Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 215
Filter
1.
Redox Rep ; 29(1): 2373657, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39023011

ABSTRACT

OBJECTIVES: Intestinal ischemia-reperfusion (I/R) injury is a multifactorial and complex clinical pathophysiological process. Current research indicates that the pathogenesis of intestinal I/R injury involves various mechanisms, including ferroptosis. Methane saline (MS) has been demonstrated to primarily exert anti-inflammatory and antioxidant effects in I/R injury. In this study, we mainly investigated the effect of MS on ferroptosis in intestinal I/R injury and determined its potential mechanism. METHODS: In vivo and in vitro intestinal I/R injury models were established to validate the relationship between ferroptosis and intestinal I/R injury. MS treatment was applied to assess its impact on intestinal epithelial cell damage, intestinal barrier disruption, and ferroptosis. RESULTS: MS treatment led to a reduction in I/R-induced intestinal epithelial cell damage and intestinal barrier disruption. Moreover, similar to treatment with ferroptosis inhibitors, MS treatment reduced ferroptosis in I/R, as indicated by a decrease in the levels of intracellular pro-ferroptosis factors, an increase in the levels of anti-ferroptosis factors, and alleviation of mitochondrial damage. Additionally, the expression of Nrf2/HO-1 was significantly increased after MS treatment. However, the intestinal protective and ferroptosis inhibitory effects of MS were diminished after the use of M385 to inhibit Nrf2 in mice or si-Nrf2 in Caco-2 cells. DISCUSSION: We proved that intestinal I/R injury was mitigated by MS and that the underlying mechanism involved modulating the Nrf2/HO-1 signaling pathway to decrease ferroptosis. MS could be a promising treatment for intestinal I/R injury.


Subject(s)
Ferroptosis , Heme Oxygenase-1 , Methane , NF-E2-Related Factor 2 , Reperfusion Injury , Signal Transduction , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Animals , Signal Transduction/drug effects , Mice , Heme Oxygenase-1/metabolism , Methane/pharmacology , Male , Humans , Saline Solution/pharmacology , Intestines/drug effects , Intestines/injuries , Mice, Inbred C57BL , Membrane Proteins
2.
J Inflamm (Lond) ; 21(1): 25, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982499

ABSTRACT

BACKGROUND: Intestinal ischemia-reperfusion (I/R) injury is a severe vascular emergency. Previous research indicated the protective effects of Emodin on I/R injury. Our study aims to explore the effect of Emodin on intestinal I/R (II/R) injury and elucidate the underlying mechanisms. METHODS: C57BL/6 mice and Caco-2 cells were used for in vivo and in vitro studies. We established an animal model of II/R injury by temporarily occluding superior mesenteric artery. We constructed an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model using a hypoxia-reoxygenation incubator. Different doses of Emodin were explored to determine the optimal therapeutic dose. Additionally, inhibitors targeting the protein kinase B (Akt) or Heme oxygenase-1 (HO-1) were administered to investigate their potential protective mechanisms. RESULTS: Our results demonstrated that in animal experiments, Emodin mitigated barrier disruption, minimized inflammation, reduced oxidative stress, and inhibited apoptosis. When Akt or HO-1 was inhibited, the protective effect of Emodin was eliminated. Inhibiting Akt also reduced the level of HO-1. In cell experiments, Emodin reduced inflammation and apoptosis in the OGD/R cell model. Additionally, when Akt or HO-1 was inhibited, the protective effect of Emodin was weakened. CONCLUSIONS: Our findings suggest that Emodin may protect the intestine against II/R injury through the Akt/HO-1 signaling pathway.

3.
Int Immunopharmacol ; 138: 112463, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971110

ABSTRACT

Intestinal ischemia/reperfusion injury (IRI) poses a serious threat to human survival and quality of life with high mortality and morbidity rates. The current absence of effective treatments for intestinal IRI highlights the urgent need to identify new therapeutic targets. Ursolic acid (UA), a pentacyclic triterpene natural compound, has been shown to possess various pharmacological properties including intestinal protection. However, its potential protective efficacy on intestinal IRI remains elusive. This study aimed to investigate the effect of UA on intestinal IRI and explore the underlying mechanisms. To achieve this, we utilized network pharmacology to analyze the mechanism of UA in intestinal IRI and assessed UA's effects on intestinal IRI using a mouse model of superior mesenteric artery occlusion/reperfusion and an in vitro model of oxygen-glucose deprivation and reperfusion-induced IEC-6 cells. Our results demonstrated that UA improved necroptosis through the RIP1/RIP3/MLKL pathway, reduced necroinflammation via the HMGB1/TLR4/NF-κB pathway, attenuated morphological damage, and enhanced intestinal barrier function. Furthermore, UA pretreatment downregulated the phosphorylation level of signal transducer and activator of transcription 3 (STAT3). The effects of UA were attenuated by the STAT3 agonist Colivelin. In conclusion, our study suggests that UA can improve intestinal IRI by inhibiting necroptosis in enterocytes via the suppression of STAT3 activation. These results provide a theoretical basis for UA treatment of intestinal IRI and related clinical diseases.

