Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Nanomaterials (Basel) ; 14(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38607102

ABSTRACT

Graphene has garnered widespread attention, and its use is being explored for various electronic devices due to its exceptional material properties. However, the use of polymers (PMMA, photoresists, etc.) during graphene transfer and patterning processes inevitably leaves residues on graphene surface, which can decrease the performance and yield of graphene-based devices. This paper proposes a new transfer and patterning process that utilizes an Al intermediate layer to separate graphene from polymers. Through DFT calculations, the binding energy of graphene-Al was found to be only -0.48 eV, much lower than that of PMMA and photoresist with graphene, making it easier to remove Al from graphene. Subsequently, this was confirmed through XPS analysis. A morphological characterization demonstrated that the graphene patterns prepared using the Al intermediate layer process exhibited higher surface quality, with significantly reduced roughness. It is noteworthy that the devices obtained with the proposed method exhibited a notable enhancement in both consistency and sensitivity during electrical testing (increase of 67.14% in temperature sensitivity). The low-cost and pollution-free graphene-processing method proposed in this study will facilitate the further commercialization of graphene-based devices.

2.
Turk J Chem ; 48(1): 195-209, 2024.
Article in English | MEDLINE | ID: mdl-38544894

ABSTRACT

Dense metallic membranes, especially Pd and Pd alloys, have been intensely investigated to provide an alternative and economical way to obtain H2 with ultrahigh purity. To overcome the high cost of Pd, composite membrane structures that comprise a thin layer of Pd are utilized. However, it is a challenge to obtain a thin, dense, and uniform Pd layer on the support materials. This study investigates the parametric analysis of γ-Al2O3 interlayer formation and the electroless Pd plating (Pd ELP) procedures on α-Al2O3 supports with the aim to achieve a thin, uniform Pd surface without annealing. Adjustments in PEG/PVA concentration, dipping time, and heat treatment enabled creating a thin γ-Al2O3 interlayer on α-Al2O3, minimizing pore size and density. Hydrazine concentration, heat treatment, and bath temperature were adjusted to optimize Pd ELP to achieve maximum yield from the plating bath and a dense, uniform surface without annealing. Pd/γ-Al2O3/α-Al2O3 structures were analyzed using scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis to observe the impact of varied parameters on surface structures. Optimized sample was compared to an annealed Pd/α-Al2O3 prepared in accordance with literature methods and a Pd/graphite/α-Al2O3 sample to validate the use of optimized ELP procedure and the γ-Al2O3 interlayer. Results show that a dense and uniform 13 µm Pd coating was achieved on a γ-Al2O3-coated α-Al2O3 support without annealing, using three fresh ELP baths. This was done using sequential hydrazine addition with a decreased concentration (1 M) into the ELP baths at 30 °C, and applying heat treatment at 120 °C between each fresh ELP bath.

3.
Sci Total Environ ; 922: 171002, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38369141

ABSTRACT

Microplastics have been identified as an emerging pollutant that poses a risk to the aquatic environment, and it is a challenge to find a suitable removal process. Electrocatalytic oxidation (ECO) technology has shown promising performance in removing various persistent organic pollutants. In this study, we prepared a new anode for removing polystyrene microplastics (PS MPs) by ECO. Ti/La-Sb-SnO2 electrodes doped with the rare earth element La as the active layer were synthesized to enhance the electrocatalytic activity. The lifespan of the electrode was improved by doping Mn, Co, or Ru as an intermediate layer modification between the titanium (Ti) substrate and the La-Sb-SnO2 active layer, respectively. The experimental results indicated that the addition of three types of intermediate layers led to different degrees of decrease in the catalytic activity of the electrode and the degradation performance of PS MPs. The addition of the Co intermediate layer had a negligible effect on the catalytic activity and performance of the Ti/La-Sb-SnO2 anode for PS degradation. In addition, the electrode lifespan with Co intermediate layer was significantly prolonged, which was 4.54, 2.38, and 1.19 times higher than the electrode without intermediate layer and the electrode with Ru and Mn intermediate layer, respectively. Therefore, Co was determined to be the optimal choice as the intermediate layer, and the production technique for the Ti/La/Co-Sb-SnO2 anodes was carefully adjusted. The degradation efficiency of PS MPs was optimized at a heat treatment temperature of 400 °C and a Sn: Co material ratio of 5:1, with a removal rate of 28.0 %. The ECO treatment also resulted in more pronounced changes in the structure and functional groups of the MPs. Various alkyl cleavage and oxidation products were detected after the treatment, suggesting that the oxidant (hydroxyl radicals) strongly interacted with the MPs, leading to their degradation. Overall, this work provided a new insight into removing MPs in water through the use of modified electrodes.

