Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Radiol Phys Technol ; 16(4): 497-505, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37713060

ABSTRACT

This study evaluated the validity of internal target volumes (ITVs) defined by three- (3DCT) and four-dimensional computed tomography (4DCT), and subsequently compared them with actual movements during treatment. Five patients with upper lobe lung tumors were treated with stereotactic body radiotherapy (SBRT) at 48 Gy in four fractions. Planning 3DCT images were acquired with peak-exhale and peak-inhale breath-holds, and 4DCT images were acquired in the cine mode under free breathing. Cine images were acquired using an electronic portal imaging device during irradiation. Tumor coverage was evaluated based on the manner in which the peak-to-peak breathing amplitude on the planning CT covered the range of tumor motion (± 3 SD) during irradiation in the left-right, anteroposterior, and cranio-caudal (CC) directions. The mean tumor coverage of the 4DCT-based ITV was better than that of the 3DCT-based ITV in the CC direction. The internal margin should be considered when setting the irradiation field for 4DCT. The proposed 4DCT-based ITV can be used as an efficient approach in free-breathing SBRT for upper-lobe tumors of the lung because its coverage is superior to that of 3DCT.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiosurgery , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Lung Neoplasms/surgery , Radiosurgery/methods , Uncertainty , Lung/diagnostic imaging , Lung/radiation effects , Carcinoma, Non-Small-Cell Lung/pathology , Four-Dimensional Computed Tomography/methods , Respiration , Radiotherapy Planning, Computer-Assisted/methods
2.
Clin Transl Radiat Oncol ; 40: 100601, 2023 May.
Article in English | MEDLINE | ID: mdl-36936471

ABSTRACT

Background: Patients who previously underwent surgical resection of initial primary lung cancer are at a high risk of developing multiple primary lung cancers (MPLCs). The purpose of this study was to compare the efficacy and safety between stereotactic body radiation therapy (SBRT) and surgery for MPLCs patients after prior radical resection for the first lung cancers. Methods: In this multicenter retrospective study, eligible MPLC patients with tumor diameter of 5.0 cm or less at N0M0 who underwent SBRT or reoperation between January 2013 and August 2020 were enrolled. The primary endpoint was the 3-year locoregional recurrence and treatment-related toxicity. Kaplan-Meier method was used to calculate survival rates. The χ2 test was adapted to assess the difference of categorical variables between the two subgroup patients. Results: A total of 203 (73 in the SBRT group and 130 in the surgery group) patients from three academic cancer centers were evaluated with a median follow-up of 38.3 months. The cumulative 1-, 2-, and 3-year incidences of locoregional recurrence were 5.6 %, 7.0 % and 13.1 % in the SBRT group versus 3.2 %, 4.8 % and 7.4 % in the surgery group, respectively [hazard ratio (HR), 1.97; 95 % confidence interval (CI), 0.74-5.24; P = 0.14]. The cancer-specific survival rates were 95.9 %, 94.5 % and 88.1 % versus 96.9 %, 94.6 % and 93.8 % in the SBRT and surgery groups respectively (HR, 1.72; 95 % CI, 0.67-4.44; P = 0.23). In the SBRT group, two patients (2.7 %) suffered from grade 3 radiation pneumonitis, while in the surgery group, grade 3 complications occurred in four (3.1 %) patients, and four cases were expired due to pneumonia or pulmonary heart disease within 90 days after surgery. Conclusions: SBRT is an effective therapeutic option with limited toxicity compared to surgery for patients with MPLCs after prior radical surgical resection, and it could be considered as an alternative treatment for those patients.

3.
Phys Imaging Radiat Oncol ; 25: 100407, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36655214

ABSTRACT

Background and purpose: Reduction of respiratory tumour motion is important in liver stereotactic body radiation therapy (SBRT) to reduce side effects and improve tumour control probability. We have assessed the distribution of use of voluntary exhale breath hold (EBH), abdominal compression (AC), free breathing gating (gating) and free breathing (FB), and the impact of these on treatment time. Materials and Methods: We assessed all patients treated in a single institution with liver SBRT between September 2017 and September 2021. Data from pre-simulation motion management assessment using fluoroscopic assessment of liver dome position in repeat breath holds, and motion with and without AC, was reviewed to determine liver dome position consistency in EBH and the impact of AC on motion. Treatment time was assessed for all fractions as time from first image acquisition to last treatment beam off. Results: Of 136 patients treated with 145 courses of liver SBRT, 68 % were treated in EBH, 20 % with AC, 7 % in gating and 5 % in FB. AC resulted in motion reduction < 1 mm in 9/26 patients assessed. Median treatment time was higher using EBH (39 min) or gating (42 min) compared with AC (30 min) or FB (24 min) treatments. Conclusions: Motion management in liver SBRT needs to be assessed per-patient to ensure appropriate techniques are applied. Motion management significantly impacts treatment time therefore patient comfort must also be taken into account when selecting the technique for each patient.

