Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 423
Filter
1.
J Neuroendocrinol ; : e13424, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960698

ABSTRACT

The impact of heat stress (HS) on production is intricately linked with feed intake. We investigated the effects of HS on intestines and diencephalic genes in Pekin ducks. One hundred and sixty adult ducks were allocated to two treatment rooms. The control room was maintained at 22°C and the HS room at 35°C for the first 10 h of the day then reduced to 29.5°C. After 3 weeks, 10 hens and 5 drakes were euthanized from each room and jejunum and ileum collected for histology. Brains were collected for gene expression analysis using qRT-PCR. Intestinal morphology data were analyzed with two-way ANOVA and diencephalic gene data were analyzed with Kruskal-Wallis test. There was an increase in villi width in the ileum (p = .0136) and jejunum (p = .0019) of HS hens compared to controls. HS drakes showed a higher crypt depth (CD) in the jejunum (p = .0198) compared to controls. There was an increase in crypt goblet cells (GC) count in the ileum (p = .0169) of HS drakes compared to HS hens. There was higher villi GC count (p = .07) in the jejunum of HS drakes compared to controls. There was an increase in the crypt GC density (p = .0054) in the ileum, not jejunum, of HS drakes compared to HS hens. Further, there were no differences in the proopiomelanocortin gene expression in either sex but there was an increase in the expression of neuropeptide Y (NPY) gene in HS hens (p = .031) only and a decrease in the corticotropin releasing hormone gene in the HS drakes (p = .037) compared to controls. These data show that there are sex differences in the effect of HS on gut morphology while the upregulation in NPY gene may suggest a role in mediating response to chronic HS.

2.
Front Microbiol ; 15: 1368293, 2024.
Article in English | MEDLINE | ID: mdl-38946897

ABSTRACT

Introduction: The drawbacks of using antibiotics as feed additives for blue foxes have gradually become apparent; moreover, thymol has wide-spectrum antimicrobial activity and has the potential to replace antibiotics in various animals. However, there are few reports on the effects of thymol on blue foxes. Methods: This study aimed to investigate the effects of different concentrations of thymol on the growth performance, apparent nutrient digestibility, serum biochemical indicators, intestinal morphology, and gut microbiota of blue foxes. Twenty-four male blue foxes (120 ± 5 d) of similar weight (6.05 ± 0.16 kg) were randomly divided into 4 groups. 0, 100, 200, and 300 mg/kg thymol were added to the basal diets of groups C, L, M, and H, respectively. Results: Compared with those in the C group, the addition of 100 mg/kg thymol to the diet significantly increased organic matter (OM) digestibility, crude protein (CP) digestibility, immunoglobulin (Ig) A, IgM, the VH of the duodenum, the CD of the jejunum, the VH of the ileum, and the VH/CD of the ileum (P < 0.05) and strongly significantly increased IgG (P < 0.01). The addition of 200 mg/kg thymol to the diet increased the VH/CD of the duodenum (P < 0.05). The addition of 300 mg/kg thymol to the diet significantly increased the VH and CD of the jejunum (P < 0.05). The addition of 200 mg/kg and 300 mg/kg thymol to the diets increased the final weight (FW) (P < 0.05). Adding 100 mg/kg thymol significantly increased the levels of interleukin-4 (IL-4) and catalase (CAT) compared with those in the other groups (P < 0.05). 16S rRNA gene detection revealed that thymol can change the abundances of Bifidobacterium, Fusobacterium, Allobaculum, Streptococcus, Megasphaera, and Lactobacillus in the gut. Conclusion: The addition of thymol to diets can increase the abundance of Bifidobacterium, Fusobacterium, and Allobaculum, which may contribute to improving the growth performance of blue foxes.

