Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
Add more filters










Publication year range
1.
J Integr Plant Biol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961693

ABSTRACT

Dwarfing is a pivotal agronomic trait affecting both yield and quality. Citrus species exhibit substantial variation in plant height, among which internode length is a core element. However, the molecular mechanism governing internode elongation remains unclear. Here, we unveiled that the transcriptional cascade consisting of B-BOX DOMAIN PROTEIN 22 (BBX22) and ELONGATED HYPOCOTYL 5 (HY5) finely tunes plant height and internode elongation in citrus. Loss-of-function mutations of BBX22 in an early-flowering citrus (Citrus hindsii "SJG") promoted internode elongation and reduced pigment accumulation, whereas ectopic expression of BBX22 in SJG, sweet orange (C. sinensis), pomelo (C. maxima) or heterologous expression of BBX22 in tomato (Solanum lycopersicum) significantly decreased internode length. Furthermore, exogenous application of gibberellin A3 (GA3) rescued the shortened internode and dwarf phenotype caused by BBX22 overexpression. Additional experiments revealed that BBX22 played a dual role in regulation internode elongation and pigmentation in citrus. On the one hand, it directly bound to and activated the expression of HY5, GA metabolism gene (GA2 OXIDASE 8, GA2ox8), carotenoid biosynthesis gene (PHYTOENE SYNTHASE 1, PSY1) and anthocyanin regulatory gene (Ruby1, a MYB DOMAIN PROTEIN). On the other hand, it acted as a cofactor of HY5, enhancing the ability of HY5 to regulate target genes expression. Together, our results reveal the critical role of the transcriptional cascade consisting of BBX22 and HY5 in controlling internode elongation and pigment accumulation in citrus. Unraveling the crosstalk regulatory mechanism between internode elongation and fruit pigmentation provides key genes for breeding of novel types with both dwarf and health-beneficial fortification in citrus.

2.
Curr Opin Plant Biol ; 81: 102594, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943830

ABSTRACT

The stem is one of the major organs in seed plants and is important for plant survival as well as in agriculture. However, due to the lack of clear external landmarks in many species, its developmental and evolutionary processes are understudied compared to other organs. Recent approaches tackling these problems, especially those focused on KNOX1 and BLH transcription factors belonging to the TALE homeodomain superfamily have started unveiling the patterning process of nodes and internodes by connecting previously accumulated knowledge on lateral organ regulators. Fossil records played crucial roles in understanding the evolutionary process of the stem. The aim of this review is to introduce how the stem evolved from ancestorial sporophyte axes and to provide frameworks for future efforts in understanding the developmental process of this elusive but pivotal organ.

3.
Plants (Basel) ; 13(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38891293

ABSTRACT

The neglect of Moso bamboo's phenotype variations hinders its broader utilization, despite its high economic value globally. Thus, this study investigated the morphological variations of 16 Moso bamboo populations. The analysis revealed the culm heights ranging from 9.67 m to 17.5 m, with average heights under the first branch ranging from 4.91 m to 7.67 m. The total internode numbers under the first branch varied from 17 to 36, with internode lengths spanning 2.9 cm to 46.4 cm, diameters ranging from 5.10 cm to 17.2 cm, and wall thicknesses from 3.20 mm to 33.3 mm, indicating distinct attributes among the populations. Furthermore, strong positive correlations were observed between the internode diameter, thickness, length, and volume. The coefficient of variation of height under the first branch showed strong positive correlations with several parameters, indicating variability in their contribution to the total culm height. A regression analysis revealed patterns of covariation among the culm parameters, highlighting their influence on the culm height and structural characteristics. Both the diameter and thickness significantly contribute to the internode volume and culm height, and the culm parameters tend to either increase or decrease together, influencing the culm height. Moreover, this study also identified a significant negative correlation between monthly precipitation and the internode diameter and thickness, especially during December and January, impacting the primary thickening growth and, consequently, the internode size.