4.
Phys Imaging Radiat Oncol ; 24: 21-29, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36148153

ABSTRACT

Background and Purpose: A survey on the patterns of practice of respiratory motion management (MM) was distributed to 111 radiation therapy facilities to inform the development of an end-to-end dosimetry audit including respiratory motion. Materials and methods: The survey (distributed via REDCap) asked facilities to provide information specific to the combinations of MM techniques (breath-hold gating - BHG, internal target volume - ITV, free-breathing gating - FBG, mid-ventilation - MidV, tumour tracking - TT), sites treated (thorax, upper abdomen, lower abdomen), and fractionation regimes (conventional, stereotactic ablative body radiation therapy - SABR) used in their clinic. Results: The survey was completed by 78% of facilities, with 98% of respondents indicating that they used at least one form of MM. The ITV approach was common to all MM-users, used for thoracic treatments by 89% of respondents, and upper and lower abdominal treatments by 38%. BHG was the next most prevalent (41% of MM users), with applications in upper abdominal and thoracic treatment sites (28% vs 25% respectively), but minimal use in the lower abdomen (9%). FBG and TT were utilised sparingly (17%, 7% respectively), and MidV was not selected at all. Conclusions: Two distinct treatment workflows (including use of motion limitation, imaging used for motion assessment, dose calculation, and image guidance procedures) were identified for the ITV and BHG MM techniques, to form the basis of the initial audit. Thoracic SABR with the ITV approach was common to nearly all respondents, while upper abdominal SABR using BHG stood out as more technically challenging. Other MM techniques were sparsely used, but may be considered for future audit development.

5.
Radiother Oncol ; 173: 69-76, 2022 08.
Article in English | MEDLINE | ID: mdl-35667575

ABSTRACT

BACKGROUND: Liver tumors are often invisible on four-dimensional commuted tomography (4D-CT). Imperfect imaging surrogates are used to estimate the tumor motion. Here, we assessed multiple 4D magnetic resonance (MR) binning algorithms for directly visualizing liver tumor motion for radiotherapy planning. METHODS: Patients were simulated using a 3 Tesla MR and CT scanner. Three prototype binning algorithms (phase, amplitude, and two-directional) were applied to the 4D-MRIs, and the image quality was assessed using a qualitative clarity score and quantitative sharpness score. Radiation plans were generated for internal target volumes (ITVs) derived using 4D-MRI and 4D-CT, and the dosimetry of targets were compared. Paired t-tests were used to compare sharpness scores and dosimetric data. RESULTS: Twelve patients with 17 liver tumors were scanned between May and November 2021. Compared to phase binning, two-directional demonstrated equal or better clarity and sharpness scores (end-expiration: 0.33 vs 0.38, p = 0.018, end-inspiration: 0.28 vs 0.31, p = 0.010). Compared to amplitude binning, two-directional binning captured hysteresis of ≥ 3 mm in 35 % of patients. Evaluation of dosimetry CT-optimized plans revealed that PTV coverage of MR-derived targets were significantly lower than CT-derived targets (PTV receiving 90 % of prescription: 75.56 % vs 89.38 %, p = 0.002). CONCLUSION: Using contrast-enhanced 4D-MRI is feasible for directly delineating liver tumors throughout the respiratory cycle. The current standard of using radiation plans optimized for 4D-CT-derived targets achieved lower coverage of directly visualized MRI targets, suggesting that adopting MRI for motion management may improve radiation treatment of liver lesions and reduce the risk of marginal misses.


Subject(s)
Liver Neoplasms , Lung Neoplasms , Four-Dimensional Computed Tomography/methods , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/radiotherapy , Lung Neoplasms/radiotherapy , Magnetic Resonance Imaging/methods , Radiotherapy Planning, Computer-Assisted/methods , Respiration
6.
J Appl Clin Med Phys ; 23(6): e13596, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35377962

