Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Mol Ecol Resour ; : e13983, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38840549

ABSTRACT

In the face of evolving agricultural practices and climate change, tools towards an integrated biovigilance platform to combat crop diseases, spore sampling, DNA diagnostics and predictive trajectory modelling were optimized. These tools revealed microbial dynamics and were validated by monitoring cereal rust fungal pathogens affecting wheat, oats, barley and rye across four growing seasons (2015-2018) in British Columbia and during the 2018 season in southern Alberta. ITS2 metabarcoding revealed disparity in aeromycobiota diversity and compositional structure across the Canadian Rocky Mountains, suggesting a barrier effect on air flow and pathogen dispersal. A novel bioinformatics classifier and curated cereal rust fungal ITS2 database, corroborated by real-time PCR, enhanced the precision of cereal rust fungal species identification. Random Forest modelling identified crop and land-use diversification as well as atmospheric pressure and moisture as key factors in rust distribution. As a valuable addition to explain observed differences and patterns in rust fungus distribution, trajectory HYSPLIT modelling tracked rust fungal urediniospores' northeastward dispersal from the Pacific Northwest towards southern British Columbia and Alberta, indicating multiple potential origins. Our Canadian case study exemplifies the power of an advanced biovigilance toolbox towards developing an early-warning system for farmers to detect and mitigate impending disease outbreaks.

2.
Parasit Vectors ; 17(1): 216, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734639

ABSTRACT

BACKGROUND: Mosquitoes pose a risk to human health worldwide, and correct species identification and detection of cryptic species are the most important keys for surveillance and control of mosquito vectors. In addition to traditional identification based on morphology, DNA barcoding has recently been widely used as a complementary tool for reliable identification of mosquito species. The main objective of this study was to create a reference DNA barcode library for the Croatian mosquito fauna, which should contribute to more accurate and faster identification of species, including cryptic species, and recognition of relevant vector species. METHODS: Sampling was carried out in three biogeographical regions of Croatia over six years (2017-2022). The mosquitoes were morphologically identified; molecular identification was based on the standard barcoding region of the mitochondrial COI gene and the nuclear ITS2 region, the latter to identify species within the Anopheles maculipennis complex. The BIN-RESL algorithm assigned the COI sequences to the corresponding BINs (Barcode Index Number clusters) in BOLD, i.e. to putative MOTUs (Molecular Operational Taxonomic Units). The bPTP and ASAP species delimitation methods were applied to the genus datasets in order to verify/confirm the assignment of specimens to specific MOTUs. RESULTS: A total of 405 mosquito specimens belonging to six genera and 30 morphospecies were collected and processed. Species delimitation methods assigned the samples to 31 (BIN-RESL), 30 (bPTP) and 28 (ASAP) MOTUs, with most delimited MOTUs matching the morphological identification. Some species of the genera Culex, Aedes and Anopheles were assigned to the same MOTUs, especially species that are difficult to distinguish morphologically and/or represent species complexes. In total, COI barcode sequences for 34 mosquito species and ITS2 sequences for three species of the genus Anopheles were added to the mosquito sequence database for Croatia, including one individual from the Intrudens Group, which represents a new record for the Croatian mosquito fauna. CONCLUSION: We present the results of the first comprehensive study combining morphological and molecular identification of most mosquito species present in Croatia, including several invasive and vector species. With the exception of some closely related species, this study confirmed that DNA barcoding based on COI provides a reliable basis for the identification of mosquito species in Croatia.


Subject(s)
Culicidae , DNA Barcoding, Taxonomic , Electron Transport Complex IV , Mosquito Vectors , Animals , Croatia , Mosquito Vectors/genetics , Mosquito Vectors/classification , Mosquito Vectors/anatomy & histology , Culicidae/classification , Culicidae/genetics , Electron Transport Complex IV/genetics , Anopheles/genetics , Anopheles/classification , Phylogeny , Gene Library
3.
Parasitol Res ; 123(5): 201, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698272

ABSTRACT

Gastrointestinal nematodes (GINs) are a common threat faced by pastoral livestock. Since their major introduction to the UK in the early 1990s, South American camelids have been cograzed with sheep, horses, and other livestock, allowing exposure to a range of GIN species. However, there have been no molecular-based studies to investigate the GIN populations present in these camelids. In the current study, we sampled nine alpaca herds from northern England and southern Scotland and used high-throughput metabarcoded sequencing to describe their GIN species composition. A total of 71 amplicon sequence variants (ASVs) were identified representing eight known GIN species. Haemonchus contortus was the most prevalent species found in almost all herds in significant proportions. The identification of H. contortus in other livestock species is unusual in the northern UK, implying that alpacas may be suitable hosts and potential reservoirs for infection in other hosts. In addition, the camelid-adapted GIN species Camelostrongylus mentulatus was identified predominantly in herds with higher faecal egg counts. These findings highlight the value of applying advanced molecular methods, such as nemabiome metabarcoding to describe the dynamics of gastrointestinal nematode infections in novel situations. The results provide a strong base for further studies involving cograzing animals to confirm the potential role of alpacas in transmitting GIN species between hosts.