4.
Front Plant Sci ; 15: 1323547, 2024.
Article in English | MEDLINE | ID: mdl-38476682

ABSTRACT

Complete submergence, especially deep submergence, poses a serious threat to the growth and survival of plants. One study previously showed that Alternanthera philoxeroides (a herbaceous perennial plant) submerged at depth of 2 m presented fast stem elongation and reduced stem elongation as water depth increased. In the present study, we aimed to figure out from the morphological and anatomical perspective how the differential growth response of the plant to water depth was achieved. We investigated the elongation of different stem parts and the relationship of stem elongation to cell size and number in A. philoxeroides by conducting experiments using a series of submergence depths (0 m, 2 m, 5 m, and 9 m). The results showed that, in comparison with unsubmerged plants, completely submerged plants exhibited enhanced elongation at depths of 2 m and 5 m but suppressed elongation at depth of 9 m in immature stem internodes, and displayed very little elongation in mature stem internodes at any depths. The stem growth of A. philoxeroides at any submergence depth was chiefly caused by the elongation of the basal parts of immature internodes. The elongation of the basal parts of immature internodes was highly correlated to both cell proliferation and cell enlargement, but the elongation of the middle and upper parts of immature internodes correlated nearly only with cell enlargement. This study provided new information on the growth responses of A. philoxeroides to heterogeneous submergence environments and deepened our understanding of the growth performance of terrestrial plants in habitats prone to deep floods.

5.
J Agric Food Chem ; 72(13): 7533-7545, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38527761

ABSTRACT

MicroRNAs are crucial regulators of gene expression in maize. However, the mechanisms through which miRNAs control internode elongation remain poorly understood. This study engineered varying levels of internode elongation inhibition, revealing that dwarfing treatments diminished gibberellin levels, curtailed cell longitudinal growth, and slowed the rate of internode elongation. Comprehensive transcriptome and miRNA profiling of the internode elongation zone showed gene expression changes that paralleled the extent of the internode length reduction. We identified 543 genes and 29 miRNAs with significant correlations to internode length, predominantly within families, including miR164 and miR396. By incorporating target gene expression levels, we pinpointed nine miRNA-mRNA pairs that are significantly associated with the regulation of the internode elongation. The inhibitory effects of these miRNAs on their target genes were confirmed through dual-luciferase reporter assays. Overexpression of miR164h in maize resulted in increased internode and cell length, suggesting a novel genetic avenue for manipulating plant stature. These miRNAs may also serve as precise spatiotemporal regulators for in vitro plant development.


Subject(s)
MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Zea mays/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
Plant Sci ; 343: 112074, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548138

ABSTRACT

As a member of the small GTPases family, Rab GTPases play a key role in specifying transport pathways in the intracellular membrane trafficking system and are involved in plant growth and development. By quantitative trait locus (QTL) mapping, PdRabG3f was identified as a candidate gene associated with shoot height in a hybrid offspring of Populus deltoides 'Danhong' × Populus simonii 'Tongliao1'. PdRabG3f localized to the nucleus, endoplasmic reticulum and tonoplast and was primarily expressed in the xylem and cambium. Overexpression of PdRabG3f in Populus alba × Populus glandulosa (84 K poplar) had inhibitory effects on vertical and radical growth. In the transgenic lines, there were evident changes in the levels of 15 gibberellin (GA) derivatives, and the application of exogenous GA3 partially restored the phenotypes mediated by GAs deficiency. The interaction between PdRabG3f and RIC4, which was the GA-responsive factor, provided additional explanation for PdRabG3f's inhibitory effect on poplar growth. RNA-seq analysis revealed differentially expressed genes (DEGs) associated with cell wall, xylem, and gibberellin response. PdRabG3f interfering endogenous GAs levels in poplar might involve the participation of MYBs and ultimately affected internode elongation and xylem development. This study provides a potential mechanism for gibberellin-mediated regulation of plant growth through Rab GTPases.


