Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 531
Filter
1.
Sci Rep ; 14(1): 13732, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877069

ABSTRACT

Intestinal preservation for transplantation is accompanied by hypoperfusion with long periods of ischemia with total blood cessation and absolute withdrawal of oxygen leading to structural damage. The application of intraluminal oxygen has been successfully tested in small-animal series during storage and transport of the organ but have been so far clinically unrelatable. In this study, we tested whether a simple and clinically approachable method of intraluminal oxygen application could prevent ischemic damage in a large animal model, during warm ischemia time. We utilised a local no-flow ischemia model of the small intestine in pigs. A low-flow and high-pressure intraluminal oxygen deliverance system was applied in 6 pigs and 6 pigs served as a control group. Mucosal histopathology, hypoxia and barrier markers were evaluated after two hours of no-flow conditions, in both treatment and sham groups, and in healthy tissue. Macro- and microscopically, the luminal oxygen delivered treatment group showed preserved small bowel's appearance, viability, and mucosal integrity. A gradual deterioration of histopathology and barrier markers and increase in hypoxia-inducible factor 1-α expression towards the sites most distant from the oxygen application was observed. Intraluminal low-flow, high oxygen delivery can preserve the intestinal mucosa during total ischemia of the small intestine. This finding can be incorporated in methods to overcome small bowel ischemia and improve intestinal preservation for transplantation.


Subject(s)
Intestinal Mucosa , Intestine, Small , Ischemia , Oxygen , Animals , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/blood supply , Intestine, Small/metabolism , Intestine, Small/blood supply , Intestine, Small/pathology , Oxygen/metabolism , Swine , Ischemia/metabolism , Ischemia/pathology , Ischemia/therapy , Disease Models, Animal , Organ Preservation/methods , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
2.
Mucosal Immunol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925529

ABSTRACT

Dietary proteins are taken up by intestinal dendritic cells (DC), cleaved into peptides, loaded to Major Histocompatibility Compexes (MHC), and presented to T cells to generate an immune response. Amino acid (AA)-diets do not have the same effects because AAs cannot bind to MHC to activate T cells. Here, we show that impairment in Treg cell generation and loss of tolerance in mice fed a diet lacking whole protein is associated with major transcriptional changes in intestinal DCs including downregulation of genes related to DC maturation, activation and migration and decreased gene expression of immune checkpoint molecules. Moreover, the AA-diet had a profound effect on microbiome composition, including an increase in Akkermansia muciniphilia and Oscillibacter and decrease in Lactococcus lactis and Bifidobacterium. Although microbiome transfer experiments showed that AA driven microbiome modulate intestinal DC gene expression, most of the unique transcriptional change in DC was linked to the absence of whole protein in the diet. Our findings highlight the importance of dietary proteins for intestinal DC function and mucosal tolerance.

3.
Nitric Oxide ; 149: 1-6, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38806106

ABSTRACT

Intestinal transplantation is a complex technical procedure that provides patients suffering from end-stage intestinal failure an opportunity to enjoy improved quality of life, nutrition and survival. Compared to other types of organ transplants, it is a relatively new advancement in the field of organ transplantation. Nevertheless, great advances have been made over the past few decades to the present era, including the use of ischemic preconditioning, gene therapy, and addition of pharmacological supplements to preservation solutions. However, despite these strides, intestinal transplantation is still a challenging endeavor due to several factors. Notable among them is ischemia-reperfusion injury (IRI), which results in loss of cellular integrity and mucosal barrier function. In addition, IRI causes graft failure, delayed graft function, and decreased graft and recipient survival. This has necessitated the search for novel therapeutic avenues and improved transplantation protocols to prevent or attenuate intestinal IRI. Among the many candidate agents that are being investigated to combat IRI and its associated complications, nitric oxide (NO). NO is an endogenously produced gaseous signaling molecule with several therapeutic properties. The purpose of this mini-review is to discuss IRI and its related complications in intestinal transplantation, and NO as an emerging pharmacological tool against this challenging pathological condition. i.