Subject(s)
Camelids, New World , Haemonchiasis , Haemonchus , Animals , Camelids, New World/parasitology , Haemonchus/genetics , Haemonchus/classification , Haemonchus/isolation & purification , Prevalence , Haemonchiasis/veterinary , Haemonchiasis/parasitology , Haemonchiasis/epidemiology , DNA Barcoding, Taxonomic , United Kingdom/epidemiology , Strongylida Infections/veterinary , Strongylida Infections/parasitology , Strongylida Infections/epidemiology , Feces/parasitology , England/epidemiology , Scotland/epidemiology
4.
Acta Parasitol ; 69(1): 831-838, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38436865

ABSTRACT

BACKGROUND AND OBJECTIVE: Cutaneous leishmaniasis (CL) is still considered to be an uncontrolled endemic disease that spreads in many countries. The current study aimed to determine intra-species relationships of L. major using ITS2 sequencing. METHODS: The study was conducted from the beginning of March to the end of November 2022. All medical information regarding CL was collected from patients of Thi-Qar province who attended the Dermatology Department of Al-Hussein Teaching Hospital in Nasiriyah city. Seventy-three samples were selected for the molecular identification after confirming microscopy with Giemsa stain. In this study, the primers were designed using NCBI GenBank sequence database and Primer 3 plus primer design online software. RESULTS: The results recorded 21 (28.77%) positive samples of L. major using the internal transcribed spacer 2 region (ITS2) in ribosomal RNA gene. The local L. major IQN.1-IQN.10 were submitted to NCBI GenBank database with accession numbers OM069357.1-OM069366.1, respectively. The phylogenetic analysis revealed that local isolates of L. major showed a close relationship with NCBI-BLAST L. major Iran isolate (KU680848.1). CONCLUSION: ITS2-PCR is suitable for identifying Leishmania spp. and determining genetic diversity. A phylogenetic data analysis may provide an idea on the genetic homogeneity of local isolates and knowing the genetic origin of the dermal lesion. However, the local isolates showed genetic proximity to the KU680848.1 isolate. This signifies the possibility of infection prevalence from Iranian areas. In general, genetic variation of L. major isolates may give several clinical manifestations of the cutaneous lesion. Therefore, determination of the heterogeneity is important for detecting the infection origin, epidemiology, therapy, and control strategies.


Subject(s)
Genetic Variation , Leishmania major , Leishmaniasis, Cutaneous , Phylogeny , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/epidemiology , Leishmania major/genetics , Leishmania major/isolation & purification , Leishmania major/classification , Humans , DNA, Ribosomal Spacer/genetics , Male , Female , Iran/epidemiology , DNA, Protozoan/genetics , Adult , Middle Aged , Polymerase Chain Reaction , Adolescent , Child , Young Adult , Skin/parasitology
5.
Vector Borne Zoonotic Dis ; 24(4): 237-244, 2024 04.
Article in English | MEDLINE | ID: mdl-38306182

ABSTRACT

Background: Haemagogus janthinomys is a primary sylvan vector of yellow fever virus and the emerging Mayaro virus. However, despite its medical importance, there is a dearth of data on the molecular taxonomy of this mosquito species. Methods: In this study, DNA barcoding analysis was performed on 64 adult female mosquitoes from Trinidad morphologically identified as Hg. janthinomys. The mitochondrial cytochrome c oxidase I (COI) gene and ribosomal DNA internal transcribed spacer 2 (ITS2) region of the mosquitoes were PCR amplified and sequenced, and molecular phylogenies inferred. Results: The BLASTN analysis showed that only 20% (n = 13/66) of COI sequences had high similarity (>99% identity) to Hg. janthinomys and the remaining sequences had low similarity (<90% identity) to reference GenBank sequences. Phylogenetic analysis of COI sequences revealed the presence of four strongly supported groups, with one distinct clade that did not align with any reference sequences. Corresponding ITS2 sequences for samples in this distinct COI group clustered into three clades. Conclusions: These molecular findings suggest the existence of a putative new Haemagogus mosquito species and underscore the need for further, more in-depth investigations into the taxonomy and classification of the Haemagogus genus.