4.
Small Methods ; 8(2): e2300432, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37530212

ABSTRACT

Tandem solar cells are rationally designed and fabricated by stacking multiple subcells to achieve power conversion efficiency well above the Shockley-Queisser (SQ) limit. There is a large selection pool for the subcell candidates, such as Si, III-V, Kesterite, Perovskite, and organic solar cells. A series of different combinations of these subcells have been successfully demonstrated in practical tandem solar cell devices. However, there has not been a systematic summary of how to connect subcells in a tandem solar cell using a practical, cost-effective, and efficiency-beneficial fashion. In this work, the connection manners of subcells within a tandem cell are classified into three main categories, performing sequential growth, using the physical connection, and applying an intermediate layer, focusing on systematical description of intermediate layers using different materials. The advantages and disadvantages of these connection methods and their applicability to tandem cell types are further elaborated using two typical example models, III-V/Si and Perovskite inclusive tandem cell devices. Eventually, this work can provide useful guidance on how to carry out a suitable intermediate connection in the design of tandem solar cells depending on the selected subcells and device structure.

5.
Int Wound J ; 21(1): e14356, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37661177

ABSTRACT

We investigated the healing effect of a new dehydrated amnion/chorion membrane with a spongy layer over a 30-month period in 32 patients with 53 chronic non-healing wounds of different aetiologies. Wounds with <40% surface reduction after 4 weeks of best wound treatment underwent weekly allograft application by a certified wound specialist based on national guidelines and a standardised protocol until complete healing or definite treatment interruption. The main outcome measure was the percentage of wound surface reduction from baseline calculated using digital planimetry follow-up photographs. Overall, 38 (71.7%) wounds presented a favourable outcome (70%-100% area reduction), with 35 (66%) completely healing over a median time of 77 days (range 29-350 days). Favourable outcomes were observed in 75% of traumatic wounds, surgical wounds, venous leg ulcers and pressure injuries, as well as in 50% of ischaemic wounds. Wounds being present <12 months were significantly more likely to have a favourable outcome than more long-standing wounds (χ2 = 7.799; p = 0.005; OR = 3.378; 95% CI, 1.410-8.092). Thus, treatment with dehydrated amnion/chorion membrane with a spongy layer improves the outcome of non-healing wounds of different aetiologies and, therefore, has to be considered early in the management of refractory wounds.


Subject(s)
Amnion , Chorion , Humans , Allografts/transplantation , Amnion/transplantation , Treatment Outcome , Transplantation, Homologous/methods , Chorion/transplantation
6.
Nano Lett ; 24(1): 245-253, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38157424

ABSTRACT

Mechanically strong and damage-tolerant corrosion protection layers are of great technological importance. However, corrosion protection layers with high modulus (>1.5 GPa) and tensile strength (>100 MPa) are rare. Here, we report that a 130 µm thick densified wood veneer with a Young's modulus of 34.49 GPa and tensile strength of 693 MPa exhibits both low diffusivity for metal ions and the ability of self-recovery from mechanical damage. Densified wood veneer is employed as an intermediate layer to render a mechanically strong corrosion protection structure, referred to as "wood corrosion protection structure", or WCPS. The corrosion rate of low-carbon steel protected by WCPS is reduced by 2 orders of magnitude than state-of-the-art corrosion protection layers during a salt spray test. The introduction of engineered wood veneer as a thin and mechanically strong material points to new directions of sustainable corrosion protection design.