4.
Front Med (Lausanne) ; 11: 1292406, 2024.
Article in English | MEDLINE | ID: mdl-38813388

ABSTRACT

Background: Psoriasis is a chronic inflammatory skin disease. EDP1815 is an oral, gut-restricted preparation of non-live Prevotella histicola, the first of a new immunomodulatory therapeutic class targeting the small intestine to generate systemic anti-inflammatory responses. Objective: To evaluate safety and efficacy of EDP1815 in mild-to-moderate psoriasis in a proof-of-concept study. Methods: A phase 2, multicenter, randomized, double-blinded, placebo-controlled, parallel-group study with a 16-week treatment period and up to 24 weeks of follow-up. Participants were randomized to receive 1, 4, or 10 capsules daily. Results: EDP1815 was well tolerated with comparable rates of treatment-emergent adverse events to placebo, and no drug-related serious adverse events. Clinically meaningful responses to EDP1815, defined as at least 50% reduction in Psoriasis Area and Severity Index (PASI-50) at week 16, were observed in all 3 cohorts, statistically significant in the 1-capsule (29.7%; P = 0.048) and 4-capsule (31.9%; P = 0.022) groups, compared with placebo (12.1%). Among EDP1815-treated PASI-50 responders at week 16, 60% (18/30) maintained or improved off-treatment responses at week 40. Limitations: Continued off-treatment improvement past 16 weeks shows potential for greater therapeutic benefit that was not assessed. Conclusion: EDP1815 was well-tolerated with a placebo-like safety profile, and had meaningful efficacy outcomes in psoriasis, validating this novel immunomodulatory approach. Clinical trial registration: https://www.clinicaltrials.gov/search?term=NCT04603027, identifier NCT04603027.

5.
Anaerobe ; 87: 102853, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614290

ABSTRACT

OBJECTIVES: We investigated potential relationships among initial lesions of the intestinal mucosa, fecal enzymatic activities and microbiota profiles. METHODS: Fecal samples from 54 volunteers were collected after recruitment among individuals participating in a colorectal cancer (CRC) screening program in our region (Northern Spain) or attending for consultation due to clinical symptoms; intestinal mucosa samples were resected during colonoscopy. Enzymatic activities were determined in fecal supernatants by a semi-quantitative method. The fecal microbiota composition was determined by 16S rRNA gene-based sequencing. The results were compared between samples from clinical diagnosis groups (controls and polyps), according with the type of polyp (hyperplastic polyps or conventional adenomas) and considering the grade of dysplasia for conventional adenomas (low and high grade dysplasia). RESULTS: High levels of α-glucosidase activity were more frequent among samples from individuals diagnosed with intestinal polyps, reaching statistical significance for conventional adenomas and for low grade dysplasia adenomas when compared to controls. Regarding the microbiota profiles, higher abundance of Christensenellaceae_R-7 group and Oscillospiraceae_UCG-002 were found in fecal samples displaying low α-glucosidase activity as compared with those with higher activity as well as in controls with respect to conventional adenomas. A relationship was evidenced among intestinal mucosal lesions, gut glucosidase activities and intestinal microbiota profiles. CONCLUSIONS: Our findings suggest a relationship among altered fecal α-glucosidase levels, the presence of intestinal mucosal lesions, which can be precursors of CRC, and shifts in defined microbial groups of the fecal microbiota.


Subject(s)
Feces , Gastrointestinal Microbiome , Intestinal Mucosa , alpha-Glucosidases , Adult , Aged , Female , Humans , Male , Middle Aged , alpha-Glucosidases/metabolism , alpha-Glucosidases/genetics , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/pathology , Feces/microbiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Intestinal Mucosa/enzymology , RNA, Ribosomal, 16S/genetics , Spain
6.
J Pathol Inform ; 15: 100374, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38590727