4.
Int Immunopharmacol ; 136: 112421, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38850786

ABSTRACT

Intestinal ischemia/reperfusion (I/R) injury is a serious condition that causes intestinal dysfunction and can be fatal. Previous research has shown that toll-like receptor 4 (TLR4) inhibitors have a protective effect against this injury. This study aimed to investigate the protective effects of TLR4 inhibitors, specifically cyclobenzaprine, ketotifen, amitriptyline, and naltrexone, in rats with intestinal (I/R) injury. Albino rats were divided into seven groups: vehicle control, sham-operated, I/R injury, I/R-cyclobenzaprine (10 mg/kg body weight), I/R-ketotifen (1 mg/kg body weight), I/R-amitriptyline (10 mg/kg body weight), and I/R-naltrexone (4 mg/kg body weight) groups. Anesthetized rats (urethane 1.8 g/kg) underwent 30 min of intestinal ischemia by occluding the superior mesenteric artery (SMA), followed by 2 h of reperfusion. Intestinal tissue samples were collected to measure various parameters, including malondialdehyde (MDA), nitric oxide synthase (NO), myeloperoxidase (MPO), superoxide dismutase (SOD), TLR4, intercellular adhesion molecule-1 (ICAM-1), nuclear factor kappa bp65 (NF-ĸBP65), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), macrophages CD68, myeloid differentiation factor 88 (MYD88), and toll interleukin receptor-domain-containing adaptor-inducing interferon ß (TRIF). The use of TLR4 inhibitors significantly reduced MDA, MPO, and NO levels, while increasing SOD activity. Furthermore, it significantly decreased TLR4, ICAM-1, TNF-α, MCP-1, MYD88, and TRIF levels. These drugs also showed partial restoration of normal cellular structure with reduced inflammation. Additionally, there was a decrease in NF-ĸBP65 and macrophages CD68 staining compared to rats in the I/R groups. This study focuses on how TLR4 inhibitors enhance intestinal function and protect against intestinal (I/R) injury by influencing macrophages CD86 through (MYD88-TRIF) pathway, as well as their effects on oxidation and inflammation.


Subject(s)
Adaptor Proteins, Vesicular Transport , Myeloid Differentiation Factor 88 , Reperfusion Injury , Signal Transduction , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/antagonists & inhibitors , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/antagonists & inhibitors , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Rats , Adaptor Proteins, Vesicular Transport/metabolism , Male , Signal Transduction/drug effects , Intestines/drug effects , Intestines/pathology
5.
Front Med (Lausanne) ; 11: 1399744, 2024.
Article in English | MEDLINE | ID: mdl-38933104

ABSTRACT

Intestinal ischemia/reperfusion is a prevalent pathological process that can result in intestinal dysfunction, bacterial translocation, energy metabolism disturbances, and subsequent harm to distal tissues and organs via the circulatory system. Acute lung injury frequently arises as a complication of intestinal ischemia/reperfusion, exhibiting early onset and a grim prognosis. Without appropriate preventative measures and efficacious interventions, this condition may progress to acute respiratory distress syndrome and elevate mortality rates. Nonetheless, the precise mechanisms and efficacious treatments remain elusive. This paper synthesizes recent research models and pertinent injury evaluation criteria within the realm of acute lung injury induced by intestinal ischemia/reperfusion. The objective is to investigate the roles of pathophysiological mechanisms like oxidative stress, inflammatory response, apoptosis, ferroptosis, and pyroptosis; and to assess the strengths and limitations of current therapeutic approaches for acute lung injury stemming from intestinal ischemia/reperfusion. The goal is to elucidate potential targets for enhancing recovery rates, identify suitable treatment modalities, and offer insights for translating fundamental research into clinical applications.

6.
Free Radic Biol Med ; 221: 111-124, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38763207

ABSTRACT

Intestinal ischemia‒reperfusion (IIR) injury is a common complication of surgery, but clear molecular insights and valuable therapeutic targets are lacking. Mitochondrial calcium overload is an early sign of various diseases and is considered a vital factor in ischemia‒reperfusion injury. The mitochondrial calcium uniporter (MCU), which is located on the inner mitochondrial membrane, is the primary mediator of calcium ion entry into the mitochondria. However, the specific mechanism of MCU in IIR injury remains to be clarified. In this study, we generated an IIR model using C57BL/6 mice and Caco-2 cells and found increases in the calcium levels and MCU expression following IIR injury. The specific inhibition of MCU markedly attenuated IIR injury. Moreover, MCU knockdown alleviates mitochondrial dysfunction by reducing oxidative stress and apoptosis. Mechanistically, MCU knockdown substantially reduced the translocation of Drp1 and thus its binding to Fis1 receptors, resulting in decreased mitochondrial fission. Taken together, our findings demonstrated that MCU is a novel upstream regulator of Drp1 in ischemia‒reperfusion and represents a predictive and therapeutic target for IIR.


