variability in the duration of diapause was assumed to correspond to tactics of adaptative "coin-flipping" plasticity. This plasticity must allow the chestnut weevil to respond to the unpredictability of its habitat as measured by the irregularity of chestnut production and summer drought. Indeed, fecundity and adult longevity did not lessen after 2 years of underground life. No drastic decrease in the population size of weevils occurs after bad years; for instance when the number of chestnuts on the study tree is less than 10 000, passers-by can collect all the fruit and about 95% of larvae developing in chestnuts are destroyed. Diapause nature (simple or prolonged) may be related to moisture and gas rates in the ground from October to December. These factors acting in autumn are not known to be involved in the physiological mechanisms that control the production of chestnuts.

16.
Oecologia ; 96(3): 383-390, 1993 Dec.
Article in English | MEDLINE | ID: mdl-28313654

ABSTRACT

In the chestnut weevil Curculio elephas, adult emergences spread over 3 or 4 years due to prolonged larval diapause in some individuals. Weevils with an extended diapause emerge, on the average, 1-10 days before those with simple diapause, but whatever the age of insects, emergences occur always from mid-August to early October. When the summer is dry, some adults cannot emerge because of the hardness of the soil. Emergence sucess of adults is smaller in females than in males. The result is that the sex ratio is female-biased before emergence and male-biased after. Summer drought cannot be predicted by the chestnut weevil, and when the soil is dry 27-78% of females cannot emerge and do not reproduce. The year after a summer drought, many reproducing females may emerge from larvae with prolonged diapause. These results suggest an evolutionary influence on the variability in diapause duration. Computer simulations and observations do not support the hypothesis that the main cause of variation in diapause length is the existence of several distinct genotypes within populations. On the contrary, our data strengthen the hypothesis for coin-flipping plasticity discussed in a previous paper.

17.
Evolution ; 46(4): 1097-1111, 1992 Aug.
Article in English | MEDLINE | ID: mdl-28564415

ABSTRACT

Herbivorous insects that use the same host plants as larvae and adults can have a subdivided population structure that corresponds to the distribution of their hosts. Having a subdivided population structure favors local adaptation of subpopulations to small-scale environmental differences and it may promote their genetic divergence. In this paper, I present the results of a hierarchical study of population structure in a montane willow leaf beetle, Chrysomela aeneicollis (Coleoptera: Chrysomelidae). This species spends its entire life associated with the larval host (Salix spp.), which occurs in patches along high-elevation streams and in montane bogs. I analyzed the genetic differentiation of C. aeneicollis populations along three drainages in the Sierra Nevada mountains of California at five enzyme loci: ak-1, idh-2, mpi-1, pgi-1, and pgm-1, using recent modifications of Wright's F-statistics. My results demonstrated significant differentiation (FST = 0.043) among drainages that are less than 40 kilometers apart. One locus, pgi-1, showed much greater differentiation than the other four (FST = 0.412), suggesting that it is under natural selection. C. aeneicollis populations were also subdivided within drainages, with significant differentiation 1) among patches of willows (spanning less than three kilometers) and 2) in some cases, among trees within a willow patch. My results demonstrate that this species has the capacity to adapt to local environmental variation at small spatial scales.

SELECTION OF CITATIONS
SEARCH DETAIL
...