Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.943
Filter
1.
Nano Lett ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953472

ABSTRACT

Quasi-2D perovskites based blue light-emitting diodes (LEDs) suffer from its poor electroluminescence performance, mainly caused by the nonradiative recombination in in defect-rich low-n phases and the unbalanced hole-electron injection in the device. Here, we developed a highly efficient quasi-2D perovskite based sky-blue LEDs behaving recorded external quantum efficiency (EQE) of 21.07% by employing carbon dots (CDs) as additives in the hole transport layer (HTL). We ascribe the high EQE to the effective engineering of CDs: (1) The CDs at the interface of HTLs can suppress the formation of low-efficient n = 1 phase, resulting a high luminescence quantum yield and energy transfer efficiency of the mixed n-phase quasi-2D perovskites. (2) The CDs additives can reduce the conductivity of HTL, partially blocking the hole injection, and thus making more balanced hole-electron injection. The CDs-treated devices have excellent Spectral stability and enhanced operational stability and could be a new alternative additive in the perovskite optoelectronic devices.

2.
ACS Nano ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953611

ABSTRACT

Rechargeable aqueous batteries adopting Fe-based materials are attracting widespread attention by virtue of high-safety and low-cost. However, the present Fe-based anodes suffer from low electronic/ionic conductivity and unsatisfactory comprehensive performance, which greatly restrict their practicability. Concerning the principle of physical chemistry, fabricating electrodes that could simultaneously achieve ideal thermodynamics and fast kinetics is a promising issue. Herein, hierarchical Fe3O4@Fe foam electrode with enhanced interface/grain boundary engineering is fabricated through an in situ self-regulated strategy. The electrode achieves ultrahigh areal capacity of 31.45 mA h cm-2 (50 mA cm-2), good scale application potential (742.54 mA h for 25 cm2 electrode), satisfied antifluctuation capability, and excellent cycling stability. In/ex situ characterizations further validate the desired thermodynamic and kinetic properties of the electrode endowed with accurate interface regulation, which accounts for salient electrochemical reversibility in a two-stage phase transition and slight energy loss. This work offers a suitable strategy in designing high-performance Fe-based electrodes with comprehensive inherent characteristics for high-safety large-scale energy storage.

3.
G3 (Bethesda) ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954534

ABSTRACT

In aquaculture, sterile triploids are commonly used for production as sterility gives them potential gains in growth, yields and quality. However, they cannot be reproduced, and DNA parentage assignment to their diploid or tetraploid parents is required to estimate breeding values for triploid phenotypes. No publicly available software has the ability to assign triploids to their parents. Here, we updated the R package APIS to support triploids induced from diploid parents. First, we created new exclusion and likelihood tables that account for the double allelic contribution of the dam and the recombination that can occur during female meiosis. As the effective recombination rate of each marker with the centromere is usually unknown, we set it at 0.5 and found that this value maximises the assignment rate even for markers with high or low recombination rates. The number of markers needed for a high true assignment rate did not strongly depend on the proportion of missing parental genotypes. The assignment power was however affected by the quality of the markers (minor allele frequency, call rate). Altogether, 96 to 192 SNPs were required to have a high parentage assignment rate in a real rainbow trout dataset of 1232 triploid progenies from 288 parents. The likelihood approach was more efficient than exclusion when the power of the marker set was limiting. When more markers were used, exclusion was more advantageous, with sensitivity reaching unity, very low False Discovery Rate (<0.01) and excellent specificity (0.96-0.99). Thus, APIS provides an efficient solution to assign triploids to their diploid parents.

4.
Nanotechnology ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955136

ABSTRACT

The performance of organic semiconductor devices with heterojunctions between the organic semiconductors and electrodes can be improved by reducing the contact resistance. In this study, we have developed nanopatterned electrodes that gradually change the impedance at the interface between the metal and organic semiconductor in organic devices, which were fabricated in periodic patterns using nanoimprint lithography (NIL). The imprint pattern spacing was changed to control the interface between the metal and organic semiconductor to ensure smooth carrier injection. We analyzed the carrier injection based on the pattern spacing of the electrode interface using electrical current-voltage (I-V) and capacitance-frequency (C-F) measurements in the diode. Subsequently, we analyzed the improved current mechanism through numerical simulation. Therefore, this study suggests the possibility of designing the interface of an organic device using the nanostructure between the organic semiconductor and carrier injection electrode.