Subject(s)
Culicidae , Animals , Female , DNA Barcoding, Taxonomic/veterinary , Mosquito Vectors/genetics , Mosquito Vectors/anatomy & histology , Phylogeny , Trinidad and Tobago
6.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 35(5): 501-507, 2023 Dec 01.
Article in Chinese | MEDLINE | ID: mdl-38148540

ABSTRACT

OBJECTIVE: To investigate the sequences of internal transcribed spacer 2 (ITS2) and cyclooxygenase 1 (COX1) genes of Paragonimus metacercariae in freshwater crabs in Henan Province, identify the species of Paragonimus and evaluate its genetic relationships with Paragonimus isolates from other provinces in China. METHODS: Freshwater crabs were collected from 8 survey sites in Zhengzhou, Luoyang, Pingdingshan, Nanyang and Jiyuan cities of Henan Province from 2016 to 2021, and Paragonimus metacercariae were detected in freshwater crabs. Genomic DNA was extracted from Paragonimus metacercariae, and the ITS2 and COX1 genes were amplified using PCR assay, followed by sequencing of PCR amplification products. The gene sequences were spliced and aligned using the software DNASTAR, and aligned with the sequences of Paragonimus genes in the GenBank. Phylogenetic trees were created using the MEGA6 software with the Neighbor-Joining method based on ITS2 and COX1 gene sequences, with Fasciola hepatica as the outgroup. RESULTS: The detection rates of Paragonimus metacercariae were 6.83% (11/161), 50.82% (31/61), 18.52% (5/26), 8.76% (12/137), 14.29% (9/63), 17.76% (19/105), 18.50% (32/173) and 42.71% (41/96) in freshwater crabs from 8 survey sites in Zhengzhou, Luoyang, Pingdingshan, Nanyang and Jiyuan cities of Henan Province, with a mean detection rate of 19.46% (160/822), and a mean infection intensity of 0.57 metacercariae/g. The amplified ITS2 and COX1 gene fragments of Paragonimus were approximately 500 bp and 450 bp in lengths, respectively. The ITS2 gene sequences of Paragonimus metacercariae from 8 survey sites of Henan Province showed the highest homology (99.8% to 100.0%) with the gene sequence of P. skrjabini (GenBank accession number: MW960209.1), and phylogenetic analysis showed that the Paragonimus in this study was clustered into the same clade with P. skrjabini from Sichuan Province (GenBank accession number: AY618747.1), Guangxi Zhuang Autonomous Region (GenBank accession number: AY618729.1) and Hubei Province (GenBank accession number: AY618751.1), and P. miyazaki from Fujian Province (GenBank accession number: AY618741.1) and Japan (GenBank accession number: AB713405.1). The COX1 gene sequences of Paragonimus metacercariae from 8 survey sites of Henan Province showed the highest homology (90.0% to 100.0%) with the gene sequence of P. skrjabini (GenBank accession number: AY618798.1), and phylogenetic analysis showed that the Paragonimus in this study was clustered into the same clade with all P. skrjabini and clustered into the same sub-clade with P. skrjabini from Hubei Province (GenBank accession numbers: AY618782.1 and AY618764.1). CONCLUSIONS: Paragonimus species from freshwater crabs in Henan Province were all characterized as P. skrjabini, and the ITS2 and COX1 gene sequences had the highest homology to those of P. skrjabini from Hubei Province. The results provide insights into study of Paragonimus in Henan Province and China.


Subject(s)
Brachyura , Paragonimiasis , Paragonimus , Animals , Paragonimus/genetics , Brachyura/genetics , Cyclooxygenase 1/genetics , Phylogeny , China/epidemiology , Sequence Analysis, DNA
7.
Cytogenet Genome Res ; 163(1-2): 59-73, 2023.
Article in English | MEDLINE | ID: mdl-37385223

ABSTRACT

Ticks are hematophagous arthropods and obligate ectoparasites of humans and other animals. This study focused on the molecular discrimination of ticks in the tropical environment of Hainan according to multi-gene DNA barcode markers with the expectation of accurately distinguishing species. A total of 420 ticks, including 49 adult ticks, 203 nymphal ticks, and 168 larval ticks, were collected in the field, and the 49 adult ticks were identified as Rhipicephalus turanicus, Dermacentor marginatus, and Haemaphysalis longicornis. The mitochondrial 16S rRNA, ribosomal 28S rRNA D2, and ribosomal internal transcribed spacer 2 (ITS2) regions were used as DNA barcode markers to discriminate species. According to basic local alignment search tool analysis against the GenBank database, 16S rRNA positively identified ticks in the Rhipicephalus, Dermacentor, and Haemaphysalis genera; the 28S rRNA D2 region identified ticks in the Rhipicephalus and Dermacentor genera; and ITS2 identified ticks as D. marginatus. Pairwise sequence comparisons based on these three regions were visualized with a Sequence Demarcation Tool matrix. Substitution saturation tests using data analysis and molecular biology and evolution revealed little substitution saturation (Iss < Iss.c, p < 0.05) in the 16S rRNA region for the Haemaphysalis genus; 28S rRNA D2 region for the Rhipicephalus, Dermacentor, and Haemaphysalis genera; and ITS2 region for the Rhipicephalus and Dermacentor genera. Distinctive sequences for which it is difficult to obtain good matches with the sequences available in GenBank exist in the ticks of Hainan. Future studies should obtain complementary sequences to refine and update the database for the molecular characterization of ticks.