ABSTRACT

PURPOSE: Real-time tracking systems of moving respiratory targets such as CyberKnife, Radixact, or Vero4DRT are an advanced robotic radiotherapy device used to deliver stereotactic body radiotherapy (SBRT). The internal target volume (ITV) of lung tumors is assessed through a fiducial marker fusion using four-dimensional computed tomography (CT). It is important to minimize the ITV to protect normal lung tissue from exposure to radiation and the associated side effects post SBRT. However, the ITV may alter if there is a change in the position of the fiducial marker with respect to the tumor. This study investigated the relationship between fiducial marker position and the ITV in order to prevent radiation exposure of normal lung tissue, and correct target coverage. MATERIALS AND METHODS: This study retrospectively reviewed 230 lung cancer patients who received a fiducial marker for SBRT between April 2015 and September 2021. The distance of the fiducial marker to the gross tumor volume (GTV) in the expiratory (dex ) and inspiratory (din ) CT, and the ratio of the ITV/V(GTVex ), were investigated. RESULTS: Upon comparing each lobe, although there was no significant difference in the ddiff and the ITV/V(GTVex ) between all lobes for dex  < 10 mm, there was significant difference in the ddiff and the ITV/V(GTVex ) between the lower and upper lobes for dex ≥ 10 mm (p < 0.05). Moreover, there was significant difference in the ddiff and the ITV/V(GTVex ) between dex ≥10 mm and dex  < 10 mm in all lung regions (p < 0.05). CONCLUSION: The ITV that had no margin from GTVs increased when dex was ≥10 mm for all lung regions (p < 0.05). Furthermore, the increase in ITV tended to be greater in the lower lung lobe. These findings can help decrease the possibility of adverse events post SBRT, and correct target coverage.


Subject(s)
Lung Neoplasms , Radiosurgery , Fiducial Markers , Four-Dimensional Computed Tomography/methods , Humans , Lung/diagnostic imaging , Lung/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Lung Neoplasms/surgery , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Retrospective Studies
7.
Cancer Med ; 11(1): 151-165, 2022 01.
Article in English | MEDLINE | ID: mdl-34821082

ABSTRACT

BACKGROUND: To evaluate whether the use of the internal target volume (ITV) delineation method improves the performance of intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3DCRT) in terms of survival, acute toxicities, and dose-volume parameters. METHODS: A total number of 477 cervical cancer patients who received concurrent chemoradiotherapy (CCRT) from January 2012 to December 2016 were retrospectively analyzed. They were divided into four groups: the non-ITV (N-ITV) + IMRT, ITV + IMRT, N-ITV + 3DCRT, and ITV + 3DCRT groups, with 76, 41, 327, and 33 patients, respectively. Survival analysis was performed with the Kaplan-Meier and the log-rank tests, and acute toxicity analysis was performed with the chi-squared test and the binary logistic regression test. Using the propensity score matching (PSM) method, 92 patients were matched among the four groups, and their dose-volume parameters were assessed with the Kruskal-Wallis method. RESULTS: The median follow-up time was 49 months (1-119) for overall survival (OS). The 5-year OS rate was 66.4%. The ITV delineation method was an independent prognostic factor for OS (HR [95% CI]: 0.52 [0.27, 0.98], p = 0.044) and progression-free survival (PFS) (HR [95% CI]: 0.59 [0.36, 0.99], p = 0.045). The ITV + IMRT group had the lowest incidence rate (22%) and the N-ITV + IMRT group had the highest incidence rate of grade ≥3 hematological toxicity (HT) (46.1%) among the four groups. The pelvic bone marrow relative V10, V20, and V30 in the N-ITV + IMRT group was higher than those in the ITV + IMRT and N-ITV + 3DCRT groups (p < 0.05). CONCLUSIONS: The use of ITV for IMRT treatment planning was associated with improved overall survival and progression-free survival, with lower HT rate.


Subject(s)
Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/adverse effects , Radiotherapy, Intensity-Modulated/adverse effects , Uterine Cervical Neoplasms/radiotherapy , Adult , Chemoradiotherapy , Female , Follow-Up Studies , Humans , Middle Aged , Propensity Score , Radiotherapy Dosage , Retrospective Studies , Survival Analysis , Uterine Cervical Neoplasms/mortality
8.
Front Oncol ; 11: 753246, 2021.
Article in English | MEDLINE | ID: mdl-34692536

