Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Insects ; 12(12)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34940193

ABSTRACT

Infestation by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes damage to tomatoes with production losses of up to 100%, affecting the physiological and biochemical aspects of host plants. The objective of this study was to analyze the influence of infestation of cryptic species of B. tabaci MED and MEAM1 on the physiological and biochemical aspects of tomato. Tomato plants 'Santa Adélia Super' infested with B. tabaci (MED and MEAM1), and non-infested plants were evaluated for differences in gas exchange, chlorophyll - a fluorescence of photosystem II (PSII), and biochemical factors (total phenols, total flavonoids, superoxide dismutase-SOD, peroxidase-POD, and polyphenol oxidase-PPO). Plants infested with B. tabaci MED showed low rates of CO2 assimilation and stomatal conductance of 55% and 52%, respectively. The instantaneous carboxylation efficiency was reduced by 40% in MED and by 60% in MEAM1 compared to the control. Regarding biochemical aspects, plants infested by MED cryptic species showed high activity of POD and PPO enzymes and total phenol content during the second and third instars when compared to control plants. Our results indicate that B. tabaci MED infestation in tomato plants had a greater influence than B. tabaci MEAM1 infestation on physiological parameters (CO2 assimilation rate (A), stomatal conductance (gs), and apparent carboxylation efficiency (A/Ci)) and caused increased activity of POD and PPO enzymes, indicating plant resistance to attack. In contrast, B. tabaci MEAM1 caused a reduction in POD enzyme activity, favoring offspring performance.

2.
J Anim Ecol ; 88(5): 665-676, 2019 05.
Article in English | MEDLINE | ID: mdl-30471097

ABSTRACT

Animal populations vary in response to a combination of density-dependent and density-independent forces, which interact to drive their population dynamics. Understanding how abiotic forces mediate the form and strength of density-dependent processes remains a central goal of ecology, and is of increasing urgency in a rapidly changing world. Here, we report for the first time that industrial pollution determines the relative strength of rapid and delayed density dependence operating on an animal population. We explored the impacts of pollution and climate on the population dynamics of an eruptive leafmining moth, Phyllonorycter strigulatella, around a coal-fired power plant near Apatity, north-western Russia. Populations were monitored at 14 sites over 26 years. The relative strengths of rapid and delayed density dependence varied with distance from the power plant. Specifically, the strength of rapid density dependence increased while the strength of delayed density dependence decreased with increasing distance from the pollution source. Paralleling the increasing strength of rapid density dependence, we observed declines in the densities of P. strigulatella, increases in predation pressure from birds and ants, and declines in an unknown source of mortality (perhaps plant antibiosis) with increasing distance from the power plant. In contrast to the associations with pollution, associations between climate change and leafminer population densities were negligible. Our results may help to explain the outbreaks of insect herbivores that are frequently observed in polluted environments. We show that they can result from the weakening of rapid (stabilizing) density dependence relative to the effects of destabilizing delayed density dependence. Moreover, our results may explain some of the variation reported in published studies of animal populations in polluted habitats. Variable results may emerge in part because of the location of the study sites on different parts of pollution gradients. Finally, in a rapidly changing world, effects of anthropogenic pollution may be as, or more, important than are effects of climate change on the future dynamics of animal populations.


Subject(s)
Climate Change , Herbivory , Animals , Population Density , Population Dynamics , Russia
3.
Sci Total Environ ; 601-602: 802-811, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28578238

ABSTRACT

Both pollution and climate affect insect-plant interactions, but the combined effects of these two abiotic drivers of global change on insect herbivory remain almost unexplored. From 1991 to 2016, we monitored the population densities of 25 species or species groups of insects feeding on mountain birch (Betula pubescens ssp. czerepanovii) in 29 sites and recorded leaf damage by insects in 21 sites in subarctic forests around the nickel-copper smelter at Monchegorsk, north-western Russia. The leaf-eating insects demonstrated variable, and sometimes opposite, responses to pollution-induced forest disturbance and to climate variations. Consequently, we did not discover any general trend in herbivory along the disturbance gradient. Densities of eight species/species groups correlated with environmental disturbance, but these correlations weakened from 1991 to 2016, presumably due to the fivefold decrease in emissions of sulphur dioxide and heavy metals from the smelter. The densities of externally feeding defoliators decreased from 1991 to 2016 and the densities of leafminers increased, while the leaf roller densities remained unchanged. Consequently, no overall temporal trend in the abundance of birch-feeding insects emerged despite a 2-3°C elevation in spring temperatures. Damage to birch leaves by insects decreased during the observation period in heavily disturbed forests, did not change in moderately disturbed forests and tended to increase in pristine forests. The temporal stability of insect-plant interactions, quantified by the inverse of the coefficient of among-year variations of herbivore population densities and of birch foliar damage, showed a negative correlation with forest disturbance. We conclude that climate differently affects insect herbivory in heavily stressed versus pristine forests, and that herbivorous insects demonstrate diverse responses to environmental disturbance and climate variations. This diversity of responses, in combination with the decreased stability of insect-plant interactions, increases the uncertainty in predictions on the impacts of global change on forest damage by insects.