7.
Cancers (Basel) ; 15(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38136386

ABSTRACT

Cartilage intermediate layer protein 2 (CILP2) facilitates interactions between matrix components in cartilage and has emerged as a potential prognostic biomarker for cancer. This study aimed to investigate the function and mechanisms of CILP2 in pan-cancer. We evaluated the pan-cancer expression, methylation, and mutation data of CILP2 for its clinical prognostic value. Additionally, we explored the immunological characteristics of CILP2 in pan-cancer and then focused specifically on pancreatic ductal adenocarcinoma (PAAD). The subtype analysis of PAAD identified subtype-specific expression and immunological characteristics. Finally, in vitro and in vivo experiments assessed the impact of CILP2 on pancreatic cancer progression. CILP2 exhibited high expression in most malignancies, with significant heterogeneity in epigenetic modifications across multiple cancer types. The abnormal methylation and copy number variations in CILP2 were correlated with poor prognoses. Upregulated CILP2 was associated with TGFB/TGFBR1 and more malignant subtypes. CILP2 exhibited a negative correlation with immune checkpoints in PAAD, suggesting potential for immunotherapy. CILP2 activated the AKT pathway, and it increased proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) in pancreatic cancer. We demonstrated that CILP2 significantly contributes to pancreatic cancer progression. It serves as a prognostic biomarker and a potential target for immunotherapy.

8.
ACS Appl Mater Interfaces ; 15(48): 55652-55658, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37991928

ABSTRACT

Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) has been considered as the most promising absorber material for inorganic thin-film solar cells. Among the three main interfaces in CZTSSe-based solar cells, the CZTSSe/Mo back interface plays an essential role in hole extraction as well as device performance. During the selenization process, the reaction between CZTSSe and Mo is one of the main reasons that lead to a large open circuit voltage (VOC) deficit, low short circuit current (Jsc), and fill factor. In this study, 2D Ti3C2-MXene was introduced as an intermediate layer to optimize the interface between the CZTSSe absorber layer and Mo back contact. Benefiting from the 2D Ti3C2-MXene intermediate layer, the reaction between CZTSSe and Mo was effectually suppressed, thus, significantly reducing the thickness of the detrimental Mo(S,Se)2 layer as well as interface recombination at the CZTSSe/Mo back interface. As a result, the power conversion efficiency of the champion device fabricated with the 2D Ti3C2-MXene intermediate layer was improved from 10.89 to 13.14% (active-area efficiency). This study demonstrates the potential use of the 2D Ti3C2-MXene intermediate layer for efficient CZTSSe solar cells and promotes a deeper understanding of the back interface in CZTSSe solar cells.

9.
Bioeng Transl Med ; 8(6): e10500, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38023721

ABSTRACT

Immuno-inflammation is highly associated with anabolic and catabolic dysregulation of the extracellular matrix (ECM) in the nucleus pulposus (NP), which dramatically propels intervertebral disc degeneration (IVDD). With the characteristics of tissue remodeling and regeneration, M2c macrophages have attracted great attention in research on immune modulation that rebuilds degenerated tissues. Therefore, we first demonstrated the facilitating effects of M2c macrophages on ECM anabolism of the NP in vitro. We subsequently found that exosomes from M2c macrophages (M2c-Exoss) mediated their metabolic rebalancing effects on the ECM. To determine whether M2c-Exoss served as positive agents protecting the ECM in IVDD, we constructed an M2c-Exos-loaded hyaluronic acid hydrogel (M2c-Exos@HA hydrogel) and implanted it into the degenerated caudal disc of rats. The results of MRI and histological staining indicated that the M2c-Exos@HA hydrogel alleviated IVDD in vivo in the long term. To elucidate the underlying molecular mechanism, we performed 4D label-free proteomics to screen dysregulated proteins in NPs treated with M2c-Exoss. Cartilage intermediate layer protein (CILP) was the key protein responsible for the rebalancing effects of M2c-Exoss on ECM metabolism in the NP. With prediction and verification using luciferase assays and rescue experiments, miR-124-3p was identified as the upstream regulator in M2c-Exoss that regulated CILP and consequently enhanced the activity of the TGF-ß/smad3 pathway. In conclusion, we demonstrated ameliorating effects of M2c-Exoss on the imbalance of ECM metabolism in IVDD via the miR-124/CILP/TGF-ß regulatory axis, which provides a promising theoretical basis for the application of M2c macrophages and their exosomes in the treatment of IVDD.