ABSTRACT

PURPOSE: To develop an internal target volume (ITV) margin determination framework (or decision-supporting framework) for treating multiple lung metastases using CyberKnife Synchrony with intraoperatively implanted fiducial markers (IIFMs). The feasibility of using non-ideally implanted fiducial markers (a limited number and/or far from a target) for tracking-based lung stereotactic ablative radiotherapy (SABR) was investigated. METHODS: In the developed margin determination framework, an optimal set of IIFMs was determined to minimize a tracking uncertainty-specific ITV (ITVtracking) margin (margin required to cover target-to-marker motion discrepancy), i.e., minimize the motion discrepancies between gross tumor volume (GTV) and the selected set of fiducial markers (FMs). The developed margin determination framework was evaluated in 17 patients with lung metastases. To automatically calculate the respiratory motions of the FMs, a template matching-based FM tracking algorithm was developed, and GTV motion was manually measured. Furthermore, during-treatment motions of the selected FMs were analyzed using log files and compared with those calculated using 4D CTs. RESULTS: For 41 of 42 lesions in 17 patients (97.6%), an optimal set of the IIFMs was successfully determined, requiring an ITVtracking margin less than 5 mm. The template matching-based FM tracking algorithm calculated the FM motions with a sub-millimeter accuracy compared with the manual measurements. The patient respiratory motions during treatment were, on average, significantly smaller than those measured at simulation for the patient cohort considered. CONCLUSION: Use of the developed margin determination framework employing CyberKnife Synchrony with a limited number of IIFMs is feasible for lung SABR.

9.
J Med Phys ; 46(2): 59-65, 2021.
Article in English | MEDLINE | ID: mdl-34566284

ABSTRACT

PURPOSE: Respiratory-induced tumor motion is a major challenge in lung cancer (LC) radiotherapy. Four-dimensional computed tomography (4D-CT) using a maximum intensity projection (MIP) dataset is a commonly used and time-efficient method to generate internal target volume (ITV). This study compared ITV delineation using MIP or tumor delineation on all phases of the respiratory cycle. MATERIALS AND METHODS: Thirty consecutive patients of LC who underwent 4D-CT from January 2014 to March 2017 were included. ITV delineation was done using MIP (ITVMIP) and all ten phases of the respiratory cycle (ITV10Phases). Both volumes were analyzed using matching index (MI). It is the ratio of the intersection of two volumes to the union of two volumes. A paired sample t-test was used for statistical analysis, and P < 0.05 was considered statistically significant. RESULTS: The mean ± standard deviation volume of ITV10Phases was significantly larger compared to ITVMIP (134 cc ± 39.1 vs. 113 cc ± 124.2, P = 0.000). The mean MI was 0.75 (range 0.57-0.88). The mean volume of ITV10Phases not covered by ITVMIP was 26.33 cc (23.5%) and vice versa was 5.51 cc (6.1%). The mean MI was 0.73 for tumors close to the mediastinum, chest wall, and diaphragm. MI was not different between tumors ≤5 cm and >5 cm. The average time required for delineation was 9 and 96 min, respectively. The center of mass of two ITVs differed by 0.01 cm. CONCLUSION: ITV using MIP is significantly smaller and may miss a tumor compared to ITV delineation in 10 phases of 4D-CT. However, the time required is significantly less with MIP. Caution should be exercised in tumors proximity to the mediastinum, chest wall, and diaphragm.

10.
Clin Transl Radiat Oncol ; 31: 28-33, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34522796

ABSTRACT

PURPOSE: Optic nerves are part of the craniospinal irradiation (CSI) target volume. Modern radiotherapy techniques achieve highly conformal target doses while avoiding organs-at-risk such as the lens. The magnitude of eye movement and its influence on CSI target- and avoidance volumes are unclear. We aimed to evaluate the movement-range of lenses and optic nerves and its influence on dose distribution of several planning techniques. METHODS: Ten volunteers underwent MRI scans in various gaze directions (neutral, left, right, cranial, caudal). Lenses, orbital optic nerves, optic discs and CSI target volumes were delineated. 36-Gy cranial irradiation plans were constructed on synthetic CT images in neutral gaze, with Volumetric Modulated Arc Therapy, pencil-beam scanning proton therapy, and 3D-conventional photons. Movement-amplitudes of lenses and optic discs were analyzed, and influence of gaze direction on lens and orbital optic nerve dose distribution. RESULTS: Mean eye structures' shift from neutral position was greatest in caudal gaze; -5.8±1.2 mm (±SD) for lenses and 7.0±2.0 mm for optic discs. In 3D-conventional plans, caudal gaze decreased Mean Lens Dose (MLD). In VMAT and proton plans, eye movements mainly increased MLD and diminished D98 orbital optic nerve (D98OON) coverage; mean MLD increased up to 5.5 Gy [total ΔMLD range -8.1 to 10.0 Gy], and mean D98OON decreased up to 3.3 Gy [total ΔD98OON range -13.6 to 1.2 Gy]. VMAT plans optimized for optic disc Internal Target Volume and lens Planning organ-at-Risk Volume resulted in higher MLD over gaze directions. D98OON became ≥95% of prescribed dose over 95/100 evaluated gaze directions, while all-gaze bilateral D98OON significantly changed in 1 of 10 volunteers. CONCLUSION: With modern CSI techniques, eye movements result in higher lens doses and a mean detriment for orbital optic nerve dose coverage of <10% of prescribed dose.