Subject(s)
Gibberellins , Populus , Gibberellins/metabolism , Populus/metabolism , Gene Expression Regulation, Plant , Xylem , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , Plants, Genetically Modified/genetics
7.
Sensors (Basel) ; 24(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38400368

ABSTRACT

Sensor localization remains a crucial function within the context of wireless sensor networks (WSNs) and is a delicate concern that has attracted many researchers' attention. Undoubtedly, a good distance estimation between different wireless sensors allows us to estimate their accurate locations in the network well. In this article, we present a simple but very effective anchor-free localization scheme for wireless sensor networks called the contextual received signal strength approach (CRSSA) localization scheme. We use the received signal strength (RSS) values and the contextual network connectivity within an anchor-free WSN. We present and thoroughly analyze a novel joint estimation methodology for determining the range, path loss exponent (PLE), and inter-node distances in a composite fading model that addresses small-scale multipath fading and large-scale path loss shadowing effects. We formulate analytical expressions for key parameters, the node's communication range and the PLE value, as functions of the sensor's number, the network's connectivity, and the network density. Once these parameters are estimated, we estimate the inter-node distances and the positions of nodes, with relatively high accuracy, based on the assumed propagation model in a two-dimensional anchor-free WSN. The effectiveness of the CRSSA is evaluated through extensive simulations assuring its estimation accuracy in anchor-free localization.

8.
Mol Breed ; 44(3): 19, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38404719

ABSTRACT

Cleistogamy or closed flowering is a widely used trait in barley (Hordeum vulgare) breeding because it reduces the risk of fungal infection in florets at anthesis. Cleistogamy in barley is caused by a point mutation within the microRNA172 (miR172) target site of the Cly1 gene, which encodes the Apetala2 (AP2) transcription factor. Because cleistogamy is not apparent in cultivars of hexaploid wheat (Triticum aestivum), a strategy to develop cleistogamous wheat was proposed by inducing point mutations in all three AP2 homoeologs, which are the wheat orthologs of barley Cly1. In this study, we investigated the effects of miR172 target site mutations on wheat cleistogamy using double mutants by combining three previously obtained mutant alleles (AP2-A1, D1 and D2) in a near-isogenic background. The AP2-D2 allele had the greatest effect on reducing the anther extrusion rate and lodicule size compared with the other two mutant alleles. The double mutant containing the AP2-A1 and AP2-D2 alleles had a much greater suppression of anther extrusion by reducing the lodicule size than the single AP2-D2 mutant, suggesting cumulative effects of the two mutant alleles. In addition, both single and double mutants exhibited compact spikes and shorter plant heights due to reduced rachis and culm internodes in the upper parts. The presence or absence of the wild-type AP2-B homoeolog had no significant effect on phenotype. This study provides insights into the cumulative effects of mutant AP2 alleles in suppressing open flowering and provides a basis for further research on the development of complete cleistogamy in hexaploid wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01458-9.

9.
Glia ; 72(4): 794-808, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38174817

ABSTRACT

Axons of globular bushy cells in the cochlear nucleus convey hyper-accurate signals to the superior olivary complex, the initial site of binaural processing via comparably thick axons and the calyx of the Held synapse. Bushy cell fibers involved in hyper-accurate binaural processing of low-frequency sounds are known to have an unusual internode length-to-axon caliber ratio (L/d) correlating with higher conduction velocity and superior temporal precision of action potentials. How the L/d-ratio develops and what determines this unusual myelination pattern is unclear. Here we describe a gradual developmental transition from very simple to complex, mature nodes of Ranvier on globular bushy cell axons during a 2-week period starting at postnatal day P6/7. The molecular composition of nodes matured successively along the axons from somata to synaptic terminals with morphologically and molecularly mature nodes appearing almost exclusively after hearing onset. Internodal distances are initially coherent with the canonical L/d-ratio of ~100. Several days after hearing onset, however, an over-proportional increase in axon caliber occurs in cells signaling low-frequency sounds which alters their L/d ratio to ~60. Hence, oligodendrocytes initially myelinating axons according to their transient axon caliber but a subsequent differential axon thickening after hearing onset results in the unusual myelination pattern.