10.
Molecules ; 28(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37630210

ABSTRACT

The interface models of diamond-coated WC-Co cemented carbide (DCCC) were constructed without intermediate layers and with different interface terminals, such as intermediate layers of TiC, TiN, CrN, and SiC. The adhesion work of the interface model was calculated based on the first principle. The results show that the adhesion work of the interface was increased after adding four intermediate layers. Their effect on improving the interface adhesion performance of cemented carbide coated with diamond was ranked in descending order as follows: SiC > CrN > TiC > TiN. The charge density difference and the density of states were further analyzed. After adding the intermediate layer, the charge distribution at the interface junction was changed, and the electron cloud at the interface junction overlapped to form a more stable chemical bond. Additionally, after adding the intermediate layer, the density of states of the atoms at the interface increased in the energy overlapping area. The formant formed between the electronic orbitals enhances the bond strength. Thus, the interface bonding performance of DCCC was enhanced. Among them, the most obvious was the interatomic electron cloud overlapping at the diamond/SiCC-Si/WC-Co interface, its bond length was the shortest (1.62 Å), the energy region forming the resonance peak was the largest (-5-20 eV), and the bonding was the strongest. The interatomic bond length at the diamond/TiNTi/WC-Co interface was the longest (4.11 Å), the energy region forming the resonance peak was the smallest (-5-16 eV), and the bonding was the weakest. Comprehensively considering four kinds of intermediate layers, the best intermediate layer for improving the interface bonding performance of DCCC was SiC, and the worst was TiN.

11.
Arab J Urol ; 21(3): 177-184, 2023.
Article in English | MEDLINE | ID: mdl-37521453

ABSTRACT

Background: There is unanimous agreement amongst hypospadias surgeons to use an intermediate layer to cover the neourethra. Dartos fascia and tunica vaginalis (TV) flaps are the most preferred tissues to be used. Tissue glue, sealants and biomaterials are also useful where there is a paucity of local tissue to cover the neourethra. But these blood-derived products have associated infectious and allergic risks. The autologous human platelet concentrate (APC) contains biologically active factors and is safe for wound healing and soft tissue reconstruction. It has been used by few surgeons as an intermediate layer in hypospadias repair. This systematic review and meta-analysis aim to systematically compare the outcomes of hypospadias surgery in children with or without using APCs. Methods: This systematic review and meta-analysis was conducted as per the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. Meta-analysis protocol was registered with INPLASY. A systematic, detailed search was carried out by the authors in the electronic databases, including Medline, Embase, CENTRAL, Scopus, Google Scholar and clinical trial registry. Studies were selected and compared based on primary outcome measures like urethra-cutaneous fistula, meatal stenosis, wound infection and operative time. Statistical analysis was performed using a fixed-effect model, pooled risk ratio and I2 heterogeneity. Results: Four randomized studies with a total of 355 patients were included. Pooled analysis for outcome of urethra-cutaneous fistula (UCF) showed no significant difference between the groups with APC and without APC. Pooled analysis for the other outcome like meatal stenosis, wound infection and total complications showed a decrease in incidence of these complications in groups with APC. Conclusion: This meta-analysis shows that there is a reduction in the incidence of wound infection, meatal stenosis and total complications in patients where APC was used to cover the neourethra, although no such difference was observed in UCF rates.