11.
Clin Transl Radiat Oncol ; 29: 20-26, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34027140

ABSTRACT

BACKGROUND: For decades, Anterior-Posterior/Posterior-Anterior (AP/PA) photon beams were standard-of-care for flank irradiation in children with renal cancer. Recently, highly conformal flank target volumes were defined correcting for postoperative organ shift and intra-fraction motion.By radiotherapy treatment plan comparison, this study aims to estimate the clinical benefits and potential risks of combining highly conformal target volumes with Volumetric-Modulated Arc Therapy (VMAT) versus conventional target volumes with AP/PA beams for flank irradiation. MATERIALS AND METHODS: Twenty consecutive renal tumor cases (left/right-sided:10/10; median age:3.2 years) were selected. Highly conformal flank target volumes were generated for VMAT, while conventional target volumes were used for AP/PA. For each case, the dose to the organs at risk (OARs) and Total Body Volume (TBV) was calculated to compare VMAT with AP/PA treatment plans for a prescribed dose (PD) of 14.4/1.8 Gy. Dose constraint violation of the tail of the pancreas and spleen (Dmean < 10 Gy), heart (D50 < 5 Gy) or mammary buds (Dmean < 10 Gy) were prioritized as potentially beneficial for clinics. RESULTS: Highly conformal Planning Target Volumes (PTV) were smaller than conventional volumes (mean ΔPTVAP/PA-PTVVMAT: 555 mL, Δ60%, p=<0.01). A mean dose reduction favoring VMAT was observed for almost all OARs. Dose constraints to the tail of the pancreas, spleen, heart and mammary buds were fulfilled in 8/20, 12/20, 16/20 and 19/20 cases with AP/PA, versus 14/20, 17/20, 20/20 and 20/20 cases with VMAT, respectively. In 12/20 cases, VMAT prevented the dose constraint violation of one or more OARs otherwise exceeded by AP/PA. VMAT increased the TBV receiving 10% of the PD, but reduced the amount of irradiated TBV for all higher doses. CONCLUSION: Compared to 14.4 Gy flank irradiation using conventional AP/PA photon beams, an estimated clinical benefit by dose reduction to the OARs can be expected in 60% of the pediatric renal tumor cases using highly conformal flank target volumes combined with VMAT.

12.
Med Phys ; 48(6): 3200-3207, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33792065

ABSTRACT

PURPOSE: To develop a dosimetric internal target volume (ITV) margin (DIM) for respiratory motion in lung stereotactic body radiotherapy (SBRT) and to evaluate DIM with a nonuniform volume prescription (NVP) and the point prescription (PP). METHODS: Volumetric modulated arc therapy (VMAT) treatment plans with PP and NVP were created on a heterogeneous programmable respiratory motion phantom, with a tumor (30-mm diameter) inside a cylindrical lung insert. The tumor was defined as the gross tumor volume (GTV), equal to the clinical target volume (CTV). Five-millimeter and 0-mm margins were used for the ITV and setup margins, respectively. The phantom was moved in cranio-caudal direction with a biquadratic sinusoidal waveform with a 4-s cycle and an amplitude of ±5-10 mm. The interplay effect was evaluated by measuring the dose profile with a film in the sagittal plane for different respiratory periods and different initial respiratory phases. DIM was based on the respiratory motion amplitude that satisfied 100% and 95% coverage of the prescribed dose by the minimum dose of the CTV. Moreover, the absolute dose was measured with and without respiratory motion for NVP by a pinpoint chamber. RESULTS: The dose difference in the tumor region due to the interplay effect was within 1.0%. The gamma passing rate was over 95.1% for different respiratory periods and 98.6% for different initial respiratory phases. DIM with PP was almost equivalent to the margin of the respiratory motion. However, DIM with NVP was 2.0 and 1.8 times larger than the margin of the respiratory motion for the 100% and 95% coverage of the prescribed doses, respectively. CONCLUSION: The interplay effects experienced between the MLC sequence and tumor motion were negligible for NVP. The DIM analysis revealed that the margin to compensate the respiratory tumor motion could be reduced by more than 44-50% for NVP in SBRT.