Subject(s)
Axons , Neurons , Action Potentials/physiology , Axons/physiology , Presynaptic Terminals , Oligodendroglia , Myelin Sheath/physiology
10.
Genes (Basel) ; 15(1)2024 01 16.
Article in English | MEDLINE | ID: mdl-38254994

ABSTRACT

Lodging poses a significant challenge to rice yield, prompting the need to identify elite alleles for lodging resistance traits to improve cultivated rice varieties. In this study, a natural population of 518 rice accessions was examined to identify elite alleles associated with plant height (PH), stem diameter (SD), stem anti-thrust (AT/S), and various internode lengths (first (FirINL), second (SecINL), third (ThirINL), fourth (ForINL), and fifth (FifINL) internode lengths). A total of 262 SSR markers linked to these traits were uncovered through association mapping in two environmental conditions. Phenotypic evaluations revealed striking differences among cultivars, and genetic diversity assessments showed polymorphisms across the accessions. Favorable alleles were identified for PH, SD, AT/S, and one to five internode lengths, with specific alleles displaying considerable effects. Noteworthy alleles include RM6811-160 bp on chromosome 6 (which reduces PH) and RM161-145 bp on chromosome 5 (which increases SD). The study identified a total of 42 novel QTLs. Specifically, seven QTLs were identified for PH, four for SD, five for AT/S, five for FirINL, six for SecINL, five for ThirINL, six for ForINL, and four for FifINL. QTLs qAT/S-2, qPH2.1, qForINL2.1, and qFifINL exhibited the most significant phenotypic variance (PVE) of 3.99% for the stem lodging trait. AT/S, PH, ForINL, and FifINL had additive effects of 5.31 kPa, 5.42 cm, 4.27 cm, and 4.27 cm, respectively, offering insights into eight distinct cross-combinations for enhancing each trait. This research suggests the potential for crossbreeding superior parents based on stacked alleles, promising improved rice cultivars with enhanced lodging resistance to meet market demands.


Subject(s)
Oryza , Oryza/genetics , Genome-Wide Association Study , Quantitative Trait Loci , Alleles , Axons
11.
Int J Mol Sci ; 25(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38256130

ABSTRACT

The length of internodes plays a crucial role in determining the height of the castor plant (Ricinus communis L.). However, the specific mechanisms underlying internode elongation, particularly in the main stem of the castor plant, remain uncertain. To further investigate this, we conducted a study focusing on the internode tissue of the dwarf castor variety 071113, comparing it with the control high-stalk Zhuansihao. Our study included a cytological observation, physiological measurement, transcriptome sequencing, and metabolic determination. Our integrated findings reveal that the dwarf variety 071113 undergoes an earlier lignification development in the main stem and has a more active lignin synthesis pathway during internode intermediate development. In addition, the dwarf variety exhibited lower levels of the plant hormone indole-3-acetic acid (IAA), which had an impact on the development process. Furthermore, we identified specific enzymes and regulators that were enriched in the pathways of the cell cycle, auxin signal transduction, and secondary cell wall synthesis. Using these findings, we developed a model that explained the intermediate secondary growth observed in castor internode elongation and enhanced our comprehension of the dwarfing mechanism of the 071113 variety. This research provides a theoretical groundwork for the future breeding of dwarf castor varieties.


Subject(s)
Ricinus communis , Ricinus communis/genetics , Transcriptome , Plant Breeding , Ricinus , Metabolome , Castor Oil
12.
Brain Pathol ; 34(2): e13184, 2024 03.
Article in English | MEDLINE | ID: mdl-37356965