3.
Poult Sci ; 103(9): 103967, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38941789

ABSTRACT

Periplaneta americana residue is a byproduct of using Periplaneta americana in pharmaceutical research and development for extracting active ingredients. Three hundred Three-yellow chickens were selected for the experiment and randomly divided into 6 groups (5 replications per group, 10 chickens per replicate): the control group (group A) was fed a basal ration, and the experimental groups (groups B, C, D, E, and F) were fed experimental diets in which P. americana residue replaced puffed soybean meal at proportions of 20, 40, 60, 80, and 100%, respectively, for a period of 42 d. The aim was to assess the impact of different levels of P. americana residue on the growth, survival, intestinal morphology, digestive enzyme activity, intestinal flora, and intestinal transcriptional responses of Three-yellow chickens. The results indicated that the increase in P. americana residue levels had a linear and quadratic impact on the average daily gain (ADG) and feed conversion ratio (FCR), respectively. The ADG was notably greater in the 40% group than in the 100% group, while the FCR was significantly lower in the 20% and 40% groups than in the 100% group (P < 0.05). Protease, lipase, and amylase activities exhibited a quadratic increase with increasing concentrations of P. americana residue (P < 0.05). Protease and lipase activities were notably greater in the 20% and 40% groups than in the 0% group (control group), amylase activity was significantly greater in the 40% group than in the 0% group (control group) (P < 0.05). Duodenal crypt depth (CD) decreased quadratically with increasing P. americana residue (P < 0.05). The duodenal villus height/crypt depth ratio (V/C) was significantly lower in the 100% group than in the 60% group (P < 0.05). The intestinal villus height (VH) increased quadratically with increasing levels of P. americana residue. The VH in the 60% group was significantly greater than that in the 0% (control group), 20, 80, and 100% groups (P < 0.05). The Chao and Ace indices demonstrated linear and quadratic increases with increasing levels of P. americana residue, while the Pd index showed a quadratic increase with increasing levels of P. americana residue (P < 0.05). The relative abundance profile of Lactobacillus exhibited a linear and quadratic decrease with increasing levels of P. americana residue, with the 100% group showing a significantly lower abundance than the 0% (control group) and 40% groups (P < 0.05). The transcriptome results showed that P. americana residue could enhance the digestive system by promoting vitamin, fat, carbohydrate digestion and absorption, cholesterol metabolism, etc. In conclusion, P. americana residue can replace puffed soybean meal without negatively affecting the growth performance of three-yellow chickens. The low and medium groups had positive effects on the growth performance, digestive enzyme activity, intestinal morphology, intestinal flora, and substance digestion and absorption of three-yellow chickens. The recommended replacement of P. americana residue for puffed soybean meal in the diets of three-yellow chickens ranged from 20% to 60%.

4.
Microorganisms ; 12(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38930431

ABSTRACT

This study aimed to explore the effects of Bacillus amyloliquefaciens (BA) as one woody forage addition (as a probiotic, 1 × 107 CFU/g) on tilapia (Oreochromis niloticus). Woody forage is one kind of fishery feed that could significantly enhance the growth, feed utilization, and digestibility of tilapia. At first, tilapia was divided into eight groups and fed with control, control + BA, Moringa oleifera, M. oleifera + BA, Neolamarckia cadamba, N. cadamba + BA, Broussonetia papyrifera, and B. papyrifera + BA diets, respectively. After dieting for 8 weeks, the intestinal morphology of tilapia in the eight groups was observed, and the effects of the B. amyloliquefaciens addition and wordy forage on the intestine functions were analyzed by two-way ANOVA. As no significant negative effects were found on the woody forage on tilapia, the villus height, density and width, and epithelial goblet cells in the posterior intestines of tilapia with BA supplementation were greater than those in the groups without BA supplementation, suggesting B. amyloliquefaciens SCAU-070 could promote the growth and development of tilapia intestinal tracts. Furthermore, it was found that B. amyloliquefaciens SCAU-070 enhanced the antioxidation capacity of tilapia posterior intestine tissue by promoting the activity of superoxide dismutase and content of malondialdehyde. In addition, the result of high-throughput sequencing (16S rDNA) showed that the beneficial bacteria Cetobacterium and Romboutsia in the probiotic groups increased significantly, while the potential pathogenic bacteria Acinetobacter decreased significantly.

5.
Animals (Basel) ; 14(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891583

ABSTRACT

Replacing corn with different levels of wheat in the iso-energy and -protein diet of broilers and the impacts on growth performance and intestinal homeostasis of broilers under the condition of supplying the multienzyme complex were evaluated in this study. A total of 480 10-day-old male broilers were assigned randomly to the low-level wheat group (15% wheat and 35.18% corn), the medium-level wheat group (30% and 22.27%), and the high-level wheat group (55.77% wheat without corn) until 21 d. The different levels of wheat supplementation did not affect hepatic function, serum glycolipid profile, or bone turnover. The replacement of corn with 55% wheat in the diet of broilers increased the body weight at 21 d and feed intake during 10 to 21 d (both p < 0.05), with a comparable feed conversion ratio. Compared with the low-wheat group, the dietary addition of medium or high wheat levels notably increased the ratio of villus height to crypt depth in the duodenum (p < 0.05) and the ileal villus height (p < 0.05). Meanwhile, the supplementation of medium and high wheat in the diet increased the proportion of Bacteroidetes, and a diet with high wheat proportion elevated the content of Firmicutes when compared to the low-level wheat group (both p < 0.05). In addition, the diet containing 30-55% wheat enhanced the anti-inflammatory capability in both the ileum and the serum. These findings suggest that the replacement of corn with 55% wheat in the diet improved the growth performance of 21-day-old broilers, which might be linked to the alteration in intestinal morphology and cecal microbiota.