12.
Angew Chem Int Ed Engl ; 62(29): e202304442, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37173800

ABSTRACT

Tailored design of high-performance nanofiltration membranes that can be used in a variety of applications such as water desalination, resource recovery, and sewage treatment is desirable. Herein, we describe the use of layered double hydroxides (LDH) intermediate layer to control the interfacial polymerization between trimesoyl chloride (TMC) and piperazine (PIP) for the preparation of polyamide (PA) membrane. The dense surface of LDH layer and its unique mass transfer behavior influence the diffusion of PIP, and the supporting role of the LDH layer allows the formation of ultrathin PA membranes. By only changing the concentration of PIP, a series of membranes with controllable thickness from 10 to 50 nm and tunable crosslinking-degree can be prepared. The membrane prepared with a higher concentration of PIP shows excellent performance for divalent salt retention with water permeance of 28 Lm-2 h-1 bar-1 , high rejection of 95.1 % for MgCl2 and 97.1 % for Na2 SO4 . While the membrane obtained with a lower concentration of PIP can sieve dye molecules of different sizes with a flux of up to 70 Lm-2 h-1 bar-1 . This work demonstrates a novel strategy for the controllable preparation of high-performance nanofiltration membranes and provides new insights into how the intermediate layer affects the IP reaction and the final separation performance.

13.
BMC Vet Res ; 19(1): 59, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36882760

ABSTRACT

BACKGROUND: Myxomatous mitral valve degeneration (MMVD) is the most common degenerative heart disease in dogs and is associated with irreversible changes in the valve tissue. Although traditional cardiac biomarkers are efficient for diagnosing MMVD, there are limitations, therefore, it is important to find novel biomarkers. Cartilage intermediate layer protein 1 (CILP1), an extracellular matrix-derived protein, acts as a transforming growth factor-ß antagonist and is involved in myocardial fibrosis. This study aimed to evaluate serum CILP1 levels in canines with MMVD. Dogs with MMVD were staged according to the American College of Veterinary Internal Medicine consensus guidelines. Data analysis was performed using the Mann-Whitney U test, Spearman's correlation, and receiver operating characteristic (ROC) curves. RESULTS: CILP1 levels were elevated in dogs with MMVD (n = 27) compared to healthy controls (n = 8). Furthermore, results showed that CILP1 levels were significantly higher in stage C group dogs compared to healthy controls. The ROC curve of CILP1 and NT-proBNP were good predictors of MMVD, although no similarity was observed between the two. Left ventricular end-diastolic diameter normalized to the body weight (LVIDdn) and left atrial to aorta dimension (LA/Ao) showed a strong association with CILP1 levels; however, no correlation was observed between CILP1 levels and vertebral heart size (VHS) and vertebral left atrial score (VLAS). The optimal cut-off value was selected from the ROC curve and dogs were classified according to the cut-off value (1.068 ng/mL, sensitivity 51.9%, specificity 100%). Results showed a significant association of CILP1 with cardiac remodeling indicators, such as VHS, VLAS, LA/Ao, and LVIDdn. CONCLUSIONS: CILP1 can be an indicator of cardiac remodeling in canines with MMVD and therefore, can be used as an MMVD biomarker.


Subject(s)
Atrial Fibrillation , Dog Diseases , Mitral Valve Prolapse , Dogs , Animals , Atrial Fibrillation/veterinary , Mitral Valve , Ventricular Remodeling , Mitral Valve Prolapse/diagnosis , Mitral Valve Prolapse/veterinary , Biomarkers , Body Weight , Extracellular Matrix Proteins , Cartilage , Dog Diseases/diagnosis
14.
ACS Appl Mater Interfaces ; 15(19): 23875-23887, 2023 May 17.
Article in English | MEDLINE | ID: mdl-36977354