Subject(s)
Ixodidae , Rhipicephalus , Animals , Humans , Ixodidae/genetics , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 28S , DNA Barcoding, Taxonomic , Rhipicephalus/genetics , Genetic Markers , China , Genetic Variation/genetics , Phylogeny
8.
Int J Mol Sci ; 24(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37175423

ABSTRACT

Guanine and cytosine (GC) content is a fundamental component of genetic diversity and essential for phylogenetic analyses. However, the GC content of the ribosomal internal transcribed spacer 2 (ITS2) remains unknown, despite the fact that ITS2 is a widely used phylogenetic marker. Here, the ITS2 was high-throughput sequenced from 29 Corydalis species, and their GC contents were comparatively investigated in the context of ITS2's characteristic secondary structure and concerted evolution. Our results showed that the GC contents of ITS2 were 131% higher than those of their adjacent 5.8S regions, suggesting that ITS2 underwent GC-biased evolution. These GCs were distributed in a heterogeneous manner in the ITS2 secondary structure, with the paired regions being 130% larger than the unpaired regions, indicating that GC is chosen for thermodynamic stability. In addition, species with homogeneous ITS2 sequences were always GC-rich, supporting GC-biased gene conversion (gBGC), which occurred with ITS2's concerted evolution. The RNA substitution model inferred also showed a GC preference among base pair transformations, which again supports gBGC. Overall, structurally based GC investigation reveals that ITS2 evolves under structural stability and gBGC selection, significantly increasing its GC content.


Subject(s)
Corydalis , DNA, Ribosomal Spacer/genetics , Phylogeny , Evolution, Molecular , Base Pairing
9.
PeerJ ; 11: e15124, 2023.
Article in English | MEDLINE | ID: mdl-37070089

ABSTRACT

Basic knowledge on the biology and epidemiology of equine strongylid species still needs to be improved to contribute to the design of better parasite control strategies. Nemabiome metabarcoding is a convenient tool to quantify and identify species in bulk samples that could overcome the hurdle that cyathostomin morphological identification represents. To date, this approach has relied on the internal transcribed spacer 2 (ITS-2) of the ribosomal RNA gene, with a limited investigation of its predictive performance for cyathostomin communities. Using DNA pools of single cyathostomin worms, this study aimed to provide the first elements to compare performances of the ITS-2 and a cytochrome c oxidase subunit I (COI) barcode newly developed in this study. Barcode predictive abilities were compared across various mock community compositions of two, five and 11 individuals from distinct species. The amplification bias of each barcode was estimated. Results were also compared between various types of biological samples, i.e., eggs, infective larvae or adults. Bioinformatic parameters were chosen to yield the closest representation of the cyathostomin community for each barcode, underscoring the need for communities of known composition for metabarcoding purposes. Overall, the proposed COI barcode was suboptimal relative to the ITS-2 rDNA region, because of PCR amplification biases, reduced sensitivity and higher divergence from the expected community composition. Metabarcoding yielded consistent community composition across the three sample types. However, imperfect correlations were found between relative abundances from infective larvae and other life-stages for Cylicostephanus species using the ITS-2 barcode. While the results remain limited by the considered biological material, they suggest that additional improvements are needed for both the ITS-2 and COI barcodes.


Subject(s)
DNA Barcoding, Taxonomic , Animals , Horses/genetics , DNA, Ribosomal/genetics , DNA Barcoding, Taxonomic/methods , Polymerase Chain Reaction
10.
Front Microbiol ; 14: 1147285, 2023.
Article in English | MEDLINE | ID: mdl-37007520

ABSTRACT

Microorganisms can influence plant growth and health, ecosystem functioning, and stability. Community and network structures of mangrove phyllosphere fungi have rarely been studied although mangroves have very important ecological and economical values. Here, we used high throughput sequencing of the internal transcribed spacer 2 (ITS2) to assess epiphytic and endophytic phyllosphere fungal communities of six true mangrove species and five mangrove associates. Totally, we obtained 1,391 fungal operational taxonomic units (OTUs), including 596 specific epiphytic fungi, 600 specific endophytic fungi, and 195 shared fungi. The richness and community composition differed significantly for epiphytes and endophytes. Phylogeny of the host plant had a significant constraint on epiphytes but not endophytes. Network analyses showed that plant-epiphyte and plant-endophyte networks exhibited strong specialization and modularity but low connectance and anti-nestedness. Compared to plant-endophyte network, plant-epiphyte network showed stronger specialization, modularity, and robustness but lower connectance and anti-nestedness. These differences in community and network structures of epiphytes and endophytes may be caused by spatial niche partitioning, indicating their underlying ecological and environmental drivers are inconsistent. We highlight the important role of plant phylogeny in the assembly of epiphytic but not endophytic fungal communities in mangrove ecosystems.