6.
Article in English | MEDLINE | ID: mdl-38904897

ABSTRACT

Enterococcus faecium, Bifidobacterium, and Pediococcus acidilactici, as intestinal probiotics, have been proved to play a positive role in treating intestinal diseases, promoting growth and immune regulation in poultry. The aim of this study was to evaluate the effect of compound probiotics on growth performance, digestive enzyme activity, intestinal microbiome characteristics, as well as intestinal morphology in broiler chickens. Treatment diets with chlortetracycline and compound probiotics were used for two groups of sixty broilers each throughout the feeding process. Another group was fed the basal diet. The BW (2589.41 ± 13.10 g vs 2422.50 ± 19.08 g) and ADG (60.57 ± 0.31 g vs 56.60 ± 0.45 g) of the compound probiotics added feed treatment group were significantly increased, and the FCR was significantly decreased (P < 0.05). The supplementation of a compound probiotics enhanced the abundance of beneficial bacteria such as Lactobacillus, Faecalibacterium, and norank_f_norank_o_Clostridia_vadinBB60_group (P < 0.05), and modulated the cecal microbiota structure, thereby promoting the production of short-chain fatty acids (SCFAs) and elevating their levels (P < 0.05), particularly propionic and butyric acids. Furthermore, the administration of the compound probiotics supplements significantly enhanced the villi height, V/C ratio, and reduced the crypt depth (P < 0.05). In addition, the activity of digestive enzymes in the duodenum and jejunum was elevated (P < 0.05). Collectively, the selected compound probiotics supplemented in this experiment have demonstrated efficacy, warranting further application in practical production settings as a viable alternative to antibiotics, thereby facilitating efficient production and promoting gastrointestinal health.

7.
Poult Sci ; 103(8): 103849, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38838588

ABSTRACT

A 28-d experiment was conducted to investigate the effects of feed-conditioning temperature on the pellet quality, growth performance, intestinal development, and blood parameters of geese. A total of 180 one-day-old White Yuzhou goslings were randomly allotted to 5 treatment groups, with 6 replicates containing 6 birds each. Five diets were conditioned at 65, 70, 75, 80, and 85°C. Body weight and feed intake per pen basis were recorded from the arrival to the end of the trial. Blood and small intestine samples were collected on d 28 for analysis. The results showed that the pellet durability index (PDI), pellet hardness, and gelatinisation degree of starch (GDS) increased with increasing conditioning temperature (P < 0.05). The final body weight (FBW), average daily gain (ADG) and average daily feed intake (ADFI) of goslings significantly increased when conditioning temperature increased from 65 or 70°C to 80 or 85°C (P < 0.05), accompanied by unaffected feed conversion ratio (FCR) (P > 0.05). The villus height to crypt depth ratio (VH/CD) in the duodenum and ileum improved with increasing conditioning temperature (P < 0.05). Additionally, trypsin and amylase activity were enhanced when the conditioning temperature increased from 65 to 85°C (P < 0.05). No significant differences in the carcass traits and blood parameters of goslings were observed among the groups (P > 0.05). Overall, under the present experimental conditions, increasing the steam-conditioning temperature of pelleted feed improved pellet quality, growth performance, intestinal morphology, and digestive enzyme activity in goslings. Based on broken-line regression analysis, the lower critical conditioning temperature for ADG in geese from 1 to 28 d of age was 80.95°C.

8.
Article in English | MEDLINE | ID: mdl-38825860

ABSTRACT

This study investigated the effects of cottonseed meal protein hydrolysate (CPH) on the growth performance, carcass characteristics, serum biochemical indices, intestinal morphology, and enzyme activities of yellow-feather broilers. We randomly divided 240 chicks into four groups, each with six replicates: a basal diet with 0% (CON), 1% (LCPH), 3% (MCPH), or 5% (HCPH) CPH. The trail spanned 63 days and included three phases: Days 1-21, 22-42, and 43-63. Increased average daily gain (ADG) and decreased ratio of feed to gain (F/G) with LCPH were observed in 21-day-old broilers (P < 0.05). MCPH led to higher ADG and average daily feed intake (ADFI) in 42-day-old broilers (P < 0.05). Additionally, CPH supplementation resulted in increased dressing percentage, percentage of half-eviscerated yield, percentage of eviscerated yield, breast muscle rate, and leg muscle rate were observed (P < 0.05) with diet. The serum levels of total protein (TP), high-density lipoprotein cholesterol (HDL-C), calcium (Ca), and phosphorus (P) were enhanced, and blood urea nitrogen (BUN) and triglyceride (TG) levels decreased with diet and CPH (P < 0.05). CPH increased the length of the jejunum and ileum and the weight of the duodenum, jejunum, and ileum in 21-day-old broilers (P < 0.05). Alterations in the duodenal villus structure in broilers occurred on Days 21 and 42, and the CPH groups performed better; however, a similar change occurred in the jejunum on Days 42 and 63 (P < 0.05). MCPH and HCPH enhanced trypsin activity in the duodenum of 21-day-old and 63-day-old broilers (p < 0.05). Chymotrypsin activity increased (P > 0.05) in the duodenum of 63-day-old broilers fed MCPH. Lipase activity increased (P < 0.05) in the jejuna of 21-day-old broilers treated with HCPH. CPH increased trypsin activity in the ilea of 21-day-old broilers (P < 0.05). These results showed that CPH influenced the growth performance, carcass characteristics, serum biochemical indices, and intestinal morphology of yellow-feather broilers, which are related to growth stage. The recommended CPH level in broilers is 1% before 21 days of age and 3% after 21 days of age.