ABSTRACT

The employment of intermediate layer technology to improve the mechanical stability of superhydrophobic coatings (SHCs) is an acknowledged tool, but the mechanism by which intermediate layers, especially different ones, affect superhydrophobic composite coatings is not clear. In this work, a series of SHCs based on the strengthening of the intermediate layer were fabricated by employing polymers with different elastic moduli such as polydimethylsiloxane (PDMS), polyurethane (PU), epoxy (EP) resin, as well as graphite/SiO2 hydrophobic components. Following that, the effect of different elastic modulus polymers as an intermediate layer on the durability of SHCs was investigated. From the perspective of elastic buffering, the strengthening mechanism of elastic polymer-based SHCs was clarified. Furthermore, from the perspective of self-lubrication, the wear resistance mechanism of self-lubricating hydrophobic components in the SHCs was elucidated. Also, the prepared coatings exhibited excellent acid and alkali resistance, self-cleaning, anti-stain, and corrosion resistance. This work confirms that low-elastic-modulus polymers can also play the role of buffering external impact energy by elastic deformation even as an intermediate layer, and provides theoretical guidance for the development of SHCs with robustness.

15.
Polymers (Basel) ; 14(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36501625

ABSTRACT

Due to the high degree of dissimilarity in physicochemical properties between metal and carbon fiber, it presents a tremendous challenge to join them directly. In this paper, cold rolled steel (SPCC) and carbon fiber reinforced thermoplastic (CFRTP) chopped sheet hybrid joints were produced with the addition of Nylon 6 (PA6) thermoplastic film as an intermediate layer by the ultrasonic plastic welding method. The effect of ultrasonic welding energy and preheating temperature on the hybrid joint microstructure and mechanical behavior was well investigated. The suitable joining parameters could obtain a strong joint by adding the PA6 film as an intermediate layer between the SPCC and bare carbon fibers. Microstructural analysis revealed that the interface joining condition between the PA6 film and the SPCC component is the primary reason for the joint strength. The crevices generated at the interface were eliminated when the preheating temperature arrived at 200 °C, and the joint strength thus significantly increased. The lap shear test results under quasi-static loading showed that the welding energy and preheating temperature synergistically affect the joint performances. At 240 °C, the joint strength value reached the maximum. Through the analysis of the microstructure morphology, mechanical performance, and the failure mechanism of the joint, the optimized joining process window for ultrasonic plastic welding of SPCC-CFRTP by adding an intermediate layer, was obtained.

16.
Entropy (Basel) ; 24(11)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36421546

ABSTRACT

Recently, with the rise of deep learning, text classification techniques have developed rapidly. However, the existing work usually takes the entire text as the modeling object and pays less attention to the hierarchical structure within the text, ignoring the internal connection between the upper and lower sentences. To address these issues, this paper proposes a Bert-based hierarchical graph attention network model (BHGAttN) based on a large-scale pretrained model and graph attention network to model the hierarchical relationship of texts. During modeling, the semantic features are enhanced by the output of the intermediate layer of BERT, and the multilevel hierarchical graph network corresponding to each layer of BERT is constructed by using the dependencies between the whole sentence and the subsentence. This model pays attention to the layer-by-layer semantic information and the hierarchical relationship within the text. The experimental results show that the BHGAttN model exhibits significant competitive advantages compared with the current state-of-the-art baseline models.

17.
Materials (Basel) ; 15(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35629447

ABSTRACT

Cu2ZnSn(S,Se)4 (CZTSSe) solar cells with low cost and eco-friendly characteristics are attractive as future sources of electricity generation, but low conversion efficiency remains an issue. To improve conversion efficiency, a method of inserting intermediate layers between the CZTSSe absorber film and the Mo back contact is used to suppress the formation of MoSe2 and decomposition of CZTSSe. Among the candidates for the intermediate layer, graphene oxide (GO) and reduced GO have excellent properties, including high-charge mobility and low processing cost. Depending on the type of GO, the solar cell parameters, such as fill factor (FF), were enhanced. Thus, the conversion efficiency of 6.3% was achieved using the chemically reduced GO intermediate layer with significantly improved FF.