ABSTRACT

Chronic watery diarrhea is a frequent symptom. In approximately 10% of the patients, a diagnosis of microscopic colitis (MC) is established. The diagnosis relies on specific, but sometimes subtle, histopathological findings. As the histology of normal intestinal mucosa vary, discriminating subtle features of MC from normal tissue can be challenging and therefore auxiliary stainings are increasingly used. The aim of this study was to determine the variance in number of intraepithelial lymphocytes (IELs) and presence of a subepithelial band in normal ileum and colonic mucosa, according to different stains and digital assessment. Sixty-one patients without diarrhea referred to screening colonoscopy due to a positive feacal blood test and presenting with endoscopically normal mucosa were included. Basic histological features, number of IELs, and thickness of a subepithelial band was manually evaluated and a deep learning-based algorithm was developed to digitally determine the number of IELs in each of the two compartments; surface epithelium and cryptal epithelium, and the density of lymphocytes in the lamina propria compartment. The number of IELs was significantly higher on CD3-stained slides compared with slides stained with Hematoxylin-and-Eosin (HE) (p<0.001), and even higher numbers were reached using digital analysis. No significant difference between right and left colon in IELs or density of CD3-positive lymphocytes in lamina propria was found. No subepithelial band was present in HE-stained slides while a thin band was visualized on special stains. Conclusively, in this cohort of prospectively collected ileum and colonic biopsies from asymptomatic patients, the range of IELs and detection of a subepithelial collagenous band varied depending on the stain and method used for assessment. As assessment of biopsies from patients with diarrhea constitute a considerable workload in the pathology departments digital image analysis is highly desired. Knowledge provided by the present study highlight important differences that should be considered before introducing this method in the clinic.

7.
Biomed Mater ; 19(3)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38574669

ABSTRACT

Recently,in vitromodels of intestinal mucosa have become important tools for drug screening and studying the physiology and pathology of the intestine. These models enable the examination of cellular behavior in diseased states or in reaction to alterations in the microenvironment, potentially serving as alternatives to animal models. One of the major challenges in constructing physiologically relevantin vitromodels of intestinal mucosa is the creation of three-dimensional microstructures that accurately mimic the integration of intestinal epithelium and vascularized stroma. Here, core-shell alginate (Alg) microspheres were generated to create the compartmentalized extracellular matrix microenvironment needed to simulate the epithelial and vascularized stromal compartments of the intestinal mucosa. We demonstrated that NIH-3T3 and human umbilical vein endothelial cells embedded in the core of the microspheres can proliferate and develop a vascular network, while human colorectal adenocarcinoma cells (Caco-2) can form an epithelial monolayer in the shell. Compared to Caco-2 monolayer encapsulated within the shell, the presence of the vascularized stroma enhances their proliferation and functionality. As such, our core-shell Alg microspheres provide a valuable method for generatingin vitromodels of vascularized intestinal mucosa with epithelial and vascularized stroma arranged in a spatially relevant manner and demonstrating near-physiological functionality.


Subject(s)
Alginates , Cell Proliferation , Human Umbilical Vein Endothelial Cells , Intestinal Mucosa , Microspheres , Tissue Engineering , Alginates/chemistry , Humans , Intestinal Mucosa/metabolism , Animals , Mice , Caco-2 Cells , Tissue Engineering/methods , NIH 3T3 Cells , Extracellular Matrix/metabolism , Tissue Scaffolds/chemistry , Hexuronic Acids/chemistry
8.
Biofabrication ; 16(3)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38574551

ABSTRACT

Conventional gut-on-chip (GOC) models typically represent the epithelial layer of the gut tissue, neglecting other important components such as the stromal compartment and the extracellular matrix (ECM) that play crucial roles in maintaining intestinal barrier integrity and function. These models often employ hard, flat porous membranes for cell culture, thus failing to recapitulate the soft environment and complex 3D architecture of the intestinal mucosa. Alternatively, hydrogels have been recently introduced in GOCs as ECM analogs to support the co-culture of intestinal cells inin vivo-like configurations, and thus opening new opportunities in the organ-on-chip field. In this work, we present an innovative GOC device that includes a 3D bioprinted hydrogel channel replicating the intestinal villi architecture containing both the epithelial and stromal compartments of the gut mucosa. The bioprinted hydrogels successfully support both the encapsulation of fibroblasts and their co-culture with intestinal epithelial cells under physiological flow conditions. Moreover, we successfully integrated electrodes into the microfluidic system to monitor the barrier formation in real time via transepithelial electrical resistance measurements.