9.
J Anim Sci Biotechnol ; 15(1): 59, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38594781

ABSTRACT

BACKGROUND: Optimal gut health is important to maximize growth performance and feed efficiency in broiler chickens. A total of 1,365 one-day-old male Ross 308 broiler chickens were randomly divided into 5 treatments groups with 21 replicates, 13 birds per replicate. The present research investigated effects of microbial muramidase or a precision glycan alone or in combination on growth performance, apparent total tract digestibility, total blood carotenoid content, intestinal villus length, meat quality and gut microbiota in broiler chickens. Treatments included: NC: negative control (basal diet group); PC: positive control (basal diet + 0.02% probiotics); MR: basal diet + 0.035% microbial muramidase; PG: basal diet + 0.1% precision glycan; and MRPG: basal diet + 0.025% MR + 0.1% PG, respectively. RESULTS: MRPG group increased the body weight gain and feed intake (P < 0.05) compared with NC group. Moreover, it significantly increased total serum carotenoid (P < 0.05) and MRPG altered the microbial diversity in ileum contents. The MRPG treatment group increased the abundance of the phylum Firmicutes, and family Lachnospiraceae, Ruminococcaceae, Oscillospiraceae, Lactobacillaceae, Peptostreptococcaceae and decreased the abundance of the phylum Campilobacterota, Bacteroidota and family Bacteroidaceae. Compared with the NC group, the chickens fed MRPG showed significantly increased in duodenum villus length at end the trial. CONCLUSION: In this study, overall results showed that the synergetic effects of MR and PG showed enhancing growth performance, total serum carotenoid level and altering gut microbiota composition of broilers. The current research indicates that co-supplementation of MR and PG in broiler diets enhances intestinal health, consequently leading to an increased broiler production.

10.
Poult Sci ; 103(6): 103667, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574462

ABSTRACT

A total of 576-day-old Ross 308 broilers chicks (male) were used to evaluate the effect of various levels of pistachio green hull aqueous extract (PHE) and Eimeria challenge on the growth performance, intestinal health and antioxidant capacity. During infection period (25-42 d), treatments included: 1) control + unchallenged (negative control, NC), 2) 200 ppm PHE + unchallenged, 3) 300 ppm PHE + unchallenged, 4) 400 ppm PHE + unchallenged, 5) control + challenged (positive control, PC), 6) 200 ppm PHE + challenged, 7) 300 ppm PHE + challenged and 8) 400 ppm PHE + challenged (with 6 replications for each treatment). The outcomes revealed that in the challenged birds, average body weight gain (ABW), daily weight gain (DWG), and feed conversion ratio (FCR) linearly improved with increasing the PHE levels (P < 0.05). Infected broilers had lower daily feed intake (DFI) compared to unchallenged birds (P < 0.05). Villus height (VH), villus height to crypt depth (VH: CD) ratio and villus surface area (VSA) reduced linearly (P < 0.05), while muscle layer thickness (MT) increased linearly in challenged birds (P < 0.05). The consumption of the PHE significantly reduced the excreta oocytes and duodenum and jejunum lesion scores in Eimeria-challenged broilers (P < 0.05). By increasing the PHE levels, total antioxidant capacity (TAC) and superoxide dismutase (SOD) levels increased (P < 0.05), while the Eimeria challenge reduced TAC, SOD, and glutathione peroxidase (GPx) levels (P <0.05). In general, the use of PHE in the broilers diet improved the antioxidant capacity, birds performance, but diminished the excreta oocytes and lesion scores with no negative effect on the intestinal morphology.