Subject(s)
Apoptosis , Calcium Channels , Dynamins , Mice, Inbred C57BL , Mitochondria , Mitochondrial Dynamics , Reperfusion Injury , Animals , Humans , Male , Mice , Apoptosis/genetics , Caco-2 Cells , Calcium/metabolism , Calcium Channels/metabolism , Calcium Channels/genetics , Disease Models, Animal , Dynamins/metabolism , Dynamins/genetics , Intestines/blood supply , Intestines/pathology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/genetics , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Oxidative Stress , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Reperfusion Injury/prevention & control
7.
Aging (Albany NY) ; 16(9): 7961-7978, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38709282

ABSTRACT

BACKGROUND: This study combined bioinformatics and experimental verification in a mouse model of intestinal ischemia-reperfusion injury (IRI) to explore the protection mechanism exerted by butyrate against IRI. METHODS: GeneCards, Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine and GSE190581 were used to explore the relationship between butyrate and IRI and aging. Protein-protein interaction networks involving butyrate and IRI were constructed via the STRING database, with hub gene analysis performed through Cytoscape. Functional enrichment analysis was conducted on intersection genes. A mouse model of IRI was established, followed by direct arterial injection of butyrate. The experiment comprised five groups: normal, sham, model, vehicle, low-dose butyrate, and high-dose butyrate. Intestinal tissue observation was done via transmission electron microscopy (TEM), histological examination via hematoxylin and eosin (H&E) staining, tight junction proteins detection via immunohistochemistry, and Western blot analysis of hub genes. Drug-target interactions were evaluated through molecular docking. RESULTS: Butyrate protected against IRI by targeting 458 genes, including HMGB1 and TLR4. Toll-like receptor pathway was implicated. Butyrate improved intestinal IRI by reducing mucosal damage, increasing tight junction proteins, and lowering levels of HMGB1, TLR4, and MyD88. Molecular docking showed strong binding energies between butyrate and HMGB1 (-3.7 kcal/mol) and TLR4 (-3.8 kcal/mol). CONCLUSIONS: According to bioinformatics predictions, butyrate mitigates IRI via multiple-target and multiple-channel mechanisms. The extent of IRI can be reduced by butyrate through the inhibition of the HMGB1-TLR4-MyD88 signaling pathway, which is related to senescence.


Subject(s)
Butyrates , HMGB1 Protein , Myeloid Differentiation Factor 88 , Reperfusion Injury , Signal Transduction , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , HMGB1 Protein/drug effects , Mice , Signal Transduction/drug effects , Butyrates/pharmacology , Male , Molecular Docking Simulation , Intestines/drug effects , Intestines/pathology , Disease Models, Animal , Mice, Inbred C57BL , Protein Interaction Maps
8.
FASEB J ; 38(11): e23681, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38814725

ABSTRACT

Ischemia-reperfusion (IR) injury is primarily characterized by the restoration of blood flow perfusion and oxygen supply to ischemic tissue and organs, but it paradoxically leads to tissue injury aggravation. IR injury is a challenging pathophysiological process that is difficult to avoid clinically and frequently occurs during organ transplantation, surgery, shock resuscitation, and other processes. The major causes of IR injury include increased levels of free radicals, calcium overload, oxidative stress, and excessive inflammatory response. Ghrelin is a newly discovered brain-intestinal peptide with anti-inflammatory and antiapoptotic effects that improve blood supply. The role and mechanism of ghrelin in intestinal ischemia-reperfusion (IIR) injury remain unclear. We hypothesized that ghrelin could attenuate IIR-induced oxidative stress and apoptosis. To investigate this, we established IIR by using a non-invasive arterial clip to clamp the root of the superior mesenteric artery (SMA) in mice. Ghrelin was injected intraperitoneally at a dose of 50 µg/kg 20 min before IIR surgery, and [D-Lys3]-GHRP-6 was injected intraperitoneally at a dose of 12 nmol/kg 20 min before ghrelin injection. We mimicked the IIR process with hypoxia-reoxygenation (HR) in Caco-2 cells, which are similar to intestinal epithelial cells in structure and biochemistry. Our results showed that ghrelin inhibited IIR/HR-induced oxidative stress and apoptosis by activating GHSR-1α. Moreover, it was found that ghrelin activated the GHSR-1α/Sirt1/FOXO1 signaling pathway. We further inhibited Sirt1 and found that Sirt1 was critical for ghrelin-mediated mitigation of IIR/HR injury. Overall, our data suggest that pretreatment with ghrelin reduces oxidative stress and apoptosis to attenuate IIR/HR injury by binding with GHSR-1α to further activate Sirt1.