Subject(s)
Lung Neoplasms , Radiosurgery , Radiotherapy, Intensity-Modulated , Humans , Lung , Lung Neoplasms/radiotherapy , Lung Neoplasms/surgery , Prescriptions , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
13.
Quant Imaging Med Surg ; 11(1): 32-42, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33392009

ABSTRACT

BACKGROUND: To investigate the feasibility of generating maximum intensity projection (MIP) images to determine internal target volume (ITV) using slice-stacking MRI (SS-MRI) technique. METHODS: Slice-stacking is a technique which applies a multi-slice MRI acquisition to generate a 3D MIP for ITV contouring, without reconstructing 4D-MRI. 4D digital extended cardiac-torso (XCAT) phantom was used to generate MIP images with sequential 2D HASTE sequence, with different tumor diameters (10, 30 and 50 mm) and with simulated regular and irregular (patient) breathing motions. A reference MIP was generated using all acquisition images. Consecutive repetitions were then used to generate MIP to analyze the relationship between Dice's similarity coefficient (DSC) and the number of repetitions, and the relationship between the relative ITV volume difference and the number of repetitions. Images from XCAT phantom and from three hepatic carcinoma patients were collected in this study to demonstrate the feasibility of this technique. RESULTS: For both regular and irregular breathing motion, the average DSC of ITV is >0.94 and the average relative ITV volume difference is <10% (approximately 0.15 cm3) when using 5 repeated scanning images to reconstruct MIP for tumor diameter of 10 mm. As tumor diameter increases, the DSC of ITV is >0.97 and the relative ITV volume difference is <5% for regular breathing motion, and the DSC of ITV is >0.97 and the relative ITV volume difference is <5.5% for irregular breathing motion when using 5 repeated scanning images to reconstruct MIP. In patient image study, the mean relative ITV volume difference is <3% and the mean DSC is 0.99 when using 5 repeated scanning images to reconstruct MIP. CONCLUSIONS: The number of scans required to generate tumor ITV for slice-stacking method (5-7 repetition) is 3-4 times less than that of 4D-MRI (15-20 repetitions). It is feasible to generate a fast clinically acceptable ITV using slice-stacking method with sequential 2D MR images.

14.
Front Oncol ; 11: 717984, 2021.
Article in English | MEDLINE | ID: mdl-35127464

ABSTRACT

BACKGROUND AND PURPOSE: This study aimed to systematically evaluate the influence of target-related and clinical factors on volume differences and the similarity of targets derived from four-dimensional computed tomography (4DCT) and cone beam computed tomography (CBCT) images in lung stereotactic body radiation therapy (SBRT). MATERIALS AND METHODS: 4DCT and CBCT image data of 210 tumors from 195 patients were analyzed. The internal gross target volume (IGTV) derived from the maximum intensity projection (MIP) of 4DCT (IGTV-MIP) and the IGTV from CBCT (IGTV-CBCT) were compared with the reference IGTV from 10 phases of 4DCT (IGTV-10). The target size, tumor motion, and the similarity between IGTVs were measured. The influence of target-related and clinical factors on the adequacy of IGTVs derived from 4DCT MIP and CBCT images was evaluated. RESULTS: The mean tumor motion amplitude in the 3D direction was 6.5 ± 5 mm. The mean size ratio of IGTV-CBCT and IGTV-MIP compared to IGTV-10 in all patients was 0.71 ± 0.21 and 0.8 ± 0.14, respectively. Female sex, greater BSA, and larger target size were protective factors, while the Karnofsky Performance Status, body mass index, and motion were risk factors for the similarity between IGTV-MIP and IGTV-10. Older age and larger target size were protective factors, while adhesion to the heart, coexistence with cardiopathy, and tumor motion were risk factors for the similarity between IGTV-CBCT and IGTV-10. CONCLUSION: Clinical factors should be considered when using MIP images for defining ITV, and when using CBCT images for verifying treatment targets.

15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1006723

ABSTRACT

【Objective】 To investigate setup and respiratory movement residual error with the guidance of online four-dimensional cone beam computed tomography (4DCBCT) and the impact on margins required to internal target volume (ITV) margin during stereotactic body radiotherapy (SBRT) of lung tumor in the middle or lower lobe. 【Methods】 Twenty SBRT treatment patients with lung tumor in the middle or lower lobe were enrolled for treatment residual error retrospective analysis. Thermoplastic masks were used as immobilization devices during SBRT treatment. ITV was determined by 4DCBCT simulation. A total of 76 4DCBCT scans before the treatment were recorded to determine the setup and respiratory residual error for ITV margins. 【Results】 The setup and respiratory movement error were significantly reduced with the guidance of online 4DCBCT during radiotherapy. The setup residual errors were respectively (0.07±0.12)cm, (0.03±0.29)cm and (0.04±0.14)cm in right-left (RL), superior-inferior (SI) directions and anterior-posterior (AP) directions. The respiratory movement residual errors were respectively (-0.06±0.07)cm, (0.02±0.26)cm and (0.02±0.11)cm in RL, AP, and SI directions. Based on setup and respiratory movement residual errors, the PTV margins of NSCLC were reduced from 1.13 cm, 2.15 cm and 0.90 cm to 0.50 cm, 0.59 cm and 0.56 cm in RL, AP and SI directions, respectively, calculated with recipe by VanHerk. 【Conclusion】 With the guidance of online 4DCBCT, the setup and respiratory movement residual error cannot be ignored during SBRT of lung tumor in the middle or lower lobe. The ITV margin required after online 4DCBCT correction for the patients enrolled in the study would be approximatively 0.6 cm around to ensure an accurate dose to the target tumor and reduce the dose to normal tissues.