5.
Front Hum Neurosci ; 18: 1371631, 2024.
Article in English | MEDLINE | ID: mdl-38957693

ABSTRACT

Brain-computer interfaces (BCIs) are scientifically well established, but they rarely arrive in the daily lives of potential end-users. This could be in part because electroencephalography (EEG), a prevalent method to acquire brain activity for BCI operation, is considered too impractical to be applied in daily life of end-users with physical impairment as an assistive device. Hence, miniaturized EEG systems such as the cEEGrid have been developed. While they promise to be a step toward bridging the gap between BCI development, lab demonstrations, and home use, they still require further validation. Encouragingly, the cEEGrid has already demonstrated its ability to record visually and auditorily evoked event-related potentials (ERP), which are important as input signal for many BCIs. With this study, we aimed at evaluating the cEEGrid in the context of a BCI based on tactually evoked ERPs. To compare the cEEGrid with a conventional scalp EEG, we recorded brain activity with both systems simultaneously. Forty healthy participants were recruited to perform a P300 oddball task based on vibrotactile stimulation at four different positions. This tactile paradigm has been shown to be feasible for BCI repeatedly but has never been tested with the cEEGrid. We found distinct P300 deflections in the cEEGrid data, particularly at vertical bipolar channels. With an average of 63%, the cEEGrid classification accuracy was significantly above the chance level (25%) but significantly lower than the 81% reached with the EEG cap. Likewise, the P300 amplitude was significantly lower (cEEGrid R2-R7: 1.87 µV, Cap Cz: 3.53 µV). These results indicate that a tactile BCI using the cEEGrid could potentially be operated, albeit with lower efficiency. Additionally, participants' somatosensory sensitivity was assessed, but no correlation to the accuracy of either EEG system was shown. Our research contributes to the growing amount of literature comparing the cEEGrid to conventional EEG systems and provides first evidence that the tactile P300 can be recorded behind the ear. A BCI based on a thus simplified EEG system might be more readily accepted by potential end-users, provided the accuracy can be substantially increased, e.g., by training and improved classification.

6.
J Colloid Interface Sci ; 674: 925-937, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38959738

ABSTRACT

Proton exchange membranes with high ionic conductivity and good chemical stability are critical for achieving high power density and long lifespan of direct methanol cells (DMFCs). Herein, a zwitterionic molecule was grafted onto the surface of polyvinylidene fluoride (PVDF) nanofibers to obtain functionalized PVDF porous substrate (SBMA-PDA@PVDF). Then, sulfonated poly(ether ether ketone) (SPEEK) was filled into the pores of SBMA-PDA@PVDF, and further ionic cross-linked via H2SO4 to prepare the composite membrane (SBMA-PDA@PVDF/SPEEK). The basic groups on the zwitterionic interface could not only establish ionic cross-linking with SPEEK to increase chemical stability and reduce swelling, but also serve as the adsorption sites for subsequent H2SO4 cross-linking to significantly enhance proton conductivity. Super-high proton conductivity (165.34 mS cm-1, 80 °C) was achieved for the membrane, which was 2.12 times higher than that of the pure SPEEK. Moreover, the SBMA-PDA@PVDF/SPEEK membrane exhibited remarkably improved oxidative stability of 91.6 % mass retention after soaking in Fenton's agent for 12 h, while pure SPEEK completely decomposed. Satisfactorily, the DMFC assembled with SBMA-PDA@PVDF/SPEEK exhibited a peak power density of 99.01 mW cm-2, which was twice as much as that of commercial Nafion 212 (48.88 mW cm-2). After 235 h durability test, only 11 % voltage loss was observed.