18.
Membranes (Basel) ; 12(5)2022 May 18.
Article in English | MEDLINE | ID: mdl-35629856

ABSTRACT

Pd-membranes are interesting in multiple ultra-pure hydrogen production processes, although they can suffer inhibition by certain species or abrasion under fluidization conditions in membrane reactors, thus requiring additional protective layers to ensure long and stable operation. The ability to incorporate intermediate and palladium films with enough adherence on both external and internal surfaces of tubular porous supports becomes crucial to minimize their complexity and cost. This study addresses the incorporation of CeO2 and Pd films onto the internal side of PSS tubes for applications in which further protection could be required. The membranes so prepared, with a Pd-thickness around 12-15 µm, show an excellent mechanical resistance and similar performance to those prepared on the external surface. A good fit to Sieverts' law with an H2-permeance of 4.571 × 10-3 mol m-2 s-1 Pa-0.5 at 400 °C, activation energy around 15.031 kJ mol-1, and complete ideal perm-selectivity was observed. The permeate fluxes reached in H2 mixtures with N2, He, or CO2 decreased with dilution and temperature due to the inherent concentration-polarization. The presence of CO in mixtures provoked a higher decrease because of a further inhibition effect. However, the original flux was completely recovered after feeding again with pure hydrogen, maintaining stable operation for at least 1000 h.

19.
Prog Biomater ; 10(4): 259-269, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34741278

ABSTRACT

Modification of dental and orthopedic implants' surface by coating them with bioactive materials, such as hydroxyapatite (HA), diminishes the implants' fixation time. Appropriate adhesion to the substrate and stability in biological conditions are essential requirements for these coatings. In this study, sol-gel-derived HA coating was applied on the Ti-6Al-4 V substrate, which is a high-performance alloy for manufacturing bone implants. Also, titanium dioxide (TiO2) which was prepared by the sol-gel method was used as an intermediate layer between HA coating and the substrate. The nano-scratch and potentiodynamic polarization tests were employed to evaluate the effectiveness of TiO2 intermediate layer on improving the scratch resistance, as an indicator of coating adhesion strength, and the corrosion resistance of the coated samples. The quality of the coating bonded to the substrate was studied by cross-sectional SEM images. The XRD tests indicated that HA and TiO2 coatings were formed with predetermined phase compositions. The biocompatibility of sol-gel-derived HA coating was established by simulated body fluid (SBF) immersion tests. The SEM images, along with the results of electrochemical and nano-scratch tests, proved the significant effect of a TiO2 intermediate layer on improving the scratch resistance and stability of HA coating on titanium alloy substrate.

20.
Nanomaterials (Basel) ; 11(8)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34443942

ABSTRACT

Chabazite (CHA) zeolite membranes with an intermediate layer of various thicknesses were prepared using planetary-milled seeds with an average particle diameter of 300, 250, 200, 140, and 120 nm. The 120 nm seed sample also contained several smaller particles with a diameter of 20 nm. Such small seeds deeply penetrated into the pore channels of the α-alumina support during the vacuum-assisted infiltration process. During the secondary growth, the penetrated seeds formed a thick intermediate layer exiting between the zeolite layer and support. A decrease in seed size increased the penetration depth of seeds and the thickness of the intermediate layer, while the thickness of seed coating and zeolite layers was decreased. CHA zeolite membranes with a thin top zeoliate layer and a thick intermediate layer showed an excellent water/ethanol separation factor (>10,000) for 90 wt.% ethanol at 70 ℃ with a total flux of 1.5 kg m-2 h-1. There was no observation of thermal cracks/defects on the zeolite separation layer. The thick intermediate layer effectively suppressed the formation of thermal cracks during heating, since the tensile stress induced in the zeolite layer was well compensated by the compressive stress on the support. Therefore, it was successfully proven that controlling the microstructure of top surface and intermediate layers is an effective approach to improve the thermal stability of the CHA zeolite membrane.

SELECTION OF CITATIONS
SEARCH DETAIL
...