Subject(s)
Animal Feed , Antioxidants , Chickens , Coccidiosis , Diet , Eimeria , Pistacia , Plant Extracts , Poultry Diseases , Animals , Chickens/growth & development , Chickens/physiology , Coccidiosis/veterinary , Coccidiosis/parasitology , Coccidiosis/drug therapy , Eimeria/physiology , Eimeria/drug effects , Poultry Diseases/parasitology , Poultry Diseases/drug therapy , Antioxidants/metabolism , Antioxidants/administration & dosage , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Diet/veterinary , Male , Animal Feed/analysis , Pistacia/chemistry , Intestines/drug effects , Intestines/parasitology , Random Allocation , Dietary Supplements/analysis , Dose-Response Relationship, Drug
11.
Nutrients ; 16(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474847

ABSTRACT

Altered intestinal health is also associated with the incidence and severity of many chronic inflammatory conditions, which could be attenuated via dietary n-3 PUFA interventions. However, little is known about the effect of lifelong exposure to n-3 PUFA from plant and marine sources (beginning in utero via the maternal diet) on early life biomarkers of intestinal health. Harems of C57Bl/6 mice were randomly assigned to one of three isocaloric AIN-93G modified diets differing in their fat sources consisting of the following: (i) 10% safflower oil (SO, enriched in n-6 PUFA), (ii) 3% flaxseed oil + 7% safflower oil (FX, plant-based n-3 PUFA-enriched diet), or (iii) 3% menhaden fish oil + 7% safflower oil (MO, marine-based n-3 PUFA-enriched diet). Mothers remained on these diets throughout pregnancy and offspring (n = 14/diet) continued on the same parental diet until termination at 3 weeks of age. In ileum, villi:crypt length ratios were increased in both the FX and MO dietary groups compared to SO (p < 0.05). Ileum mRNA expression of critical intestinal health biomarkers was increased by both n-3 PUFA-enriched diets including Relmß and REG3γ compared to SO (p < 0.05), whereas only the FX diet increased mRNA expression of TFF3 and Muc2 (p < 0.05) and only the MO diet increased mRNA expression of ZO-1 (p < 0.05). In the proximal colon, both the FX and MO diets increased crypt lengths compared to SO (p < 0.05), whereas only the MO diet increased goblet cell numbers compared to SO (p < 0.05). Further, the MO diet increased proximal colon mRNA expression of Relmß and REG3γ (p < 0.05) and both MO and FX increased mRNA expression of Muc2 compared to SO (p < 0.05). Collectively, these results demonstrate that lifelong exposure to dietary n-3 PUFA, beginning in utero, from both plant and marine sources, can support intestinal health development in early life. The differential effects between plant and marine sources warrants further investigation for optimizing health.


Subject(s)
Fatty Acids, Omega-3 , Mice , Animals , Pregnancy , Female , Safflower Oil , Fish Oils , Diet , Mice, Inbred C57BL , Biomarkers , Gene Expression , RNA, Messenger , Fatty Acids
12.
Animals (Basel) ; 14(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38473044

ABSTRACT

To investigate the efficiency and optimum inclusion level of CA in growing geese diets on performance, plasma constituents, and intestinal health, 240 healthy female geese at the age of 28d were randomly allotted six treatment diets incorporated with 0, 0.8, 1.6, 2.4, 3.2, and 4% CA. Each treatment group consisted of five replicates and eight birds per replicate. The findings demonstrated that 3.2% CA supplementation resulted in improved growth performance (ADG, ADFI, and FBW) (p = 0.001), and geese who received CA also showed lower body fat contents (p < 0.05) than the control group. Moreover, geese from the 2.4% and 3.2% CA group had the highest plasma glutathione peroxidase and insulin-like growth factor 1 levels compared to the other groups (p < 0.05). A microbial diversity analysis of the cecum conducted by 16S rDNA sequencing revealed that 3.2% CA supplementation showed a significantly higher abundance of beneficial bacteria (Muribaculaceae, CHKCI001, Erysipelotricha-ceae_UCG_003, and UCG_009) (p < 0.05) and a lower abundance of harmful bacteria (Atopobiaceae, Streptococcus, Acinetobacter, Pseudomonas, and Alistipes) (p < 0.10). Collectively, our results revealed that dietary supplementation with 3.2% CA had several benefits on the performance and physiological health of growing geese by promoting nutrients metabolism, improving antioxidant capacity, and modulating cecum microbiota.