11.
Emerg Infect Dis ; 29(4): 809-813, 2023 04.
Article in English | MEDLINE | ID: mdl-36958007

ABSTRACT

Using histopathology and phylogenetic analysis of the internal transcribed spacer 2 gene, we found >2 distinct trematode species that caused ocular trematode infections in children in Sri Lanka. Collaborations between clinicians and parasitologists and community awareness of water-related contamination hazards will promote diagnosis, control, and prevention of ocular trematode infections.


Subject(s)
Eye Infections , Trematode Infections , Humans , Child , Sri Lanka/epidemiology , Phylogeny , DNA, Ribosomal Spacer/genetics
12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1003608

ABSTRACT

Objective To investigate the sequences of internal transcribed spacer 2 (ITS2) and cyclooxygenase 1 (COX1) genes of Paragonimus metacercariae in freshwater crabs in Henan Province, identify the species of Paragonimus and evaluate its genetic relationships with Paragonimus isolates from other provinces in China. Methods Freshwater crabs were collected from 8 survey sites in Zhengzhou, Luoyang, Pingdingshan, Nanyang and Jiyuan cities of Henan Province from 2016 to 2021, and Paragonimus metacercariae were detected in freshwater crabs. Genomic DNA was extracted from Paragonimus metacercariae, and the ITS2 and COX1 genes were amplified using PCR assay, followed by sequencing of PCR amplification products. The gene sequences were spliced and aligned using the software DNASTAR, and aligned with the sequences of Paragonimus genes in the GenBank. Phylogenetic trees were created using the MEGA6 software with the Neighbor-Joining method based on ITS2 and COX1 gene sequences, with Fasciola hepatica as the outgroup. Results The detection rates of Paragonimus metacercariae were 6.83% (11/161), 50.82% (31/61), 18.52% (5/26), 8.76% (12/137), 14.29% (9/63), 17.76% (19/105), 18.50% (32/173) and 42.71% (41/96) in freshwater crabs from 8 survey sites in Zhengzhou, Luoyang, Pingdingshan, Nanyang and Jiyuan cities of Henan Province, with a mean detection rate of 19.46% (160/822), and a mean infection intensity of 0.57 metacercariae/g. The amplified ITS2 and COX1 gene fragments of Paragonimus were approximately 500 bp and 450 bp in lengths, respectively. The ITS2 gene sequences of Paragonimus metacercariae from 8 survey sites of Henan Province showed the highest homology (99.8% to 100.0%) with the gene sequence of P. skrjabini (GenBank accession number: MW960209.1), and phylogenetic analysis showed that the Paragonimus in this study was clustered into the same clade with P. skrjabini from Sichuan Province (GenBank accession number: AY618747.1), Guangxi Zhuang Autonomous Region (GenBank accession number: AY618729.1) and Hubei Province (GenBank accession number: AY618751.1), and P. miyazaki from Fujian Province (GenBank accession number: AY618741.1) and Japan (GenBank accession number: AB713405.1). The COX1 gene sequences of Paragonimus metacercariae from 8 survey sites of Henan Province showed the highest homology (90.0% to 100.0%) with the gene sequence of P. skrjabini (GenBank accession number: AY618798.1), and phylogenetic analysis showed that the Paragonimus in this study was clustered into the same clade with all P. skrjabini and clustered into the same sub-clade with P. skrjabini from Hubei Province (GenBank accession numbers: AY618782.1 and AY618764.1). Conclusions Paragonimus species from freshwater crabs in Henan Province were all characterized as P. skrjabini, and the ITS2 and COX1 gene sequences had the highest homology to those of P. skrjabini from Hubei Province. The results provide insights into study of Paragonimus in Henan Province and China.

13.
Biology (Basel) ; 11(7)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-36101362

ABSTRACT

Big-head Schizothoracin (Aspiorhynchus laticeps) and Tarim Schizothoracin (Schizothorax biddulphi) are locally sympatric in the Tarim River Basin. Although another Schizothoracin (Schizothorax esocinus) in Tarim River basin has been speculated to be hybrid offspring of Big-head Schizothoracin and Tarim Schizothoracin, there was no genetic evidence. Previous studies on the genetics and evolution of Schizothoracins in Xinjiang Province were mostly based on mitochondrial DNA (mtDNA), whose characteristics of maternal inheritance made it hard to answer the question of whether there was hybridization and introgression between Big-head Schizothoracin and Tarim Schizothoracin. In this study, cytochrome b (cytb) gene of mtDNA and internal transcribed spacer 2 (ITS2) that is encoded by the nuclear genome were genotyped within the entire samples at the same time. Our results confirmed that Schizothorax esocinus was the hybrid offspring of Big-head Schizothoracin and Tarim Schizothoracin. The heterozygous ITS2 genotypes and/or Aspiorhynchus laticeps-like mtDNA were also detected in a subset of samples that should have been identified as pure Schizothorax biddulphi based on morphology. The ITS2 is characterized by multi-copy, concert evolution, and biparental inheritance. Thus, by comparing with mtDNA data, broad-scale bidirectional hybridization and introgression between Big-head Schizothoracin and Tarim Schizothoracin were revealed. Although interspecific hybridization may play a positive role in ecology and evolution, interspecific hybrids could threaten their parental species by the swamping of genetics and demography. As both parents of hybridization are critically endangered fishes, in this case, it is urgently necessary to strengthen the scientific assessment of the risks of the hybrids and the control of the hybridization and introgression between Aspiorhynchus laticeps and Schizothorax biddulphi in the Tarim River Basin.