Subject(s)
Apoptosis , Forkhead Box Protein O1 , Ghrelin , Mice, Inbred C57BL , Oxidative Stress , Receptors, Ghrelin , Reperfusion Injury , Sirtuin 1 , Ghrelin/pharmacology , Ghrelin/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Sirtuin 1/metabolism , Animals , Mice , Receptors, Ghrelin/metabolism , Humans , Male , Forkhead Box Protein O1/metabolism , Apoptosis/drug effects , Oxidative Stress/drug effects , Signal Transduction/drug effects , Intestines/drug effects , Caco-2 Cells
9.
Int Immunopharmacol ; 135: 112271, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38762923

ABSTRACT

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signal has drawn much consideration due to its sensitivity to DNA in innate immune mechanisms. Activation of the cGAS-STIN signaling pathway induces the production of interferon and inflammatory cytokines, resulting in immune responses, or inflammatory diseases. The intestinal tract is a vital organ for the body's nutrition absorption, recent studies have had various points of view on the job of cGAS-STING pathway in various intestinal sicknesses. Therefore, understanding its role and mechanism in the intestinal environment can help to develop new strategies for the treatment of intestinal diseases. This article examines the mechanism of the cGAS-STING pathway and its function in inflammatory bowel disease, intestinal cancer, and long-injury ischemia-reperfusion, lists the current medications that target it for the treatment of intestinal diseases, and discusses the impact of intestinal flora on this signaling pathway, to offer a theoretical and scientific foundation for upcoming targeted therapies for intestinal disorders via the cGAS-STING pathway.


Subject(s)
Intestinal Diseases , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Animals , Humans , Immunity, Innate , Intestinal Diseases/immunology , Intestinal Diseases/metabolism , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism
10.
Int Immunopharmacol ; 133: 112155, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38688134

ABSTRACT

BACKGROUND: Ferroptosis is an iron-dependent and cystathione-non-dependent non-apoptotic cell death characterized by elevated intracellular free iron levels and reduced antioxidant capacity, leading to the accumulation of lipid peroxides. Nuclear receptor coactivator 4 (NCOA4) mediates ferritinophagy, increasing labile iron levels, which can result in oxidative damage. However, the specific mechanism of NCOA4-mediated ferritinophagy in intestinal ischemia-reperfusion and the underlying mechanisms have not been reported in detail. OBJECT: 1. To investigate the role of NCOA4 in ferroptosis of intestinal epithelial cells induced by II/R injury in mouse. 2. To investigate the mechanism of action of NCOA4-induced ferroptosis. METHODS: 1. Construct a mouse II/R injury model and detect ferroptosis related markers such as HE staining, immunohistochemistry, ELISA, and WB methods. 2. Detect expression of NCOA4 in the intestine of mouse with II/R injury model and analyze its correlation with intestinal ferroptosis in mouse with II/R injury model. 3. Construct an ischemia-reperfusion model at the cellular level through hypoxia and reoxygenation, and overexpress/knockdown NCOA4 to detect markers related to ferroptosis. Based on animal experimental results, analyze the correlation and mechanism of action between NCOA4 and intestinal epithelial ferroptosis induced by II/R injury in mouse. RESULTS: 1. Ferroptosis occurred in the intestinal epithelial cells of II/R-injured mouse, and the expression of critical factors of ferroptosis, ACSL4, MDA and 15-LOX, was significantly increased, while the levels of GPX4 and GSH were significantly decreased. 2. The expression of NCOA4 in the intestinal epithelium of mouse with II/R injure was significantly increased, the expression of ferritin was significantly decreased, and the level of free ferrous ions was significantly increased; the expression of autophagy-related proteins LC3 and Beclin-1 protein was increased, and the expression of P62 was decreased, and these changes were reversed by autophagy inhibitors. 3. Knockdown of NCOA4 at the cellular level resulted in increased ferritin expression and decreased ferroptosis, and CO-IP experiments suggested that NCOA4 can bind to ferritin, which suggests that NCOA4 most likely mediates ferritinophagy to induce ferroptosis. CONCLUSION: This thesis explored the role of NCOA4 in II/R injury in mice and the mechanism of action. The research results suggest that NCOA4 can mediate ferritinophagy to induce ferroptosis during II/R injury. This experiment reveals the pathological mechanism of II/R injury and provides some scientific basis for the development of drugs for the treatment of II/R injury based on the purpose of alleviating ferroptosis.