Subject(s)
Hydrogels , Lab-On-A-Chip Devices , Electric Impedance , Epithelial Cells , Electrodes
9.
J Rheumatol ; 51(2): 134-138, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302186

ABSTRACT

OBJECTIVE: Recent advances imply that early events triggering rheumatoid arthritis (RA) occur at mucosal surfaces. We aimed to evaluate whether intestinal permeability is altered in patients at increased risk of RA, and/or predicts the development of clinical arthritis, by measuring serum zonulin family peptides (ZFP) levels, which are shown to reflect intestinal barrier integrity. METHODS: Two independent prospective observational cohorts were studied, including subjects with musculoskeletal symptoms and anticitrullinated protein antibodies (ACPA), but without clinical arthritis at baseline. In Sweden, 82 such at-risk patients were compared to 100 age-matched healthy blood donors. In the UK, 307 at-risk patients were compared to 100 ACPA-negative symptomatic controls. ZFP was measured in baseline sera by enzyme-linked immunoassays. RESULTS: In the Swedish at-risk cohort, ZFP levels were significantly increased in patients compared to controls (mean 41.4 vs 33.6 ng/mL, P < 0.001) and Cox regression analysis showed prognostic value of ZFP for arthritis development (hazard ratio [HZ] 1.04 per ng/mL ZFP increase, 95% CI 1.01-1.07, P = 0.02). Elevated ZFP levels among ACPA-positive at-risk patients compared to symptomatic ACPA-negative controls were confirmed in the UK at-risk cohort (mean 69.7 vs 36.0 ng/mL, P < 0.001), but baseline ZFP were not associated with arthritis development (HR 1.00 per ng/mL ZFP increase, 95% CI 1.00-1.01, P = 0.30). CONCLUSION: Serum ZFP levels are elevated in ACPA-positive at-risk patients when compared to both healthy blood donors and symptomatic ACPA-negative controls. Thus, gut barrier function may be of importance in RA-associated autoimmunity. A possible prognostic value of serum ZFP merits further investigation, preferably in larger prospective cohorts.


Subject(s)
Arthritis, Rheumatoid , Autoantibodies , Haptoglobins , Protein Precursors , Humans , Prospective Studies , Peptides, Cyclic , Arthritis, Rheumatoid/diagnosis , Peptides
10.
Immunology ; 172(1): 1-20, 2024 May.
Article in English | MEDLINE | ID: mdl-38174581

ABSTRACT

Irritable bowel syndrome (IBS), one of the most prevalent functional gastrointestinal disorders, is characterized by recurrent abdominal pain and abnormal defecation habits, resulting in a severe healthcare burden worldwide. The pathophysiological mechanisms of IBS are multi-factorially involved, including food antigens, visceral hypersensitivity reactions, and the brain-gut axis. Numerous studies have found that gut microbiota and intestinal mucosal immunity play an important role in the development of IBS in crosstalk with multiple mechanisms. Therefore, based on existing evidence, this paper elaborates that the damage and activation of intestinal mucosal immunity and the disturbance of gut microbiota are closely related to the progression of IBS. Combined with the application prospect, it also provides references for further in-depth exploration and clinical practice.


Subject(s)
Gastrointestinal Microbiome , Irritable Bowel Syndrome , Humans , Gastrointestinal Microbiome/physiology , Intestines , Intestinal Mucosa , Immunity, Mucosal
11.
Microbiome Res Rep ; 2(3): 19, 2023.
Article in English | MEDLINE | ID: mdl-38046817

ABSTRACT

Delirium is a clinical syndrome characterized by an acute change in attention, awareness and cognition with fluctuating course, frequently observed in older patients during hospitalization for acute medical illness or after surgery. Its pathogenesis is multifactorial and still not completely understood, but there is general consensus on the fact that it results from the interaction between an underlying predisposition, such as neurodegenerative diseases, and an acute stressor acting as a trigger, such as infection or anesthesia. Alterations in brain insulin sensitivity and metabolic function, increased blood-brain barrier permeability, neurotransmitter imbalances, abnormal microglial activation and neuroinflammation have all been involved in the pathophysiology of delirium. Interestingly, all these mechanisms can be regulated by the gut microbiota, as demonstrated in experimental studies investigating the microbiota-gut-brain axis in dementia. Aging is also associated with profound changes in gut microbiota composition and functions, which can influence several aspects of disease pathophysiology in the host. This review provides an overview of the emerging evidence linking age-related gut microbiota dysbiosis with delirium, opening new perspectives for the microbiota as a possible target of interventions aimed at delirium prevention and treatment.