14.
Int J Parasitol Parasites Wildl ; 19: 38-43, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36043152

ABSTRACT

Paramphistomes, commonly known as rumen flukes, are digenean parasites that infect ruminants. Accurate morphological identification of paramphistome species is challenging and often neglected. For instance, it requires sagittal midline sections of adult flukes, which are difficult to prepare. Therefore, the majority of the genetic information on paramphistomes found in the International Nucleotide Sequence Database is not supported by morphological descriptions, and the DNA barcodes of paramphistome species remain unreliable. In the present study, both morphological and molecular characterizations were simultaneously performed to ensure the reliability of the DNA information for the paramphistome species Calichophoron raja (Näsmark, 1937). The morphological characteristics of the sagittal and horizontal sections of adult flukes from a black wildebeest (Connochaetes gnou) and a waterbuck (Kobus ellipsiprymnus) in South Africa were identical to those previously described for Ca. raja. Additionally, this study represents a new host record of the species from Co. gnou. All sequences of the internal transcribed spacer 2 region of ribosomal DNA were 100% identical among the 18 flukes analyzed in the present study. A single nucleotide mutation was observed between Ca. raja in this study and Ca. raja detected in domestic ruminants in Kenya.

15.
Parasit Vectors ; 15(1): 155, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35505366

ABSTRACT

BACKGROUND: Myanmar is one of the six countries in the Greater Mekong Subregion (GMS) of Southeast Asia. Malaria vectors comprise many Anopheles species, which vary in abundance and importance in malaria transmission among different geographical locations in the GMS. Information about the species composition, abundance, and insecticide resistance status of vectorial systems in Myanmar is scarce, hindering our efforts to effectively control malaria vectors in this region. METHODS: During October and November 2019, larvae and adult females of Anopheles mosquitoes were collected in three sentinel villages of Banmauk township in northern Myanmar. Adult female mosquitoes collected by cow-baited tent collection (CBTC) and adults reared from field-collected larvae (RFCL) were used to determine mortality rates and knockdown resistance (kdr) against deltamethrin using the standard WHO susceptibility test. Molecular species identification was performed by multiplex PCR and ITS2 PCR, followed by DNA sequencing. The kdr mutation at position 1014 of the voltage-gated sodium channel gene was genotyped by DNA sequencing for all Anopheles species tested. RESULTS: A total of 1596 Anopheles mosquitoes from seven morphologically identified species groups were bioassayed. Confirmed resistance to deltamethrin was detected in the populations of An. barbirostris (s.l.), An. hyrcanus (s.l.), and An. vagus, while possible resistance was detected in An. annularis (s.l.), An. minimus, and An. tessellatus. Anopheles kochi was found susceptible to deltamethrin. Compared to adults collected by CBTC, female adults from RFCL had significantly lower mortality rates in the four species complexes. A total of 1638 individuals from 22 Anopheles species were molecularly identified, with the four most common species being An. dissidens (20.5%) of the Barbirostris group, An. peditaeniatus (19.4%) of the Hyrcanus group, An. aconitus (13.4%) of the Funestus group, and An. nivipes (11.5%) of the Annularis group. The kdr mutation L1014F was only detected in the homozygous state in two An. subpictus (s.l.) specimens and in a heterozygous state in one An. culicifacies (s.l.) specimen. CONCLUSIONS: This study provides updated information about malaria vector species composition and insecticide resistance status in northern Myanmar. The confirmed deltamethrin resistance in multiple species groups constitutes a significant threat to malaria vector control. The lack or low frequency of target-site resistance mutations suggests that other mechanisms are involved in resistance. Continual monitoring of the insecticide resistance of malaria vectors is required for effective vector control and insecticide resistance management.