Subject(s)
Ferroptosis , Intestinal Mucosa , Nuclear Receptor Coactivators , Reperfusion Injury , Animals , Humans , Male , Mice , Disease Models, Animal , Ferritins/metabolism , Ferroptosis/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Iron/metabolism , Mice, Inbred C57BL , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
11.
J Pharm Pharmacol ; 76(7): 788-797, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38538077

ABSTRACT

OBJECTIVES: Intestinal ischemia reperfusion (IIR) is a critical emergency situation that needs immediate intervention. Small intestine is one of the most sensitive tissues to IR injury and it remains a highly morbid condition, with reported mortality rates ranging from 30% to 90%. Thus, we aimed to evaluate the suspected protective role of sacubitril/valsartan (SAC/VAL) on IIR injury. METHODS: Thirty-two adult male Wistar rats were used in our model and divided into four groups: sham group, SAC/VAL treated group without IIR, IIR group, and SAC/VAL treated group with IIR. SAC/VAL in a dose of 30 mg/kg was administered orally just before induction of IIR. KEY FINDINGS: SAC/VAL significantly ameliorated IIR-induced changes as it decreased malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), angiotensin II (ANG II), interleukin 6 (IL 6), active caspase 3, and signal transducer- and activator-of transcription (STAT1). However, SAC/VAL administration significantly increased antioxidant parameters such as total antioxidant capacity (TAC), superoxide dismutase (SOD), and reduced glutathione (GSH). Moreover, alteration of the histological structure was observed in IIR group that was improved by SAC/VAL. CONCLUSIONS: SAC/VAL prevents IIR-induced damage via modulation of renin angiotensin aldosterone system, antioxidant, anti-apoptotic, anti-inflammatory properties, and regulation of IL6/STAT1 pathway.


Subject(s)
Aminobutyrates , Biphenyl Compounds , Drug Combinations , Interleukin-6 , Rats, Wistar , Reperfusion Injury , STAT1 Transcription Factor , Signal Transduction , Tetrazoles , Valsartan , Animals , Male , Valsartan/pharmacology , Interleukin-6/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Rats , Biphenyl Compounds/pharmacology , Tetrazoles/pharmacology , Aminobutyrates/pharmacology , Signal Transduction/drug effects , STAT1 Transcription Factor/metabolism , Antioxidants/pharmacology , Oxidative Stress/drug effects , Malondialdehyde/metabolism , Disease Models, Animal , Angiotensin II , Apoptosis/drug effects , Tumor Necrosis Factor-alpha/metabolism , Intestines/drug effects , Caspase 3/metabolism
12.
Free Radic Biol Med ; 214: 115-128, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331008

ABSTRACT

Sestrins are metabolic regulators that respond to stress by reducing the levels of reactive oxygen species (ROS) and inhibiting the activity of target of rapamycin complex 1 (mTORC1). Previous research has demonstrated that Sestrin2 mitigates ischemia-reperfusion (IR) injury in the heart, liver, and kidneys. However, its specific role in intestinal ischemia-reperfusion (IIR) injury remains unclear. To elucidate the role of Sestrin2 in IIR injury, we conducted an experimental study using a C57BL/6J mouse model of IIR. We noticed an increase in the levels of Sestrin2 expression and indicators associated with ferroptosis. Our study revealed that manipulating Sestrin2 expression in Caco-2 cells through overexpression or knockdown resulted in a corresponding decrease or increase, respectively, in ferroptosis levels. Furthermore, our investigation revealed that Sestrin2 alleviated ferroptosis caused by IIR injury through the activation of the Keap1/Nrf2 signal pathway. This finding highlights the potential of Sestrin2 as a therapeutic target for alleviating IIR injury. These findings indicated that the modulation of Sestrin2 could be a promising strategy for managing prolonged IIR injury.


Subject(s)
Ferroptosis , Mesenteric Ischemia , Reperfusion Injury , Animals , Humans , Mice , Caco-2 Cells , Ferroptosis/genetics , Ischemia , Kelch-Like ECH-Associated Protein 1/genetics , Mechanistic Target of Rapamycin Complex 1 , Mice, Inbred C57BL , NF-E2-Related Factor 2/genetics , Reperfusion , Reperfusion Injury/genetics , Signal Transduction
13.
J Agric Food Chem ; 72(4): 2202-2213, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38247134

ABSTRACT

Intestinal ischemia-reperfusion (I/R) injury is a serious disease in medical settings, and gut dysbiosis is a major contributor to its development. Polysaccharides from Agaricus blazei Murill (ABM) showed a range of pharmacological activities, yet no studies assessed the potential of ABM polysaccharides for alleviating intestinal I/R injury. Here, we purified a major polysaccharide (ABP1) from an ABM fruit body and subsequently tested its potential to mitigate intestinal I/R injury in a mouse model of temporary superior mesenteric artery occlusion. The results reveal that ABP1 pretreatment enhances gut barrier function via upregulation of the expression of tight junction proteins such as ZO-1 and occludin. Additionally, ABP1 intervention reduces the recruitment of neutrophils and the polarization of M1 macrophages and limits inflammation by blocking the assembly of the NLRP3 inflammasome. Moreover, the role of ABP1 in regulating the gut microbiota was confirmed via antibiotic treatment. The omics data reveals that ABP1 reprograms gut microbiota compositions, characterized by a decrease of Proteobacteria and an increase of Lachnospiraceae and Lactobacillaceae, especially the SCFA-producing genera such as Ligilactobacillus and Blautia. Overall, this work highlights the therapeutic potential of ABP1 against intestinal I/R injury, which mainly exhibits its effects via regulating the gut microbiota and suppressing the overactivated inflammation response.