12.
Gut Pathog ; 15(1): 62, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38037141

ABSTRACT

BACKGROUND: High-altitude exposure can cause oxidative stress damage in the intestine, which leads to increased intestinal permeability and bacterial translocation, resulting in local and systemic inflammation. Control of infection is critically dependent on the host's ability to kill pathogens with reactive oxygen species (ROS). Myeloperoxidase (MPO) targets ROS in pathogens. This study aimed to investigate the effects of hypoxia on the colonic mucosal barrier and myeloperoxidase (MPO)-mediated innate immune response in the colon. METHODS AND RESULTS: Genetically engineered mice were exposed to a hypobaric oxygen chamber for 3 days and an inflammation model was established using Salmonella Typhimurium infection. We found that hypoxic exposure caused the development of exacerbated bacterial colitis and enhanced bacterial dissemination in MPO-deficient mice. Infection and disease severity were associated with significantly increased Ly6G+ neutrophil and F4/80+ macrophage counts in infected tissues, which is consistent with elevated proinflammatory cytokines and chemoattractant molecules. Hypoxia restrained antioxidant ability and MPO deficiency aggravated the respiratory burst in the colon. CONCLUSION: Hypoxia can damage the colonic mucosa. MPO mediates the innate immune response and regulates the mucosal and systemic inflammatory responses to Salmonella infection during hypoxia.

13.
Zhen Ci Yan Jiu ; 48(12): 1249-1257, 2023 Dec 25.
Article in English, Chinese | MEDLINE | ID: mdl-38146248

ABSTRACT

OBJECTIVES: To observe the effect of electroacupuncture (EA) at "Zusanli"(ST36) on intestinal mucosal damage, intestinal mucosal oxidative stress injury and apoptosis induced by 5-fluorouraeil (5-FU) chemotherapy in colorectal cancer-bearing mice. METHODS: Thirty male BALB/c mice were randomly divided into normal control, colorectal cancer (CT26), 5-FU, non-acupoint and ST36 groups, with 6 mice in each group. Except for those of the normal control group, mice of the remaining 4 groups received subcutaneous implantation of colorectal CT26 cell suspension (0.1 mL) in the right armpit for establishing colorectal cancer model. Rats of the 5-FU group, non-acupoint group and ST36 group were given with 5 mg/mL 5-FU solution once every 3 days for a total of 21 days. For mice of the non-acupoint group and ST36 group, EA (2 Hz, 1-2 mA) was applied to bilateral ST36 or non-acupoints (the bilateral sunken spots about 3 mm to the midpoint between the tail root and the anus) for 5 min after each intraperitoneal infusion of 5-FU, once every 3 days, for a total of 21 days. After the intervention, the diarrhea index was assessed. The length of colon (from the endpoint of cecum to the anal orifice) was measured. Histopathological changes of colonic mucosa were observed by H.E. staining, and the length of colonic villi was measured. The content of malondialdehyde (MDA), and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) of colonic tissue were detected by thibabituric acid, xanthine oxidase and colorimetric method, respectively. The rate of cell apoptosis in the colonic tissue was measured by TUNEL assay. The positive expressions of Bax and Bcl-2 in colonic tissue were determined by immunohistochemistry. RESULTS: The CT26 model group didn't show any significant changes in the diarrhea index, colon length, colon villus length, MDA content, SOD and GSH-Px activities, colonic cell apoptosis rate, and Bax and Bcl-2 expression levels when compared with the normal group. Compared with the CT26 group, the 5-FU group had a remarkable increase in the diarrhea index, MDA content, colonic cell apoptosis rate and Bax expression level (P<0.01, P<0.05), and a marked decrease in the colon length, colon villus length, SOD and GSH-Px activities and Bcl-2 expression level (P<0.01), suggesting the side effects of administration of 5-FU. Compared with the 5-FU group, the diarrhea index, MDA content, colonic cell apoptosis rate and Bax expression level were markedly decreased (P<0.05, P<0.01) and those of the colon length, colon villus length, SOD and GSH-Px activities and Bcl-2 expression level were obviously increased (P<0.01) in the ST36 group. Compared with the 5-FU group, the non-acupoint group also had an increase in the colon villus length, SOD and GSH-Px activities (P<0.01, P<0.05) and a decrease in the cell apoptosis rate (P<0.01). CONCLUSIONS: EA at ST36 has a positive effect in reducing intestinal mucosal damage induced by 5-FU chemotherapy in cancer-bearing mice, which may be related to its function in relieving oxidative stress injury and inhibiting apoptosis of colonic tissue.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Electroacupuncture , Rats , Male , Mice , Animals , bcl-2-Associated X Protein/metabolism , Acupuncture Points , Oxidative Stress , Apoptosis , Superoxide Dismutase/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Diarrhea , Fluorouracil/adverse effects
14.
Int J Mol Sci ; 24(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38003638