ABSTRACT

Autoimmune neuropathies are a heterogeneous group of rare and disabling diseases in which the immune system is thought to target antigens in the peripheral nervous system: they usually respond to immune therapies. Guillain-Barré syndrome is divided into several subtypes including "acute inflammatory demyelinating polyradiculoneuropathy," "acute motor axonal neuropathy," "acute motor sensory neuropathy," and other variants. Chronic forms such as chronic inflammatory demyelinating polyneuropathy (CIDP) and other subtypes and polyneuropathy associated with IgM monoclonal gammopathy; autoimmune nodopathies also belong to this group of auto-immune neuropathies. It has been shown that immunoglobulin G from the serum of about 30% of CIDP patients immunolabels nodes of Ranvier or paranodes of myelinated axons. Whatever the cause of myelin damage of the peripheral nervous system, the initial attack on myelin by a dysimmune process may begin either at the internodal area or in the paranodal and nodal regions. The term "nodoparanodopathy" was first applied to some "axonal Guillain-Barré syndrome" subtypes, then extended to cases classified as CIDP bearing IgG4 antibodies against paranodal axoglial proteins. In these cases, paranodal dissection develops in the absence of macrophage-induced demyelination. In contrast, the mechanisms of demyelination of other dysimmune neuropathies induced by macrophages are unexplained, as no antibodies have been identified in such cases. The main objective of this presentation is to show that the pathology illustrates, confirms, and may explain such mechanisms.


Subject(s)
Guillain-Barre Syndrome , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating , Humans , Guillain-Barre Syndrome/pathology , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/pathology , Axons/pathology , Myelin Sheath/pathology , Immunoglobulin G , Autoantibodies
13.
J Exp Bot ; 74(17): 5153-5165, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37551820

ABSTRACT

Height is a critical component of plant architecture, significantly affecting crop yield. The genetic basis of this trait in soybean remains unclear. In this study, we report the characterization of the Compact mutant of soybean, which has short internodes. The candidate gene was mapped to chromosome 17, and the interval containing the causative mutation was further delineated using biparental mapping. Whole-genome sequencing of the mutant revealed an 8.7 kb deletion in the promoter of the Glyma.17g145200 gene, which encodes a member of the class III gibberellin (GA) 2-oxidases. The mutation has a dominant effect, likely via increased expression of the GA 2-oxidase transcript observed in green tissue, as a result of the deletion in the promoter of Glyma.17g145200. We further demonstrate that levels of GA precursors are altered in the Compact mutant, supporting a role in GA metabolism, and that the mutant phenotype can be rescued with exogenous GA3. We also determined that overexpression of Glyma.17g145200 in Arabidopsis results in dwarfed plants. Thus, gain of promoter activity in the Compact mutant leads to a short internode phenotype in soybean through altered metabolism of gibberellin precursors. These results provide an example of how structural variation can control an important crop trait and a role for Glyma.17g145200 in soybean architecture, with potential implications for increasing crop yield.


Subject(s)
Gibberellins , Glycine max , Glycine max/genetics , Glycine max/metabolism , Gibberellins/metabolism , Mutation , Phenotype
14.
New Phytol ; 240(2): 577-596, 2023 10.
Article in English | MEDLINE | ID: mdl-37583092

ABSTRACT

Plant height is an important agronomic trait that affects crop yield. Elucidating the molecular mechanism underlying plant height regulation is also an important question in developmental biology. Here, we report that a BELL transcription factor, ZmBELL10, positively regulates plant height in maize (Zea mays). Loss of ZmBELL10 function resulted in shorter internodes, fewer nodes, and smaller kernels, while ZmBELL10 overexpression increased plant height and hundred-kernel weight. Transcriptome analysis and chromatin immunoprecipitation followed by sequencing showed that ZmBELL10 recognizes specific sequences in the promoter of its target genes and activates cell division- and cell elongation-related gene expression, thereby influencing node number and internode length in maize. ZmBELL10 interacted with several other ZmBELL proteins via a spatial structure in its POX domain to form protein complexes involving ZmBELL10. All interacting proteins recognized the same DNA sequences, and their interaction with ZmBELL10 increased target gene expression. We identified the key residues in the POX domain of ZmBELL10 responsible for its protein-protein interactions, but these residues did not affect its transactivation activity. Collectively, our findings shed light on the functions of ZmBELL10 protein complexes and provide potential targets for improving plant architecture and yield in maize.