13.
Animals (Basel) ; 14(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473123

ABSTRACT

This study was aimed to investigate the effects of different dietary zinc sources on the diarrhea rate, intestinal morphology, immune indexes and intestinal microbial composition of weaned piglets. A total of 240 weaned piglets (Duroc × Landrace × Yorkshire), at the age of 21 days, were randomly assigned to five dietary treatments for a four-week feeding trial to determine the effects of different amounts of tetrabasic zinc chloride (TBZC) supplementation on intestinal morphology, intestinal immune indices and intestinal microflora in weaned piglets, compared with the pharmacological dose of ZnO. The dietary treatments included a negative control (CON), (T1) ZnO (ZnO, 1500 mg/kg), (T2) tetrabasic zinc chloride (TBZC, 800 mg/kg), (T3) tetrabasic zinc chloride (TBZC, 1000 mg/kg), and (T4) tetrabasic zinc chloride (TBZC, 1200 mg/kg). Each treatment comprised six replicate pens, with eight pigs (four barrows and four gilts) per pen. Dietary TBZC of 1200 mg/kg improved the duodenum villus height, jejunum villus height and crypt depth of ileum, and increased the ratio of villus height to crypt depth of ileum (p < 0.05). The dietary supplementation of TBZC at a dosage of 1200 mg/kg has the potential to increase the levels of immunoglobulin G (IgG) and immunoglobulin A (IgA) in the duodenal mucosa. Furthermore, it shows a significant increase in the levels of immunoglobulin A (IgA) in the ileum. Compared with CON, TBZC significantly (p < 0.05) decreased pH values of stomach contents. It also increased the number of Firmicutes in intestinal contents. Compared with CON, the abundance of Firmicutes in jejunum contents of other treatments was significantly improved (p < 0.05), while the abundance of Proteobacteria in ileum contents of high-zinc treatments (T2 and T5) was decreased (p < 0.05). In conclusion, dietary TBZC of 1200 mg/kg improved the digestibility of crude protein in weaned piglets, altered the intestinal morphology of piglets, changed the intestinal microflora of piglets, reduced the diarrhea rate, and significantly improved the development of the small intestine of weaned piglets, and its regulation mechanism on intestinal tract needs further study. In summary, TBZC is likely to be an effective substitute source for the pharmacological dose of ZnO to control diarrhea in weaned piglets.

14.
Poult Sci ; 103(5): 103597, 2024 May.
Article in English | MEDLINE | ID: mdl-38471225

ABSTRACT

Laying hens, selectively bred for high egg production, often suffer from bone fragility and fractures, impacting their welfare and causing economic losses. Additionally, gut health and muscle quality are crucial for overall health and productivity. This study aimed to evaluate the effects of ß-Hydroxy-ß-methylbutyrate (HMB) supplementation on performance, bone metabolism, intestinal morphology, and muscle quality in laying hens. Forty-eight Bovans Brown hens were divided into a control group and an HMB-supplemented group (0.02% HMB in diet). The study spanned from the 31st to the 60th wk of age. Assessments included bone mechanical testing, serum hormonal analysis, histological analysis of bone and intestine, and muscle quality analysis. The HMB supplementation led to decreased feed intake without affecting body weight or laying rate in laying hens. It caused an increase in both mean daily and total egg weight, indicating improved feed utilization, without influencing the feed intake to egg weight ratio. Enhanced bone formation markers and altered intestinal morphometric parameters were observed, along with improved trabecular bone structure. However, no changes in measured other bone quality indices, including geometric, densitometric, or mechanical properties were observed. Muscle analysis revealed no significant changes in overall meat quality, except for a decrease in cholesterol content and alterations in the fatty acid profile, notably a reduction in total n-3 polyunsaturated and total polyunsaturated fatty acids (PUFA). In conclusion, although not all effects of HMB supplementation were unequivocally beneficial, the positive changes in performance data and trabecular bone microarchitecture support further research into various doses and durations of supplementation. Such studies are necessary to fully understand and optimize the benefits of HMB for enhancing the health and productivity of laying hens.


Subject(s)
Animal Feed , Chickens , Diet , Dietary Supplements , Intestines , Valerates , Animals , Chickens/physiology , Valerates/administration & dosage , Valerates/pharmacology , Dietary Supplements/analysis , Female , Animal Feed/analysis , Diet/veterinary , Intestines/drug effects , Intestines/physiology , Intestines/anatomy & histology , Bone and Bones/drug effects , Bone and Bones/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Random Allocation , Animal Nutritional Physiological Phenomena/drug effects
15.
Vet Med Sci ; 10(3): e1437, 2024 05.
Article in English | MEDLINE | ID: mdl-38555574

ABSTRACT

BACKGROUND: This study hypothesizes that a natural multicomponent emulsifier (Lipidol) could improve production performance in broiler chickens by aiding lipid digestion and addressing digestive system limitations. OBJECTIVES: The study aimed to investigate the effects of dietary emulsifier inclusion on the growth performance, nutrient digestibility, intestinal morphology, faecal microbiology, blood biochemistry and liver enzyme activities of broiler chickens fed low-energy diets. METHODS: The experiment involved 144 one-day-old male broiler chickens split into 4 treatments. Four diets were used: standard metabolizable energy (ME) as a control diet and three low-ME diets, reducing by 100 kcal/kg by adding 0.5, 1 and 1.5 g/kg of exogenous emulsifier (Em). RESULTS: No significant differences were observed in body weight gain and feed intake. However, during the finisher period (25-42 days), supplementation emulsifier to low-ME diets notably improved feed efficiency. Although crude protein, organic matter and ash digestibility remained unaffected, dry matter (DM) digestibility significantly increased in broilers fed low-ME diets with emulsifier. Broilers receiving 0.5 g/kg of emulsifier showed the highest villus width and surface area values. Moreover, including 1.5 g/kg of emulsifier led to the highest villus height to crypt depth ratio. Faecal microbiota, blood biochemistry and liver enzyme activities showed no significant differences. CONCLUSIONS: Emulsifier supplementation compensated for the energy reduction and enhanced performance, DM digestibility and some intestinal morphology parameters in broiler chickens fed low-ME diet. Using 0.5 g/kg of emulsifier per 100 kcal of ME reduction in broiler diets is suggested.