7.
J Neural Eng ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959876

ABSTRACT

OBJECTIVE: Patients suffering from heavy paralysis or Locked-in-Syndrome can regain communication using a Brain-Computer Interface (BCI). Visual event-related potential (ERP) based BCI paradigms exploit visuospatial attention (VSA) to targets laid out on a screen. However, performance drops if the user does not direct their eye gaze at the intended target, harming the utility of this class of BCIs for patients suffering from eye motor deficits. We aim to create an ERP decoder that is less dependent on eye gaze. METHODS: ERP component latency jitter plays a role in covert visuospatial attention (VSA) decoding. We introduce a novel decoder which compensates for these latency effects, termed Woody Classifier-based Latency Estimation (WCBLE). We carried out a BCI experiment recording ERP data in overt and covert visuospatial attention (VSA), and introduce a novel special case of covert VSA termed split VSA, simulating the experience of patients with severely impaired eye motor control. We evaluate WCBLE on this dataset and the BNCI2014-009 dataset, within and across VSA conditions to study the dependency on eye gaze and the variation thereof during the experiment. RESULTS & DISCUSSION: WCBLE outperforms state-of-the-art methods in the VSA conditions of interest in gaze-independent decoding, without reducing overt VSA performance. Results from across-condition evaluation show that WCBLE is more robust to varying VSA conditions throughout a BCI operation session. Together, these results point towards a pathway to achieving gaze independence through suited ERP decoding. Our proposed gaze-independent solution enhances decoding performance in those cases where performing overt VSA is not possible.

8.
Int J Biol Macromol ; : 133607, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960241

ABSTRACT

Protein emulsions' poor physical and oxidative stabilities restrict their use in functional foods. Soy protein isolate (SPI) emulsions' physical stability was enhanced by adding young apple polyphenols (YAP) in this study, but decreased when YAP was 0.12 %. YAP binding prefolded SPI's structure, which promotes efficient SPI stacking at the interface. YAP also improved SPI emulsions' oxidation resistance in a dose-dependent manner. SPI-YAP interaction promoted more YAP adsorption (>80 %) at the interface, which increased emulsions' antioxidant capacities twofold. Furthermore, over 90 % of unsaturated fatty acids were preserved, and the oxidation of lipid-SPI-ß-carotene appeared to be reduced as YAP increased. In addition, SPI-YAP emulsions were effective in encapsulating and safeguarding ß-carotene during emulsion storage and in vitro digestion, leading to a delayed and maximum release of ß-carotene. This study improves the understanding of polyphenols inhibition on lipid-protein oxidation through interface strengthening and broadens the potential applications of YAP and SPI in functional foods.

9.
JMIR Hum Factors ; 11: e54532, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38958216

ABSTRACT

Background: The National Research Mentoring Network (NRMN) is a National Institutes of Health-funded program for diversifying the science, technology, engineering, math, and medicine research workforce through the provision of mentoring, networking, and professional development resources. The NRMN provides mentoring resources to members through its online platform-MyNRMN. Objective: MyNRMN helps members build a network of mentors. Our goal was to expand enrollment and mentoring connections, especially among those who have been historically underrepresented in biomedical training and the biomedical workforce. Methods: To improve the ease of enrollment, we implemented the split testing of iterations of our user interface for platform registration. To increase mentoring connections, we developed multiple features that facilitate connecting via different pathways. Results: Our improved user interface yielded significantly higher rates of completed registrations (P<.001). Our analysis showed improvement in completed enrollments that used the version 1 form when compared to those that used the legacy form (odds ratio 1.52, 95% CI 1.30-1.78). The version 2 form, with its simplified, 1-step process and fewer required fields, outperformed the legacy form (odds ratio 2.18, 95% CI 1.90-2.50). By improving the enrollment form, the rate of MyNRMN enrollment completion increased from 57.3% (784/1368) with the legacy form to 74.5% (2016/2706) with the version 2 form. Our newly developed features delivered an increase in connections between members. Conclusions: Our technical efforts expanded MyNRMN's membership base and increased connections between members. Other platform development teams can learn from these efforts to increase enrollment among underrepresented groups and foster continuing, successful engagement.