ABSTRACT

Environmental factors such as diet and lifestyle have been shown to influence the development of some intestinal mucosal lesions that may be precursors of colorectal cancer (CRC). The presence of these alterations seems to be associated with misbalanced immunological parameter levels. However, it is still unclear as to which immunological parameters are altered in each phase of CRC development. In this work, we aimed to study the potential relationships of immunological and metabolic parameters with diet in a CRC-related lesion context. Dietary information was obtained using an annual semi-quantitative food-frequency questionnaire (FFQ) from 93 volunteers classified via colonoscopy examination according to the presence of intestinal polyps or adenocarcinoma. Cytokines, chemokines, and adipokines were determined from serum samples. We observed a reduction in adiponectin according to the damage to the mucosa, accompanied by an increase and decrease in C-X-C motif chemokine ligand 10 (CXCL10) and resistin, respectively, in CRC cases. The presence of aberrant crypt foci (ACF) in the polyp group was associated with higher tumor necrosis factor-alpha (TNF-α) concentrations. Vegetables were directly correlated with adiponectin and resistin levels, while the opposite occurred with red meat. A bioactive compound, soluble pectin, showed a negative association with TNF-α. Future dietary strategies could be developed to modulate specific immunological parameters in the context of CRC.


Subject(s)
Colorectal Neoplasms , Resistin , Humans , Adult , Colorectal Neoplasms/metabolism , Adiponectin , Tumor Necrosis Factor-alpha , Diet , Intestinal Mucosa/metabolism
15.
Int J Biol Sci ; 19(14): 4360-4375, 2023.
Article in English | MEDLINE | ID: mdl-37781034

ABSTRACT

Delayed intestinal mucosal healing is one of the pathogenic bases for the recurrence of inflammatory bowel disease (IBD), but how the IBD inflammatory environment impedes intestinal mucosa repair remains unclear. Adenosine diphosphate (ADP) is an endogenous ligand of P2Y1R that is highly produced at sites of inflammation. We herein identify a novel role of ADP to directly facilitate inflammation-induced epithelial permeability, delay wound healing, and disrupt tight junction integrity, and we found that P2Y1R, a receptor preferentially activated by ADP, was significantly upregulated in the colonic mucosa of ulcerative colitis (UC) patients and in colonic epithelial cells of colitis mice. Inhibition of P2Y1R significantly increased the epithelial permeability, decreased the wound healing capacity, and impaired the tight junction integrity in TNF-α-challenged Caco-2 cells. In parallel, the same effects in promoting intestinal mucosa repair were observed in DSS-induced colitis in P2Y1R-/- mice. Mechanistic investigation revealed that P2Y1R inhibition facilitated epithelial AMP-activated protein kinase (AMPK) phosphorylation and gut microbiota homeostasis reconstruction. Taken together, these findings highlight that P2Y1R activation plays an important role in impeding intestinal mucosa repair during colitis, and that P2Y1R is an attractive target for the therapy of IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Humans , Mice , Animals , Caco-2 Cells , Colitis/chemically induced , Colitis/metabolism , Inflammatory Bowel Diseases/metabolism , Inflammation/metabolism , Intestinal Mucosa/metabolism , Adenosine Diphosphate/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Mice, Inbred C57BL
16.
Biomolecules ; 13(10)2023 09 26.
Article in English | MEDLINE | ID: mdl-37892129