16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-910513

ABSTRACT

Objective:To analyze the influence of tracking error of Xsight lung tracking system caused by cardiac beating.Methods:48 patients with lung tumors adjacent to the heart were enrolled into this study. The tumor movement curves were collected by the Xsight lung tracking system and recorded in the treatment log files during the Cyberknife treatment process. The curves were subject to filtering analysis and the respiratory motion of < 1 Hz and the cardiac beating motion of > 1 Hz were separated. According to the filtering results, the patient treatment tracking data were divided into two groups based on whether the cardiac beating wave of >1 Hz existed. The tracking errors were statistically compared between two groups based on the X-ray imaging data collected by Xsight lung tracking system during treatment.Results:For the fractionation with cardiac beat information, the tracking errors of the patient′s related models were (1.45 ± 0.99), (0.46 ± 0.21) and (0.70 ± 0.54) mm in the left-right, superior-inferior and anterior-posterior direction, respectively. For the fractionation without cardiac beat information, the tracking errors of the patient′s related models were (1.52 ± 1.17), (0.63 ± 0.37) and (1.07 ± 0.62) mm in the left-right, superior-inferior and anterior-posterior direction, respectively. The tracking errors in the superior-inferior and anterior-posterior direction of patients with accurate cardiac beat models were 28.34% and 34.86% less than those of their counterparts without accurate cardiac beat models and there was significant difference (both P<0.05). Conclusion:The tracking accuracy of Xsight lung tracking system will be significantly improved if the cardiac beat model is accurately established.

17.
Phys Med ; 80: 277-287, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33246187

ABSTRACT

We investigated the dose differences between robust optimization-based treatment planning (4DRO) and range-adapted internal target volume (rITV). We used 4DCT dataset of 20 lung cancer and 20 liver cancer patients, respectively, who had been treated with respiratory-gated carbon-ion pencil beam scanning therapy. 4DRO and rITV plans were created with the same clinical target volume (CTV) and organs at risk (OAR) contours. Four-dimensional dose distribution was calculated using deformable image registration. Dose metrics (e.g. D95, V20) were analyzed. Statistical significance was assessed by the Wilcoxon signed-rank test. For the lung cases, the mean CTV-D95 value for the rITV plan (=98.5%) was same as that for the 4DRO plan (=98.5%, P = 0.106), while the mean D95 value for the CTV + setup margin contour for the rITV plan (=98.2%) was higher than that for the 4DRO plan (95.2%, P < 0.001). For the liver cases, the mean CTV-D95 value for the rITV plan (=98.1%) was slightly lower than that for the 4DRO plan (=98.5%, P < 0.01), while the mean D95 value for the CTV + setup margin contour for the rITV plan (=98.0%) was higher than that for the 4DRO plan (94.1%, P < 0.001). For the doses to the organs at risk (OARs), the ipsilateral lung-V20/liver-V20 values for the rITV plan (=10.1%/19.7%) was significantly higher than that for the 4DRO plan (=8.6%/17.6, P < 0.001). Although the target coverage for 4DRO plan may be worse than that for rITV plan in the presence of the setup error, the 4DRO plan can improve OAR dose while preserving acceptable target dose coverage.


Subject(s)
Lung Neoplasms , Radiotherapy, Intensity-Modulated , Carbon , Humans , Liver/diagnostic imaging , Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
18.
Article in English | MEDLINE | ID: mdl-32954018

ABSTRACT

The use of passively scattered proton therapy (PSPT) or intensity modulated proton therapy (IMPT) opens the potential for dose escalation or critical structure sparing in thoracic malignancies. While the latter offers greater dose conformality, dose distributions are subjected to greater uncertainties, especially due to interplay effects. Exploration in this area is warranted to determine if there is any dosimetric advantages in using IMPT for thoracic malignancies. This review aims to both compare organs-at-risk sparing and plan robustness between PSPT and IMPT and examine the mitigation strategies for the reduction of interplay effects currently available. Early evidence suggests that IMPT is dosimetrically superior to PSPT in thoracic malignancies. Randomised control trials are required before any clinical benefit of IMPT can be confirmed.