Subject(s)
Gene Expression Profiling , Zea mays , Zea mays/genetics , Zea mays/metabolism , Transcriptional Activation/genetics , Phenotype , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
15.
Breed Sci ; 73(2): 108-116, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37404350

ABSTRACT

Rice plants that form ventilated tissues, such as aerenchyma in the leaves, stems, and roots, allow for growth in waterlogged conditions (paddy fields), but they cannot breathe and drown in flooded environments where the whole plant body is submerged. However, deepwater rice plants grown in flood-prone areas of Southeast Asia survive in prolonged flooded environments by taking in air through an elongated stem (internode) and leaves that emerge above the water surface, even if the water level is several meters high and flooding continues for several months. Although it has been known that plant hormones, such as ethylene and gibberellins, promote internode elongation in deepwater rice plants, the genes that control rapid internode elongation during submergence have not been identified. We recently identified several genes responsible for the quantitative trait loci involved in internode elongation in deepwater rice. Identification of the the genes revealed a molecular gene network from ethylene to gibberellins in which internode elongation is promoted by novel ethylene-responsive factors and enhances gibberellin responsiveness at the internode. In addition, elucidation of the molecular mechanism of internode elongation in deepwater rice will help our understanding of the internode elongation mechanism in normal paddy rice and contribute to improving crops through the regulation of internode elongation.

16.
Plants (Basel) ; 12(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37447075

ABSTRACT

High labor costs and labor shortages are limiting factors affecting the tea industry in Anhui Province. Thus, exploiting the full mechanization of shoot harvesting is an urgent task in the tea industry. Tea quality is greatly influenced by the integrity rate of tea leaves; therefore, it is important to choose tea cultivars suitable for machine picking. In this study, seven tea cultivars were used to investigate the relationship between internode length and blade angle with respect to newly formed tea shoots and machine harvesting in field experiments (Xuanchen City, Kuiling village) conducted throughout the year (in the autumn of 2021, in the early spring of 2022, and in the summer of 2022). Our results showed that the internode length (L2 or L4) had a significant and positive correlation with the integrity rate of tea buds and leaves in seven tea cultivars over three seasons. However, no significant correlation was found between the blade angle and the integrity rate of tea buds and leaves. In addition, a strong and positive correlation was found between the levels of GA1 (R2 > 0.7), GA3 (R2 > 0.85), and IAA (R2 > 0.6) regarding the internodes and internode lengths of the seven tea cultivars. Moreover, the relative expression levels of CsGA20ox, CsGA3ox1, and CsGA3ox2 in Echa1 (the longer internode) were significantly higher compared with those in Zhenong113 (the shorter internode). Overall, our results show that the internode length is an important factor for the machine harvesting of tea leaves and that the level of GA3 is strongly associated with internode length.

17.
Mol Breed ; 43(1): 6, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37312867

ABSTRACT

Plant height and node number are important agronomic traits that influence yield in soybean (Glycine max L.). Here, to better understand the genetic basis of the traits, we used two recombinant inbred line (RIL) populations to detect quantitative trait loci (QTLs) associated with plant height and node number in different environments. This analysis detected 9 and 21 QTLs that control plant height and node number, respectively. Among them, we identified two genomic regions that overlap with Determinate stem 1 (Dt1) and Dt2, which are known to influence both plant height and node number. Furthermore, different combinations of Dt1 and Dt2 alleles were enriched in distinct latitudes. In addition, we determined that the QTLs qPH-13-SE and qPH-13-DW in the two RIL populations overlap with genomic intervals associated with plant height and the QTL qNN-04-DW overlaps with an interval associated with node number. Combining the dwarf allele of qPH-13-SE/qPH-13-DW and the multiple-node allele of qNN-04-DW produced plants with ideal plant architecture, i.e., shorter main stems with more nodes. This plant type may help increase yield at high planting density. This study thus provides candidate loci for breeding elite soybean cultivars for plant height and node number. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01352-2.