Subject(s)
Agaricus , Gastrointestinal Microbiome , Reperfusion Injury , Mice , Animals , Polysaccharides/pharmacology , Inflammation/drug therapy , Reperfusion Injury/drug therapy , Ischemia
14.
Biomed Pharmacother ; 170: 115984, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38070244

ABSTRACT

In recent years, the incidence of intestinal ischemia-reperfusion injury (II/RI), inflammatory bowel disease (IBD), and colorectal cancer (CRC) has been gradually increasing, posing significant threats to human health. Autophagy and endoplasmic reticulum stress (ERS) play important roles in II/RI. Damage caused by ischemia and cellular stress can activate ERS, which in turn initiates autophagy to clear damaged organelles and abnormal proteins, thereby alleviating ERS and maintaining the intestinal environment. In IBD, chronic inflammation damages intestinal tissues and activates autophagy and ERS. Autophagy is initiated by upregulating ATG genes and downregulating factors that inhibit autophagy, thereby clearing abnormal proteins, damaged organelles, and bacteria. Simultaneously, persistent inflammatory stimulation can also trigger ERS, leading to protein imbalance and abnormal folding in the ER lumen. The activation of ERS can maintain cellular homeostasis by initiating the autophagy process, thereby reducing inflammatory responses and cell apoptosis in the intestine. In CRC, excessive cell proliferation and protein synthesis lead to increased ERS. The activation of ERS, regulated by signaling pathways such as IRE1α and PERK, can initiate autophagy to clear abnormal proteins and damaged organelles, thereby reducing the negative effects of ERS. It can be seen that autophagy and ERS play a crucial regulatory role in the development of intestinal diseases. Therefore, the progress in targeted therapy for intestinal diseases based on autophagy and ERS provides novel strategies for managing intestinal diseases. In this paper, we review the advances in regulation of autophagy and ERS in intestinal diseases, emphasizing the potential molecular mechanisms for therapeutic applications.


Subject(s)
Colorectal Neoplasms , Inflammatory Bowel Diseases , Reperfusion Injury , Humans , Endoribonucleases , Protein Serine-Threonine Kinases , Endoplasmic Reticulum Stress/physiology , Intestines , Apoptosis/genetics , Reperfusion Injury/metabolism , Autophagy/physiology
15.
Kaohsiung J Med Sci ; 40(2): 175-187, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38010861

ABSTRACT

Intestinal ischemia/reperfusion (I/R) injury is a life-threatening condition with no effective treatment currently available. Curcumin (CCM), a polyphenol compound in Curcuma Longa, reportedly has positive effects against intestinal I/R injury. However, the mechanism underlying the protective effect of CCM against intestinal I/R injury has not been fully clarified. To determine whether the protective effect of CCM was mediated by epigenetic effects on Wnt/ß-catenin signaling, the effect of CCM was examined in vivo and in vitro. An intestinal I/R model was established in Sprague-Dawley (SD) rats with superior mesenteric artery occlusion, and Caco-2 cells were subjected to hypoxia/reoxygenation (H/R) for in vivo simulation of I/R. The results showed that CCM significantly reduced inflammatory, cell apoptosis, and oxidative stress induced by I/R insult in vivo and in vitro. Western blot analysis showed that CCM preconditioning reduced the protein levels of ß-catenin, p-GSK3ß, and cyclin-D1 and increased the protein level of GSK3ß compared with the I/R group. Overexpressing ß-catenin aggravated H/R injury, and knocking down ß-catenin relieved H/R injury by improving intestinal permeability and reducing the cell apoptosis. Moreover, Naked cuticle homolog 2(NKD2) mRNA and protein levels were upregulated in the CCM-pretreated group. 5-aza-2'-deoxycytidine (5-AZA) treatment improved intestinal epithelial barrier impairment induced by H/R. Besides, the protein levels of total ß-catenin, phosphor-ß-catenin and cyclin-D1 were reduced after overexpressing NKD2 in Caco-2 cells following H/R insult. In conclusion, Our study suggests that CCM could attenuate intestinal I/R injury in vitro and in vivo by suppressing the Wnt/ß-catenin signaling pathway via inhibition of NKD2 methylation.