Subject(s)
Mentoring , Humans , Mentoring/methods , United States , User-Centered Design , Cultural Diversity , Biomedical Research , National Institutes of Health (U.S.) , Research Personnel
10.
Article in English | MEDLINE | ID: mdl-38963067

ABSTRACT

The absorption-dominated graphene porous materials, considered ideal for mitigating electromagnetic pollution, encounter challenges related to intricate structural design. Herein, petal-like graphene porous films with dendritic-like and honeycomb-like pores are prepared by controlling the phase inversion process. The theoretical simulation and experimental results show that PVP K30 modified on the graphene surface via van der Waals interactions promotes graphene to be uniformly enriched on the pore walls. Benefiting from the regulation of graphene distribution and the construction of honeycomb pore structure, when 15 wt % graphene is added, the porous film exhibits absorption-dominated electromagnetic shielding performance, compared with the absence of PVP K30 modification. The total electromagnetic shielding effectiveness is 24.1 dB, an increase of 170%; the electromagnetic reflection coefficient reduces to 2.82 dB; The thermal conductivity reaches 1.1 W/(m K), representing a 104% increase. In addition, the porous film exhibits improved mechanical properties, the tensile strength increases to 6.9 MPa, and the elongation at break increases by 131%. The method adopted in this paper to control the enrichment of graphene in the pore walls during the preparation of honeycomb porous films by the phase inversion method can avoid the agglomeration of graphene and improve the overall performance of the porous graphene porous films.

11.
Article in English | MEDLINE | ID: mdl-38946233

ABSTRACT

Motor imagery (MI) stands as a powerful paradigm within Brain-Computer Interface (BCI) research due to its ability to induce changes in brain rhythms detectable through common spatial patterns (CSP). However, the raw feature sets captured often contain redundant and invalid information, potentially hindering CSP performance. Methodology-wise, we propose the Information Fusion for Optimizing Temporal-Frequency Combination Pattern (IFTFCP) algorithm to enhance raw feature optimization. Initially, preprocessed data undergoes simultaneous processing in both time and frequency domains via sliding overlapping time windows and filter banks. Subsequently, we introduce the Pearson-Fisher combinational method along with Discriminant Correlation Analysis (DCA) for joint feature selection and fusion. These steps aim to refine raw electroencephalogram (EEG) features. For precise classification of binary MI problems, an Radial Basis Function (RBF)-kernel Support Vector Machine classifier is trained. To validate the efficacy of IFTFCP and evaluate it against other techniques, we conducted experimental investigations using two EEG datasets. Results indicate a notably superior classification performance, boasting an average accuracy of 78.14% and 85.98% on dataset 1 and dataset 2, which is better than other methods outlined in this article. The study's findings suggest potential benefits for the advancement of MI-based BCI strategies, particularly in the domain of feature fusion.

12.
Chemistry ; : e202401802, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946439

ABSTRACT

How to coordinate electron and ion transport behavior across scales and interfaces within ion battery electrodes? The exponential increase in surface area observed in nanoscale electrode materials results in an incomprehensibly vast spatial interval. Herein, to address the problems of volume expansion, dissolution of cathode material, and the charge accumulation problem existing in manganiferous materials for zinc ion batteries, metal organic framework is utilized to form the architecture of non-interfacial blocking ~10 nm Mn2O3 nanoparticles and amorphous carbon hybrid electrode materials, demonstrating a high specific capacity of 361 mAh g-1 (0.1 A g-1), and excellent cycle stability of 105 mAh g-1 after 2000 cycles under 1 A g-1. The uniform and non-separated disposition of Mn and C atoms constitutes an interconnected network with high electronic and ionic conductivity, minimizing issues like structural collapse and volume expansion of the electrode material during cycling. The cooperative insert mechanism of H+ and Zn2+ are analyzed via ex-situ XRD and in-situ Raman tests. The model battery is assembled to present practical possibilities. The results indicate that MOF-derived carbonization provides an effective strategy for exploring Mn-based electrode materials with high ion and electron transport capacity.

13.
Adv Sci (Weinh) ; : e2402796, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961646

ABSTRACT

The buried interface between the electron transport layer (ETL) and the perovskite layer plays a crucial role in enhancing the power conversion efficiency (PCE) and stability of n-i-p type perovskite solar cells (PSCs). In this study, the interface between the chemical bath deposited (CBD) titanium oxide (TiO2) ETL and the perovskite layer using multi-functional potassium trifluoromethyl sulfonate (SK) is modified. Structural and elemental analyses reveal that the trifluoromethyl sulfonate serves as a crosslinker between the TiO2 and the perovskite layer, thus improving the adhesion of the perovskite to the TiO2 ETL through strong bonding of the ─CF3 and ─SO3 - terminal groups. Furthermore, the multi-functional modifiers reduced interface defects and suppressed carrier recombination in the PSCs. Consequently, devices with a champion PCE of 25.22% and a fill factor (FF) close to 85% is achieved, marking the highest PCE and FF observed for PSCs based on CBD TiO2. The unencapsulated device maintained 81.3% of its initial PCE after operating for 1000 h.