Subject(s)
Climate Change , Environmental Monitoring , Global Warming , Herbivory , Insecta/physiology , Animals , Betula , Forests , Russia
4.
Biol Lett ; 11(7)2015 Jul.
Article in English | MEDLINE | ID: mdl-26179805

ABSTRACT

The existing scenarios generally predict that herbivory will increase with climate warming. An analysis of the published data on the background foliar losses of woody plants to insects in natural ecosystems across the globe from 1952 to 2013 provided no support for this hypothesis. We detected no temporal trend in herbivory within the temperate climate zone and a significant decrease in herbivory in the tropics. From 1964 to 1990, herbivory in the tropics was 39% higher than in the temperate region, but these differences disappeared by the beginning of the 2000s. Thus, environmental changes have already disturbed one of the global ecological patterns--the decrease in herbivory with latitude--by affecting ecosystem processes differently in tropical and temperate climate zones.


Subject(s)
Insecta , Plants/parasitology , Animals , Climate Change , Herbivory , Plant Leaves/parasitology , Tropical Climate
5.
Neotrop. entomol ; 40(2): 155-163, Mar.-Apr. 2011. ilus
Article in English | LILACS | ID: lil-586650

ABSTRACT

Climate change and extreme weather events affect plants and animals and the direct impact of anthropogenic climate change has been documented extensively over the past years. In this review, I address the main consequences of elevated CO2 and O3 concentrations, elevated temperature and changes in rainfall patterns on the interactions between insects and their host plants. Because of their tight relationship with host plants, insect herbivores are expected to suffer direct and indirect effects of climate change through the changes experienced by their host plants, with consequences to population dynamics, community structure and ecosystem functioning.


Subject(s)
Animals , Climate Change , Feeding Behavior , Insecta/physiology , Atmosphere , Carbon Dioxide , Hot Temperature , Ozone , Plants/metabolism , Volatile Organic Compounds
6.
Rev. bras. entomol ; 51(1): 54-57, jan.-mar. 2007. tab, ilus
Article in English | LILACS | ID: lil-450105

ABSTRACT

The emergence of host-races within aphids may constitute an obstacle to pest management by means of plant resistance. There are examples of host-races within cereals aphids, but their occurrence in Rose Grain Aphid, Metopolophium dirhodum (Walker, 1849), has not been reported yet. In this work, RAPD markers were used to assess effects of the hosts and geographic distance on the genetic diversity of M. dirhodum lineages. Twenty-three clones were collected on oats and wheat in twelve localitites of southern Brazil. From twenty-seven primers tested, only four primers showed polymorphisms. Fourteen different genotypes were revealed by cluster analysis. Five genotypes were collected only on wheat; seven only on oats and two were collected in both hosts. Genetic and geographical distances among all clonal lineages were not correlated. Analysis of molecular variance showed that some molecular markers are not randomly distributed among clonal lineages collected on oats and on wheat. These results suggest the existence of host-races within M. dirhodum, which should be further investigated using a combination of ecological and genetic data.


A emergência de raças hospedeiro-especialistas em afídeos pode constituir um obstáculo ao manejo de pragas por meio de plantas resistentes. Existem exemplos de raças hospedeiro-especialistas em afídeos de cereais, embora a ocorrência de raça hospedeiro-especialista no pulgão-verde-pálido-do-trigo Metopolophium dirhodum (Walker, 1849) (Hemiptera, Aphididae) não tenha sido relatada ainda. Marcadores RAPD foram utilizados para avaliar os efeitos da distância geográfica e do hospedeiro sobre a diversidade genética de linhas clonais de M. dirhodum. Vinte e três clones foram coletados em aveia e trigo em doze localidades do sul do Brasil. De vinte e sete iniciadores usados para a análise, apenas quatro iniciadores mostraram polimorfismos. A análise de agrupamento por similaridade genética revelou haver quatorze genótipos, cinco dos quais coletados exclusivamente em trigo, sete exclusivamente em aveia e dois em ambos hospedeiros. Não houve correlação entre as similaridades genéticas e a distância geográfica. A análise da variância molecular demonstrou que alguns marcadores RAPD não se distribuem aleatoriamente entre as linhagens clonais coletadas em aveia e em trigo. Estes resultados sugerem a existência de raças hospedeiro-especialistas em M. dirhodum no Brasil, hipótese esta que deve ser investigada combinando-se dados ecológicos e genéticos.


Subject(s)
Animals , Male , Female , Aphids/physiology , Genetic Variation , Triticum/parasitology , Host-Parasite Interactions
SELECTION OF CITATIONS
SEARCH DETAIL
...