ABSTRACT

The aim of our case-control study was to identify novel biomarkers of Crohn's disease (CD) that hold the potential to be employed in both disease diagnosis and monitoring activity. In the context of the contribution of intestinal barrier integrity and immune response to the pathogenesis of CD, we assessed the serum concentrations of proguanylin (pro-GN), pentraxin 3 (PTX3) and S100A12 in 20 patients before and after anti-inflammatory treatment, as well as in 20 healthy individuals. Statistical analyses revealed a significant difference in the levels of pro-GN (5.5 vs. 11.35, p < 0.001), PTX3 (2117.9 vs. 1608.37, p < 0.05) and S100A12 (79.4 vs. 19.74, p < 0.001) between pretreatment patients with CD and healthy individuals. Moreover, we noted a significant relationship between the serum profile of PTX3 and disease activity, expressed as CDAI, both before (p < 0.005, r = 0.63) and after (p < 0.05, r = 0.60) treatment. A similar correlation was noted in the case of S100A12 (p < 0.005, r = 0.81), albeit exclusively within the post-treatment group of patients. Anti-inflammatory treatment resulted in an elevation of pro-GN concentration (5.5 vs. 8.04, p < 0.001) and a reduction in PTX3 level (2117.9 vs. 1609.5, p < 0.05) in the serum of patients with CD. In comparison to our previous research conducted on a group of patients with ulcerative colitis (UC), those with CD exhibited reduced levels of PTX3 (2117.9 vs. 3197.05, p < 0.005) and elevated concentrations of S100A12 (79.4 vs. 39.36, p < 0.05). The results obtained from this investigation suggest that measurements of pro-GN, PTX3 and S100A12 could prove beneficial in the diagnosis of Crohn's disease. Assessment of changes in the serum profile of PTX3 appears to be a good marker of response to treatment but also, along with analysis of S100A12 protein serum levels, a useful marker in differentiating CD from UC.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Humans , Crohn Disease/diagnosis , Crohn Disease/pathology , S100A12 Protein , Case-Control Studies , Biomarkers , Anti-Inflammatory Agents
17.
Drug Des Devel Ther ; 17: 2763-2774, 2023.
Article in English | MEDLINE | ID: mdl-37705759

ABSTRACT

The intestine, often referred to as the "second brain" of the human body, houses a vast microbial community that plays a crucial role in maintaining the host's balance and directly impacting overall health. Probiotics, a type of beneficial microorganism, offer various health benefits when consumed. However, probiotics face challenges such as acidic conditions in the stomach, bile acids, enzymes, and other adverse factors before they can colonize the intestinal tissues. At present, pills, dry powder, encapsulation, chemically modified bacteria, and genetically engineered bacteria have emerged as the preferred method for the stable and targeted delivery of probiotics. In particular, the use of nanoshells on the surface of single probiotics has shown promise in regulating their growth and differentiation. These nanoshells can detach from the probiotics' surface upon reaching the intestine, facilitating direct contact between the probiotics and intestinal mucosa. In this perspective, we provide an overview of the current developments in the formation of nanoshells mediated by single probiotics. We also discuss the advantages and disadvantages of different nanocoating strategies and explore future trends in probiotic protection.


Subject(s)
Brain Neoplasms , Nanoshells , Probiotics , Humans , Bile Acids and Salts , Genetic Engineering
18.
Ecotoxicol Environ Saf ; 264: 115448, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37696080

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is a common diarrheal pathogen in humans and animals. To prevent and treat ETEC induced diarrhea, we synthesized mannan oligosaccharide selenium (MOSS) and studied its beneficial effect on ETEC-induced diarrhea. A total of 32 healthy weaned piglets (6.69 ± 0.01 kg) were randomly divided into four groups: NC group (Basal diet), MOSS group (0.4 mg/kg MOSS supplemented diet), MOET group (0.4 mg/kg MOSS supplemented diet + ETEC treatment), ETEC group (ETEC treatment). NC and ETEC group fed with basal diet, MOSS and MOET group fed with the MOSS supplemented diet. On the 8th and 15th day of the experiment, MOET and ETEC group were gavaged with ETEC, and NC and MOSS group were gavaged with stroke-physiological saline solution. Our data showed that dietary MOSS supplementation increased average daily gain (ADG) and average daily feed intake (ADFI) and significantly decreased diarrhea index and frequency in ETEC-treated piglets. MOSS did not affect the α diversity and ß diversity of ileal microbial community, but it significantly decreased the proportion of lipopolysaccharide biosynthesis in ileal microbial community. MOSS supplementation regulated colonic microbiota community composition, which significantly increased carbohydrate metabolism, and inhibited lipopolysaccharide biosynthesis pathway in colonic microbial community. Moreover, MOSS significantly decreased inflammatory stress, and oxidative stress in ETEC treated piglets. Furthermore, dietary MOSS supplementation significantly decreased intestinal barrier permeability, and alleviated ETEC induced intestinal mucosa barrier irritation. In conclusion, our study showed that dietary MOSS supplementation ameliorated intestinal mucosa barrier, and regulated intestinal microbiota to prevent ETEC induced diarrhea in weaned piglets.