14.
J Colloid Interface Sci ; 674: 643-652, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38950463

ABSTRACT

Silicon-based material is regarded as one of the most promising anodes for next-generation high-performance lithium-ion batteries (LIBs) due to its high theoretical capacity and low cost. Harnessing silicon carbide's robustness, we designed a novel porous silicon with a sandwich structure of carbon/silicon carbide/Ag-modified porous silicon (Ag-PSi@SiC@C). Different from the conventional SiC interface characterized by a frail connection, a robust dual covalent bond configuration, dependent on SiC and SiOC, has been successfully established. Moreover, the innovative sandwich structure effectively reduces detrimental side reactions on the surface, eases volume expansion, and bolsters the structural integrity of the silicon anode. The incorporation of silver nanoparticles contributes to an improvement in overall electron transport capacity and enhances the kinetics of the overall reaction. Consequently, the Ag-PSi@SiC@C electrode, benefiting from the aforementioned advantages, demonstrates a notably elevated lithium-ion mobility (2.4 * 10-9 cm2·s-1), surpassing that of silicon (5.1 * 10-12 cm2·s-1). The half-cell featuring Ag-PSi@SiC@C as the anode demonstrated robust rate cycling stability at 2.0 A/g, maintaining a capacity of 1321.7 mAh/g, and after 200 cycles, it retained 962.6 mAh/g. Additionally, the full-cell, featuring an Ag-PSi@SiC@C anode and a LiFePO4 (LFP) cathode, exhibits outstanding longevity. Hence, the proposed approach has the potential to unearth novel avenues for the extended exploration of high-performance silicon-carbon anodes for LIBs.

15.
J Colloid Interface Sci ; 674: 713-721, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38950470

ABSTRACT

Amino acids are among the most commercially promising additive solutions for achieving stable zinc anodes. However, greater attention should be given to the limitation arising from the protonation effects induced by high isoelectric point amino acids in the weakly acidic electrolytes of aqueous zinc-ion batteries (AZIBs). In this study, we introduce histidine (HIS) and ethylenediaminetetraacetic acid (EDTA) as hybrid additives into the aqueous electrolyte. Protonated HIS is adsorbed onto the anode interface, inducing uniform deposition and excluding H2O from the inner Helmholtz plane (IHP). Furthermore, the addition of EDTA compensates for the limitation of protonated HIS in excluding solvated H2O. EDTA reconstructs the solvation structure of Zn2+, resulting in a denser zinc deposition morphology. The results demonstrate that the Zn||Zn battery achieved a cycling lifespan exceeding 1480 h at 5 mA cm-2 and 5 mAh cm-2. It also reached over 900 h of cycling at a zinc utilization rate of 70 %. This study provides an innovative perspective for advancing the further development of AZIBs.

16.
Ophthalmol Retina ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950656

ABSTRACT

PURPOSE: To describe the retinal and vitreous changes in eyes showing myopic macular schisis (MMS) improvement when vitrectomy was not performed and identify triggering factors. DESIGN: Retrospective observational study. SUBJECTS: Patients with non-operated myopic macular schisis METHODS: The records of patients with MMS who were followed without performing surgery for more than 6 months were retrospectively reviewed, and the eyes showing an anatomical improvement were included. MMS evolution was analyzed quantitatively (central foveal thickness [CFT], parafoveal thickness, maximum height) and qualitatively (presence/absence of foveal detachment, lamellar hole, epiretinal membrane, choroidal neovascularization, inner and outer retinoschisis, vitreous status) at baseline and at the final visit. An anatomical improvement was defined as a decrease in CFT by at least 50 µm. MAIN OUTCOME MEASURE: The rate anatomical improvement of MMS without performing vitrectomy and the morphological changes observed in these cases. RESULTS: In a cohort of 74 non-operated eyes with MMS, MMS improved in 14 eyes (19%) after a mean follow-up of 55 ± 38 months (range: 8-138). In these improved cases, the mean decrease in CFT was 153 ± 166 µm (range: 24-635, p=0.005) and a complete resolution of MMS was observed in 9 eyes (64%). In 9 eyes (64%), the improvement was associated with visible vitreous changes in the macular area on the OCT scans. The mean visual acuity, which was already good at baseline (20/50, 0.4 ± 0.2 LogMAR), increased at the last visit (20/40, 0.3 ± 0.3 LogMAR) but without reaching significance. CONCLUSION: This long-term follow-up analysis showed that almost 20% of MMS in eyes without indication for surgery could improve over time. In most cases, the improvement was associated with an apparent resolution of vitreous tensions.