Subject(s)
Curcumin , Reperfusion Injury , Rats , Humans , Animals , Rats, Sprague-Dawley , beta Catenin/genetics , beta Catenin/metabolism , Curcumin/pharmacology , Curcumin/therapeutic use , Wnt Signaling Pathway/genetics , Caco-2 Cells , Glycogen Synthase Kinase 3 beta/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Methylation , Ischemia , Cyclins/metabolism , Cyclins/pharmacology , Apoptosis , Calcium-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism
16.
J Control Release ; 366: 182-193, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145659

ABSTRACT

Intestinal ischemia reperfusion injury (II/R injury) is a common and intractable pathophysiological process in critical patients, for which exploring new treatments and mechanisms is of great importance to improve treatment outcomes. Apigenin-7-O-Glucoside (AGL) is a sugar derivative of apigenin natural product with various pharmacological activities to protect against intestinal diseases. In this study, we synthesized two amphiphilic molecules, namely DTPA-N10-10 and mPEG-TK-DA, which can scavenge free radicals and reactive oxygen species (ROS). They were successfully encapsulated AGL through self-assembly, resulting in the formation of multi-site ROS scavenging nanoparticles called PDN@AGL. In vitro and in vivo experiments demonstrated that PDN@AGL could protect intestinal tissues by reducing lipid peroxidation, lowering ROS levels and inhibiting ferroptosis during II/R injury. Furthermore, our study revealed, for the first time, that the regulation of the ATF3/SLC7A11 pathway by PDN@AGL may play a crucial role in mitigating II/R injury. In conclusion, our study confirmed the beneficial effects of PDN@AGL in combating II/R injury through the ATF3/SLC7A11-mediated regulation of ferroptosis and oxidative stress. These findings lay the groundwork for the potential application of PDN@AGL in the treatment of II/R injury.


Subject(s)
Activating Transcription Factor 3 , Amino Acid Transport System y+ , Apigenin , Ferroptosis , Intestines , Nanoparticles , Reperfusion Injury , Humans , Apigenin/administration & dosage , Apigenin/pharmacology , Reactive Oxygen Species , Reperfusion Injury/drug therapy , Intestines/blood supply
17.
Arch Med Sci ; 19(6): 1889-1900, 2023.
Article in English | MEDLINE | ID: mdl-38058713

ABSTRACT

Introduction: Pediatric intussusception is one of the most common causes of bowel obstruction in the pediatric population. Affected children have one section of the intestine sliding into the adjacent section. Intestinal ischemia-reperfusion injury (I/R) can occur during pediatric intussusception, and any delay in diagnosis or treatment can lead to loss of intestinal viability that requires bowel resection. The aim of the present study was to investigate whether transfer ribonucleic acid (tRNA)-derived fragments (tRFs) can serve as candidate biomarkers for pediatric intussusception. Material and methods: Using high-throughput sequencing technology, we identified differentially expressed tRFs, and ultimately selected three tRFs to establish a signature as a predictive biomarker of pediatric intussusception. Selection of these three upregulated genes was verified using quantitative reverse-transcription polymerase chain reaction (qRT-PCR). We conducted receiver operator characteristic (ROC) curve analysis to evaluate the predictive accuracy of the selected genes for pediatric intussusception. Results: We detected 732 tRFs and tRNA-derived stress-induced RNA (tiRNAs), 1705 microRNAs (miRNAs), 52 differentially expressed miRNAs, and 34 differentially expressed tRFs and tiRNAs between patients and controls. Compared with controls, we found 33 upregulated miRNAs, 24 upregulated tRFs and tiRNAs, 19 downregulated miRNAs, and 10 downregulated tRFs and tiRNAs in children with intussusception. Using qPCR, the expression trends of tRF-Leu-TAA-006, tRF-Gln-TTG-033 and tRF-Lys-TTT-028 were consistent with the sequencing results. AUCs of tRF-Leu-TAA-006, tRF-Gln-TTG-033 and tRF-Lys-TTT-028 were 0.984, 0.970 and 0.837, respectively. Conclusions: Circulating tRF-Leu-TAA-006, tRF-Gln-TTG-033 and tRF-Lys-TTT-028 expression might be a novel potential biomarker for diagnosis of pediatric intussusception.