Subject(s)
Anopheles , Malaria , Animals , Anopheles/genetics , Cattle , Female , Insecticide Resistance/genetics , Malaria/prevention & control , Mosquito Vectors/genetics , Myanmar
16.
Gerodontology ; 39(1): 49-58, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35098575

ABSTRACT

OBJECTIVE: To examine the association between oral frailty and oral Candida carriage as a general indicator of deteriorating oral function in older adults. BACKGROUND: Older adults exhibit an elevated risk of oral candidiasis caused by Candida. Although many studies have identified factors associated with oral Candida carriage, none have evaluated its relationship with oral function. MATERIALS AND METHODS: This study included 210 community-dwelling older adults aged ≥60 years who participated in wellness checks. Fungal flora expression in saliva samples was evaluated to identify oral C. albicans and C. glabrata. Participants were categorised by detection of neither strain (group 1), either one of the strains (group 2), or both strains (group 3). The relationship between oral Candida carriage and oral frailty was evaluated by multinomial logistic regression analysis. RESULTS: The participants included 58 men and 152 women with a mean age of 74.2 ± 6.1 years. A total of 88 (41.9%), 94 (44.8%) and 28 (13.3%) participants were assigned to groups 1, 2 and 3 respectively. In the multinomial logistic regression analysis, significant associations were observed between group 1 and group 2 for "Have you choked on your tea or soup recently?" and the number of applicable oral frailty items. Between group 1 and group 3, significant associations were observed for the number of remaining teeth, masticatory performance and the number of applicable oral frailty items. CONCLUSION: We obtained basic data useful for intervention studies aimed at verifying whether oral function management prevents deterioration of the oral bacterial flora.


Subject(s)
Frailty , Aged , Aged, 80 and over , Candida , Cross-Sectional Studies , Female , Frail Elderly , Humans , Independent Living , Male , Oral Health
17.
J Forensic Sci ; 67(2): 712-719, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34724600

ABSTRACT

In forensic cases suspected to involve Papaver somniferum, species identification is key to the investigation. To accurately detect and identify P. somniferum as well as common adulterants of the same genus, 19 internal transcribed spacer 2 (ITS2) sequences of P. somniferum (256 bp), Papaver canescens (254 bp), Papaver nudicaule (254 bp), Papaver pavoninum (250 bp), Papaver radicatum (254 bp), and Papaver rhoeas (256 bp) were obtained. Based on the ITS2 sequence, similarity analysis via BLAST, the nearest Kimura-2-parameter (K2P) genetic distances were calculated, and a phylogenetic tree was constructed using MEGA X software for the identification of six species of Papaver. Finally, differences in the ITS2 secondary structure between species were analyzed. The best matches of the P. somniferum ITS2 sequence were of other P. somniferum from different sources. The nearest K2P genetic distances between P. somniferum and its counterparts from other sources were zero, which was the smallest pairwise genetic distance among distances from the other five Papaver species. Various sources of P. somniferum clustered into an independent branch in the phylogenetic tree. The secondary structures of P. somniferum and P. rhoeas were significantly different from those of the other four species of Papaver. In summary, P. somniferum can be effectively distinguished from five closely related plants of the same genus by using ITS2 as a DNA barcode.


Subject(s)
Papaver , DNA Barcoding, Taxonomic , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , Papaver/genetics , Phylogeny
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-940708

ABSTRACT

ObjectiveTo conduct phylogenetic analysis of internal transcribed spacer 2 (ITS2) and chloroplast gene segments including psbA-trnH, rbcL, and matK of Sophora japonica cv. jinhuai resource samples from different geographical sources, and to explore the genetic diversity of S. japonica cv. jinhuai. MethodPolymerase chain reaction (PCR) method was used to amplify the nucleic acid sequences of ITS2, psbA-trnH, rbcL, and matK of S. japonica cv. jinhuai. Neighbor joining (NJ) method was used to construct phylogenetic trees, and Kimura 2-Parameter (K2P) model was used to calculate the genetic distance of different samples. MEGA and BIOEDIT softwares were applied for mutiple alignment and analysis of ITS2, psbA-trnH, rbcL, and matK sequences of S. japonica cv. jinhuai. ResultThe lengths of ITS2 sequence were 278-279 bp. The lengths of psbA-trnH were 289 bp. The lengths of rbcL sequence were 673 bp. The lengths of matK sequences were 786-792 bp. There were 3 mutation points in ITS2 and psbA-trnH, no mutation point in rbcL, and 13 mutation points in matK. The samples of S. japonica cv. jinhuai were clustered into two groups based on the phylogenetic tree constructed by ITS2 sequences. The sample of seedling tree in Baibao was clustered into one group, while the other 25 samples were clustered into another group. For the psbA-trnH sequence, the success rate of PCR amplification of 28 samples of S. japonica cv. jinhuai was 100%. The 28 samples of S. japonica cv. jinhuai were clustered into three groups based on the clustering results of psbA-trnH sequence. The sample of seedling tree in Shaoshui was clustered into one group. The five samples of grafting tree and seedling tree in Miaotou, grafting trees in Jiantang, Wenqiao, and Daxu, and seeding tree in Xianshui were clustered into one group. The other 21 samples were clustered into another group. The 26 samples of S. japonica cv. jinhuai were clustered into two groups based on the phylogenetic tree constructed by matK sequences. The sample of seedling tree in Xianshui was clustered into one group, while the other 25 samples were clustered into another group. The clustering results of the rbcL sequence of S. japonica cv. jinhuai could not distinguish 28 resource samples. The phylogenetic tree constructed by the combined sequence of ITS2+psbA-trnH+rbcL+matK divided S. japonica cv. jinhuai resource samples into 4 groups. The 13 samples of seedling trees in Qiyang, Daoxian, Miaotou, Shaoshui, Shitang, Xianshui, Jiantang, and Xiangli, and grafting trees in Qiyang, Miaotou, Yongsui, Wenqiao, and Yangtang were clustered into one group. The sample of seedling tree in Wenqiao was clustered into one group. The sample of seedling tree in Daxu was clustered into one group. The remaining samples were clustered into another group. ConclusionPhylogenetic and mutation analysis provide the theoretic foundation to investigate the evolution of the resources of S. japonica cv. jinhuai, and evaluate their genuineness. The results of mutation points can be used to identify the related S. japonica cv. jinhuai resources. The findings of this study show that the combination of different gene sequences has an optimal effect on plant identification.