Subject(s)
Enterotoxigenic Escherichia coli , Escherichia coli Infections , Gastrointestinal Microbiome , Selenium , Animals , Diarrhea/prevention & control , Diarrhea/veterinary , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Intestinal Mucosa , Lipopolysaccharides , Mannans/pharmacology , Mannans/therapeutic use , Selenium/pharmacology , Swine
19.
Immun Inflamm Dis ; 11(9): e1005, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37773693

ABSTRACT

Plasmacytoid dendritic cells (pDCs), a subtype of DC, possess unique developmental, morphological, and functional traits that have sparked much debate over the years whether they should be categorized as DCs. The digestive system has the greatest mucosal tissue overall, and the pDC therein is responsible for shaping the adaptive and innate immunity of the gastrointestinal tract, resisting pathogen invasion through generating type I interferons, presenting antigens, and participating in immunological responses. Therefore, its alleged importance in the gut has received a lot of attention in recent years, and a fresh functional overview is still required. Here, we summarize the current understanding of mouse and human pDCs, ranging from their formation and different qualities compared with related cell types to their functional characteristics in intestinal disorders, including colon cancer, infections, autoimmune diseases, and intestinal graft-versus-host disease. The purpose of this review is to convey our insights, demonstrate the limits of existing research, and lay a theoretical foundation for the rational development and use of pDCs in future clinical practice.

20.
Environ Toxicol ; 38(11): 2595-2607, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37466184

ABSTRACT

BACKGROUND: Exosomes are applied as biomarkers in several diseases according to their disease-specific profiles. However, the exosomes effects in functional dyspepsia (FD) are still fragmentary. Here we examined the role of Eosinophil and mast cell derived-exosomes in FD progression. METHODS: Fifty FD subjects and age- and sex-matched healthy controls were included in this retrospective cohort study. Duodenal mucosa and gastric juice were collected to analyze molecular difference. Eosinophil and mast cell were evaluated by immunofluorescence and microarray was subjected to examine the expression levels of NEAT1, miR-211-5p, and glial cell line-derived neurotrophic factor (GDNF), which were subsequently were tested by quantitative reverse transcription PCR (RT-qPCR) validation cohorts. CCK-8 assays, and wound healing assays were used to evaluate integrity of intestinal mucosal barrier in vitro. Rats' weights and gastric emptying rates were used as evaluation of FD severity in vivo. RESULTS: Eosinophil and mast cell were enriched and secreted more exosomes in duodenal mucosa of FD patients. We identified differential lncRNAs that were consistently and significantly up regulated in FD cases. Of these, NEAT1 was further validated by RT-qPCR and had closely relationship with GDNF. MiR-211-5p level was found to be reduced in FD and negatively related with NEAT1 and GDNF. Furthermore, NEAT1and GDNF relived FD while miR-211-5p made symptoms worse. The NEAT1/miR-211-5p/GDNF axis had a good predictive ability for FD. CONCLUSIONS: The NEAT1/miR-211-5p/GDNF could be a potential FD biomarker.


Subject(s)
Exosomes , MicroRNAs , RNA, Long Noncoding , Humans , Rats , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Retrospective Studies , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Eosinophils , Mast Cells/metabolism , Exosomes/genetics , Duodenum/metabolism , Intestinal Mucosa/metabolism , RNA, Long Noncoding/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...