Subject(s)
Chickens , Dietary Supplements , Animals , Male , Diet/veterinary , Nutrients , Intestines
16.
Poult Sci ; 103(5): 103644, 2024 May.
Article in English | MEDLINE | ID: mdl-38507830

ABSTRACT

The objective of this study was to evaluate the effects of different levels of glycerol monolaurate (GML) on laying performance, egg quality, antioxidant capacity, intestinal morphology and immune function in late-phase laying hens. A total of 480 Hy-Line Variety Brown hens (age 54 wk) were randomly assigned to 5 treatments: the control group (basal diet) and 4 GML groups (basal diet supplemented with 100, 200, 300, and 400 mg/kg GML). Each treatment consisted of 8 replicates with 12 hens each and the trial lasted for 8 wk. The results showed that dietary inclusion of GML increased the ADFI in the entire experimental period and the average egg weight in wk 5 to 8 and wk 1 to 8 of the experiment (linear, P < 0.05). Dietary GML addition linearly increased albumen height, Haugh unit and yolk color, and quadratically increased eggshell thickness (P < 0.05). The serum SOD activity, T-AOC and IgG concentrations in the 200 mg/kg GML group, and GSH-Px activity in 200 and 300 mg/kg GML groups were increased, while the MDA concentration in 200 and 300 mg/kg GML groups was decreased than those in the control group (P < 0.05). The jejunal villus height and villus height: crypt depth in 300 mg/kg GML group were higher than that in the control group (P < 0.05). The mRNA expression of TLR4, IL-1ß and TNF-α in spleen and jejunum decreased with the increase of dietary GML concentration (linear, P < 0.05). In conclusion, dietary GML supplementation could improve egg quality, antioxidant capacity, intestinal morphology and immune function in late-phase laying hens, and dietary 300 mg/kg GML inclusion is suggested.


Subject(s)
Animal Feed , Antioxidants , Chickens , Diet , Dietary Supplements , Intestines , Laurates , Monoglycerides , Ovum , Animals , Chickens/physiology , Chickens/immunology , Chickens/growth & development , Dietary Supplements/analysis , Diet/veterinary , Female , Antioxidants/metabolism , Animal Feed/analysis , Laurates/administration & dosage , Laurates/pharmacology , Monoglycerides/administration & dosage , Monoglycerides/pharmacology , Intestines/drug effects , Intestines/anatomy & histology , Intestines/physiology , Ovum/drug effects , Ovum/physiology , Random Allocation , Dose-Response Relationship, Drug , Reproduction/drug effects
17.
Poult Sci ; 103(6): 103645, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547675

ABSTRACT

This study was to determine the effects of the mixture of glycerol monolaurate and cinnamaldehyde (GCM) supplementation on the intestinal morphology, immunity, antioxidant status and cecal microbiota of laying hens. A total of 1,120 healthy laying hens (Jingfen-1 strain) at the age of 14 wk were randomly divided into 4 groups with 10 replicates of 28 layers in each and layers were fed diets containing 0 (control group), or 250, 500, and 1,000 mg/kg GCM for 12 wk. The results showed that dietary supplementation with GCM significantly increased intestinal villus height and villus height/crypt depth, duodenal villus area, total superoxide disumutase activities in the liver and jejunum, jejunal glutathione peroxidase activities while decreased duodenal and jejunal crypt depth, hydrogen peroxide content in the liver and jejunal malondialdehyde content of laying hens aging 28 wk (P < 0.05). Meanwhile, GCM addition significantly increased serum immunoglobulin A and immunoglobulin M concentration of layers at the age of 20, 24, and 28 wk (P < 0.05). Moreover, it was observed in the 16S rRNA sequencing that the addition of GCM elevated the abundance and diversity of gut microbiota in laying hens. The predominant bacteria from each group were Bacteroidota and Firmicutes at the phylum level and Bacteroides and Lactobacillus were the dominant genera. The composition and structure of cecal microflora were changed by the addition of GCM to the diet of laying hens. In conclusion, the addition of GCM (500-1,000 mg/kg diet) can improve intestinal morphology, immune function, intestinal and liver antioxidant status and intestinal flora of laying hens, thereby improving intestinal digestion and absorption capacity. These findings provide a new way to further explore the mechanism of GCM improving intestinal health.