19.
Parasit Vectors ; 14(1): 604, 2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34895334

ABSTRACT

BACKGROUND: Gastrointestinal nematode (GIN) epidemiology is changing in many regions of the world due to factors such as global warming and emerging anthelmintic resistance. However, the dynamics of these changes in northern continental climate zones are poorly understood due to a lack of empirical data. METHODS: We studied the accumulation on pasture of free-living infective third-stage larvae (L3) of different GIN species from fecal pats deposited by naturally infected grazing cattle. The field study was conducted on three organic farms in Alberta, western Canada. Grass samples adjacent to 24 fecal pats were collected from each of three different pastures on each farm. Internal transcribed spacer-2 nemabiome metabarcoding was used to determine the GIN species composition of the harvested larvae. The rotational grazing patterns of the cattle ensured that each pasture was contaminated only once by fecal pat deposition. This design allowed us to monitor the accumulation of L3 of specific GIN species on pastures under natural climatic conditions without the confounding effects of pasture recontamination or anthelmintic treatments. RESULTS: In seven out of the nine pastures, grass L3 counts peaked approximately 9 weeks after fecal deposition and then gradually declined. However, a relatively large number of L3 remained in the fecal pats at the end of the grazing season. Nemabiome metabarcoding revealed that Cooperia oncophora and Ostertagia ostertagi were the two most abundant species on all of the pastures and that the dynamics of larval accumulation on grass were similar for both species. Daily precipitation and temperature across the whole sampling period were similar for most of the pastures, and multiple linear regression showed that accumulated rainfall 1 week prior to sample collection had a significant impact on the pasture L3 population, but accumulated rainfall 3 weeks prior to sample collection did not. CONCLUSIONS: The results suggest that the pasture L3 population was altered by short-term microclimatic conditions conducive for horizontal migration onto grass. Overall, the results show the importance of the fecal pat as a refuge and reservoir for L3 of cattle GIN on western Canadian pastures, and provide an evidence base for the risk assessment of rotational grazing management in the region.


Subject(s)
Cattle Diseases/epidemiology , Nematoda/isolation & purification , Nematode Infections/veterinary , Alberta/epidemiology , Animals , Cattle , Cattle Diseases/parasitology , DNA Barcoding, Taxonomic/veterinary , DNA, Protozoan/genetics , DNA, Ribosomal Spacer/genetics , Farms , Feces/parasitology , Gastrointestinal Tract/parasitology , Larva , Nematoda/genetics , Nematode Infections/epidemiology , Nematode Infections/parasitology , Ostertagia/genetics , Ostertagia/isolation & purification , Poaceae , Seasons
20.
Acta Trop ; 224: 106129, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34509458

ABSTRACT

Anopheles aquasalis is an important malaria vector in coastal regions of South America and islands of the Caribbean. In its original description, the species was divided into two varieties, based on the scaling patterns of their hind-tarsomere 2. Specimens from our 25-year established colony, used for Plasmodium experimental infections, still exhibit both scaling tarsomere patterns. This study examined the DNA sequence of the nuclear Internal Transcribed Spacer 2 (ITS2) and susceptibility to Plasmodium, looking for differences among the phenotypes 30BS and 50BS. One hundred mosquitoes, 25 males and 25 females of each sex, and phenotype were analyzed. Twenty-seven novel haplotypes were identified. Three were found in both phenotypes (30BS and 50BS) regardless of gender. Among the other 27 genotypes, we observed a male-oriented bias in both phenotypic categories. Evaluation of Plasmodium yoelii N67 infections, based on oocyst counts, showed a higher susceptibility of 30BS compared with 50BS. Future studies need to be conducted to evaluate if these genotype assortments among the phenotypic groups reflect differences in fitness, mating, and their susceptibility to infection by Plasmodium parasites.


Subject(s)
Anopheles , Malaria , Plasmodium , Animals , Anopheles/genetics , Female , Humans , Male , Mosquito Vectors/genetics , Phenotype , Plasmodium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...