17.
Expert Rev Respir Med ; : 1-13, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38949916

ABSTRACT

INTRODUCTION: Obstructive sleep apnea (OSA) is an important and evolving area in the pediatric population, with significant sequelae when not adequately managed. The use of positive airway pressure (PAP) therapy is expanding rapidly and is being prescribed to patients with persistent OSA post adenotonsillectomy as well as those children who are not surgical candidates including those with medical complexity. AREAS DISCUSSED: This article provides a state-of-the-art review on the diagnosis of pediatric OSA and treatment with positive airway pressure (PAP). The initiation of PAP therapy, pediatric interface considerations, PAP mode selection, administration and potential complications of PAP therapy, factors influencing PAP adherence, the use of remote ventilation machine downloads, considerations surrounding follow-up of patients post PAP initiation and evaluation of weaning off PAP will be reviewed. The literature search was conducted via PubMed, Cochrane Library and Google Scholar databases through to March 2024. EXPERT OPINION: Further research is required to address barriers to adherence. Further innovation of home monitoring devices for both the diagnosis and assessment of OSA is required, given the limited pediatric sleep medicine resources in several countries worldwide.

18.
Front Neurol ; 15: 1440752, 2024.
Article in English | MEDLINE | ID: mdl-38966087
19.
Cell Rep ; 43(7): 114436, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968069

ABSTRACT

Single-gene missense mutations remain challenging to interpret. Here, we deploy scalable functional screening by sequencing (SEUSS), a Perturb-seq method, to generate mutations at protein interfaces of RUNX1 and quantify their effect on activities of downstream cellular programs. We evaluate single-cell RNA profiles of 115 mutations in myelogenous leukemia cells and categorize them into three functionally distinct groups, wild-type (WT)-like, loss-of-function (LoF)-like, and hypomorphic, that we validate in orthogonal assays. LoF-like variants dominate the DNA-binding site and are recurrent in cancer; however, recurrence alone does not predict functional impact. Hypomorphic variants share characteristics with LoF-like but favor protein interactions, promoting gene expression indicative of nerve growth factor (NGF) response and cytokine recruitment of neutrophils. Accessible DNA near differentially expressed genes frequently contains RUNX1-binding motifs. Finally, we reclassify 16 variants of uncertain significance and train a classifier to predict 103 more. Our work demonstrates the potential of targeting protein interactions to better define the landscape of phenotypes reachable by missense mutations.

20.
J Colloid Interface Sci ; 675: 130-138, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38968633

ABSTRACT

Prospective photocatalytic ammonia synthesis process has received more attentions but quite challenging with the low visible light utilization and weak N2 molecule absorption ability around the photocatalysts. Herein, interface reconstruction of MXene-Ti3C2/CeO2 composites with high-concentration active sites through the carbon-doped process are presented firstly, and obvious transition zones with the three-phase reaction interface are formed in the as-prepared catalysts. The optimal co-doped sample demonstrates an excellent photo response in the visible light region, the strongest chemisorption activity and the most active sites. Moreover, much more in-situ extra oxygen defects are also produced under light irradiation. It is expected that the double decorated catalyst shows a remarked ammonia production rate of above 0.76 mmol gcal-1·h-1 under visible-light illumination and a higher apparent quantum efficiency of 1.08 % at 420 nm, which is one of the most completive properties for the photocatalytic N2 fixation at present.

SELECTION OF CITATIONS
SEARCH DETAIL
...