18.
Aging (Albany NY) ; 15(22): 12852-12872, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37955663

ABSTRACT

Intestinal ischemia/reperfusion injury (IIRI) has the potential to be life threatening and is associated with significant morbidity and serious damage to distant sites in the body on account of disruption of the intestinal mucosal barrier. In the present study, we have explored this line of research by comparing and identifying peptides that originated from the intestinal segments of IIRI model rats by using liquid chromatography-mass spectrometry (LC-MS). We also analyzed the basic characteristics, cleavage patterns, and functional domains of differentially expressed peptides (DEPs) between the IIRI model rats and control (sham-operated) rats and identified bioactive peptides that are potentially associated with ischemia reperfusion injury. We also performed bioinformatics analyses in order to identify the biological roles of the DEPs based on their precursor proteins. Enrichment analysis demonstrated the role of several DEPs in impairment of the intestinal mucosal barrier caused by IIRI. Based on the results of comprehensive ingenuity pathway analysis, we identified the DEPs that were significantly correlated with IIRI. We identified a candidate precursor protein (Actg2) and seven of its peptides, and we found that Actg2-6 had a more significant difference in its expression, a longer half-life, and better lipophilicity, hydrophobicity, and stability than the other candidate Actg2 peptides examined. Furthermore, we observed that Actg2-6 might play critical roles in the protection of the intestinal mucosal barrier during IIRI. In summary, our study provides a better understanding of the peptidomics profile of IIRI, and the results indicate that Actg2-6 could be a useful target in the treatment of IIRI.


Subject(s)
Intestines , Reperfusion Injury , Rats , Animals , Intestinal Mucosa/metabolism , Reperfusion Injury/metabolism , Ischemia , Peptides
19.
Life Sci ; 334: 122234, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37931744

ABSTRACT

Intestinal ischemia-reperfusion (IIR) injury is associated with inflammation and oxidative stress, yet its precise mechanisms remain not fully understood. IIR injury is closely linked to the gut microbiota and its metabolites. The anti-inflammatory and antioxidant effects of Lactiplantibacillus plantarum are specific to IIR. In our study, we conducted a 30-day pre-treatment of SD rats with both a standard strain of Lactiplantibacillus plantarum and Lactiplantibacillus plantarum GL001. After a 7-day cessation of treatment, we induced an IIR injury model to investigate the mechanisms by which Lactiplantibacillus plantarum alleviates IIR damage. The results demonstrate that Lactiplantibacillus plantarum effectively mitigates the inflammatory and oxidative stress damage induced by IIR. Lactiplantibacillus plantarum GL001 can improve the gut microbiota by reducing the abundance of harmful bacteria and increasing the abundance of beneficial bacteria. In IIR intestinal tissue, the levels of secondary bile acids are elevated. The content of the bacterial metabolite Calcimycin increases. Annotations of metabolic pathways suggest that Lactiplantibacillus plantarum GL001 can alleviate IIR damage by modulating calcium-phosphorus homeostasis through the regulation of parathyroid hormone synthesis, secretion, and action. Microbiota-metabolite correlation analysis reveals a significant negative correlation between calcimycin and Lactonacillus and a significant positive correlation between calcimycin and Shigella. There is also a significant positive correlation between calcimycin and secondary bile acids. Lactiplantibacillus plantarum GL001 can alleviate oxidative damage induced by IIR through improvements in gut microbiota and intestinal tissue metabolism.


Subject(s)
Oxidative Stress , Reperfusion Injury , Rats , Animals , Calcimycin/pharmacology , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Bacteria , Bile Acids and Salts
20.
Front Immunol ; 14: 1239142, 2023.
Article in English | MEDLINE | ID: mdl-37781354

ABSTRACT

The intestinal mucosa is constantly exposed to commensal microbes, opportunistic pathogens, toxins, luminal components and other environmental stimuli. The intestinal mucosa consists of multiple differentiated cellular and extracellular components that form a critical barrier, but is also equipped for efficient absorption of nutrients. Combination of genetic susceptibility and environmental factors are known as critical components involved in the pathogenesis of intestinal diseases. The innate immune system plays a critical role in the recognition and elimination of potential threats by detecting pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). This host defense is facilitated by pattern recognition receptors (PRRs), in which the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway has gained attention due to its role in sensing host and foreign double-stranded DNA (dsDNA) as well as cyclic dinucleotides (CDNs) produced by bacteria. Upon binding with dsDNA, cGAS converts ATP and GTP to cyclic GMP-AMP (cGAMP), which binds to STING and activates TANK binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3), inducing type I interferon (IFN) and nuclear factor kappa B (NF-κB)-mediated pro-inflammatory cytokines, which have diverse effects on innate and adaptive immune cells and intestinal epithelial cells (IECs). However, opposite perspectives exist regarding the role of the cGAS-STING pathway in different intestinal diseases. Activation of cGAS-STING signaling is associated with worse clinical outcomes in inflammation-associated diseases, while it also plays a critical role in protection against tumorigenesis and certain infections. Therefore, understanding the context-dependent mechanisms of the cGAS-STING pathway in the physiopathology of the intestinal mucosa is crucial for developing therapeutic strategies targeting the cGAS-STING pathway. This review aims to provide insight into recent findings of the protective and detrimental roles of the cGAS-STING pathway in intestinal diseases.


Subject(s)
Membrane Proteins , Signal Transduction , Membrane Proteins/metabolism , Signal Transduction/physiology , Nucleotidyltransferases/metabolism , DNA , Homeostasis
SELECTION OF CITATIONS
SEARCH DETAIL
...