18.
New Phytol ; 239(3): 1051-1067, 2023 08.
Article in English | MEDLINE | ID: mdl-37291904

ABSTRACT

In the absence of light signals, Arabidopsis plants fail to develop the rosette habit typical for this species. Instead, plants display caulescent growth due to elongation of rosette internodes. This aspect of photomorphogenic development has been paid little attention and molecular events involved, downstream of photoreceptor signaling, remain to be identified. Using a combination of genetic and molecular approaches, we show that Arabidopsis rosette habit is a photomorphogenic trait controlled by induction of ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1) as downstream target of multiple photoreceptors. ATH1 induction prevents rosette internode elongation by maintaining the shoot apical meristem (SAM) rib zone area inactive and requires inactivation of photomorphogenesis inhibitors, including PHYTOCHROME INTERACTING FACTOR (PIF) proteins. ATH1 activity results in tissue-specific inhibition of PIF expression, establishing double-negative feedback-regulation at the SAM. Light-requirement for ATH1 expression can be overcome by high sugar availability to the SAM. Both sugar and light signals that induce ATH1 and, subsequently, rosette habit are mediated by TOR kinase. Collectively, our data reveal a SAM-specific, double-negative ATH1-PIF feedback loop at the basis of rosette habit. Upstream, TOR kinase functions as central hub integrating light and energy signals that control this for Arabidopsis quintessential trait.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Genes, Homeobox , Phytochrome/metabolism , Sugars/metabolism , TOR Serine-Threonine Kinases/metabolism
19.
Genome Biol ; 24(1): 114, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37173729

ABSTRACT

BACKGROUND: Plant architecture associated with increased grain yield and adaptation to the local environments is selected during wheat (Triticum aestivum) breeding. The internode length of individual stems and tiller length of individual plants are important for the determination of plant architecture. However, few studies have explored the genetic basis of these traits. RESULTS: Here, we conduct a genome-wide association study (GWAS) to dissect the genetic basis of geographical differentiation of these traits in 306 worldwide wheat accessions including both landraces and traditional varieties. We determine the changes of haplotypes for the associated genomic regions in frequency in 831 wheat accessions that are either introduced from other countries or developed in China from last two decades. We identify 83 loci that are associated with one trait, while the remaining 247 loci are pleiotropic. We also find 163 associated loci are under strong selective sweep. GWAS results demonstrate independent regulation of internode length of individual stems and consistent regulation of tiller length of individual plants. This makes it possible to obtain ideal haplotype combinations of the length of four internodes. We also find that the geographical distribution of the haplotypes explains the observed differences in internode length among the worldwide wheat accessions. CONCLUSION: This study provides insights into the genetic basis of plant architecture. It will facilitate gene functional analysis and molecular design of plant architecture for breeding.


Subject(s)
Quantitative Trait Loci , Triticum , Triticum/genetics , Genome-Wide Association Study/methods , Plant Breeding , Phenotype , Polymorphism, Single Nucleotide
20.
Int J Biol Macromol ; 227: 1098-1118, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36462591

ABSTRACT

Xylogen-like arabinogalactan protein (XYLP) is an atypical lipid transport protein. In this study, 23 Phyllostachys edulis XYLPs were identified, and their proteins contain characteristic structures of AGP and nsLTP domain. All PeXYLPs can be divided into four clades, and their genes were unevenly distributed on 11 chromosome scaffolds. Collinear analysis revealed that segmental duplication was the main driver for PeXYLP family expansion. The cis-acting elements presented in the promoter are involved in various regulations of PeXYLPs expression. G.O. annotation revealed that PeXYLPs are mainly interested in lipid transport and synthesis and primarily function at the plasma membrane. Transcriptome analysis revealed that PeXYLPs were spatiotemporally expressed and displayed significant variability during various tissue development. Besides that, some PeXYLPs also respond to multiple phytohormones and abiotic stresses. By semi-quantitative RT-PCR, the response of some PeXYLPs to MeJA was confirmed, and the proteins were shown to localize to the plasma membrane mainly. WGCNA in defined regions of fast-growing bamboo shoots revealed that 5 PeXYLPs in 4 gene co-expression modules showed a positive module-trait relationship with three fast-growing regions. This systematic analysis of the PeXYLP family will provide a foundation for further insight into the functions of individual PeXYLP in a specific tissue or organ development, phytohormone perception, and stress responses in the future.


Subject(s)
Plant Proteins , Poaceae , Poaceae/genetics , Poaceae/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Lipids , Gene Expression Regulation, Plant , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...