19.
Radiat Oncol ; 15(1): 152, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32532334

ABSTRACT

BACKGROUND: Internal Target Volume (ITV) is one of the most common strategies to passively manage tumour motion in Radiotherapy (RT). The reliability of this approach is based on the assumption that the tumour motion estimated during pre-treatment 4D Computed Tomography (CT) acquisition is representative of the motion during the whole RT treatment. With the introduction of Magnetic Resonance-guided RT (MRgRT), it has become possible to monitor tumour motion during the treatment and verify this assumption. Aim of this study was to investigate the reliability of the ITV approach with respect to the treatment fraction time (TFT) in abdominal and thoracic lesions. METHODS: A total of 12 thoracic and 15 abdominal lesions was analysed. Before treatment, a 10-phase 4DCT was acquired and ITV margins were estimated considering the envelope of the lesion contoured on the different 4DCT phases. All patients underwent MRgRT treatment in free-breathing, monitoring the tumour position on a sagittal plane with 4 frames per second (sec). ITV margins were projected on the tumour trajectory and the percentage of treatment time in which the tumour was inside the ITV (%TT) was measured to varying of TFT. The ITV approach was considered moderately reliable when %TT ≥ 90% and strongly reliable when %TT ≥ 95%. Additional ITV margins required to achieve %TT ≥ 95% were also calculated. RESULTS: In the analysed cohort of patients, ITV strategy can be considered strongly reliable only for lung lesions with TFT ≤ 7 min (min). The ITV strategy can be considered only moderately reliable for abdominal lesions, and additional margins are required to obtain %TT ≥ 95%. Considering a TFT ≤ 4 min, additional margins of 2 mm in cranio-caudal (CC) and 1 mm in antero-posterior (AP) are suggested for pancreatic lesions, 3 mm in CC and 2 mm in AP for renal and liver ones. CONCLUSIONS: On the basis of the analysed cases, the ITV approach appears to be reliable in the thorax, while it results more challenging in the abdomen, due to the higher uncertainty in ITV definition and to the observed larger intra and inter-fraction motion variability. The addition of extra margins based on the TFT may represent a valid tool to compensate such limitations.


Subject(s)
Artifacts , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Abdominal Neoplasms/radiotherapy , Four-Dimensional Computed Tomography , Humans , Magnetic Resonance Imaging , Motion , Retrospective Studies , Thoracic Neoplasms/radiotherapy
20.
Radiother Oncol ; 145: 154-161, 2020 04.
Article in English | MEDLINE | ID: mdl-32007759

ABSTRACT

PURPOSE: Motion management is crucial in scanned proton therapy for mobile tumours. Current motion mitigation approaches rely on single 4DCTs before treatment, ignoring respiratory variability. We investigate the consequences of respiratory variations on internal target volumes (ITV) definition and motion mitigation efficacy, and propose a probabilistic ITV based on 4DMRI. MATERIALS AND METHODS: Four 4DCT(MRI) datasets, each containing 40 variable cycles of synthetic 4DCTs, were generated by warping single-phase CTs of two lung patients with motion fields extracted from two 4DMRI datasets. Two-field proton treatment plans were optimised on ITVs based on different parts of the 4DCT(MRI)s. 4D dose distributions were calculated by considering variable respiratory patterns. Different probabilistic ITVs were created by incorporating the voxels covered by the CTV in at least 25%, 50%, or 75% (ITV25, ITV50, ITV75) of the cycles, and compared with the conservative ITV encompassing all possible CTV positions. RESULTS: Depending on the selected planning 4DCT, ITV volumes vary up to 20%, resulting in significant variation in CTV coverage for 4D treatments. Target coverage and homogeneity improved with the conservative ITV, but was associated with significantly increased lung dose (~1%). ITV25 and ITV50 led to acceptable plan quality in most cases without lung dose increments. ITV75 best minimised lung dose, but was insufficient to ensure coverage under all motion scenarios. CONCLUSION: Irregular respiration significantly affects CTV coverage when ITVs are only defined by single 4DCTs. A probabilistic ITV50 provides an adequate compromise between target coverage and lung dose for most motion and patient scenarios investigated.


Subject(s)
Lung Neoplasms , Proton Therapy , Four-Dimensional Computed Tomography , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Protons , Radiotherapy Planning, Computer-Assisted , Respiration
SELECTION OF CITATIONS
SEARCH DETAIL
...