Subject(s)
Acrolein , Animal Feed , Antioxidants , Cecum , Chickens , Diet , Dietary Supplements , Gastrointestinal Microbiome , Intestines , Laurates , Animals , Chickens/physiology , Chickens/growth & development , Chickens/immunology , Gastrointestinal Microbiome/drug effects , Female , Antioxidants/metabolism , Diet/veterinary , Dietary Supplements/analysis , Animal Feed/analysis , Acrolein/analogs & derivatives , Acrolein/pharmacology , Acrolein/administration & dosage , Intestines/drug effects , Intestines/anatomy & histology , Intestines/microbiology , Cecum/microbiology , Cecum/drug effects , Laurates/pharmacology , Laurates/administration & dosage , Random Allocation , Dose-Response Relationship, Drug , Monoglycerides
18.
Animals (Basel) ; 14(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38338076

ABSTRACT

To optimize the utilization of fermented maize stover (FMS) feed during the fattening phase of Xianghai flying geese (XFG), a total of 300 XFG at 125 days of age were randomly assigned to four dietary treatment groups with three replicates of 25 in each set. Group A was fed the basal fattening diet, while the B, C, and D groups were fed the basic fattening diet and diets supplemented with 5%, 10% or 15% FMS, respectively. The findings indicate that the production performance indicators (especially the dressed, eviscerated and breast muscle yield) of Group D closely resembled Group A more than Groups B and C. Intestinal morphometry found that the jejunal villus height and the villus height/crypt depth were significantly increased in Group D compared to Group A. Next, 16S rRNA amplicon sequencing of the extracted DNA revealed that beneficial microbiota (Coprococcus and Victivallis) showed increased abundance in Group D. Cecal flora function analysis further revealed that some amino acid and glycerol biosynthesis were found to be associated with growth performance in geese. These findings suggest that incorporating 15% FMS as a substitute for a portion of the feed during the fattening phase of XFG can effectively sustain their production performance, optimize the gut microbial community and morphometrical traits, provide new insight into using non-conventional feed resources to reduce feed cost and improve economic benefits in the breeding industry.

19.
Front Nutr ; 11: 1363411, 2024.
Article in English | MEDLINE | ID: mdl-38379546

ABSTRACT

A 12-week feeding trial was conducted to evaluate the effects of replacing soybean meal with different types of rapeseed meal (RSM; Chinese 95-type (oil press model) rapeseed meal [C95RM], Chinese 200-type rapeseed meal [C200RM], cold pressed rapeseed cake [CPRC], Indian rapeseed meal [IRM] and Canadian rapeseed meal [CRM]) on growth, antioxidant capacity, non-specific immunity and Aeromonas hydrophila infection tolerance in 990 fingering (average weight 12.77 ± 0.01 g) rainbow trout (Oncorhynchus mykiss). A basal diet was prepared using fishmeal and soybean meal as the main protein sources, the other 10 diets were formulated with five types of RSM at 20% (C95RM20, C200RM20, CPRC20, IRM20, CRM20) or 35% (C95RM35, C200RM35, CPRC35, IRM35, CRM35) inclusion levels to replace iso-nitrogenous soybean meal. Regardless of the RSM source, dietary inclusion of 20% RSM significantly reduced the weight gain rate (WGR) and digestive enzymes activities (except C200RM20) of fish, but increased the blood urea nitrogen (BUN) and hepatic malondialdehyde (MDA) content (except CRM20). Fish fed with CPRC20 and IRM20 exhibited relatively higher plasma cortisol and MDA content, but lower content/activities of triiodothyronine (T3), thyroxine (T4) and glutathione peroxidase (GPx) in plasma, lysozyme (LZM) and complement 3 (C3) in serum, catalase (CAT) in liver, and respiratory burst activity (RBA) of head kidney macrophages. The intestinal and hepatic tissues fed with 20% RSM were damaged to some extent, with the CPRC20 and IRM20 groups being the most severely affected. Regardless of the RSM source, dietary inclusion of 35% RSM significantly decreased WGR and digestive enzymes activities, but significantly increased plasma BUN and MDA content. The fish fed with CPRC35 and IRM35 exhibited relatively higher plasma cortisol, MDA, serum triglyceride, BUN content, but lower content/activities of T3, T4, C3, and LZM in serum, CAT, peroxidase and GPx in plasma, CAT in liver, RBA and phagocytic activity of head kidney macrophage. The hepatic and intestinal tissues damage was the worst in the IRM35 group among the 35% RSM inclusion groups. These results indicate that including ≥20% RSM in the diet, regardless of the source, reduced the growth, antioxidant capacity, immunity, and survival to Aeromonas hydrophila infection in rainbow trout.

20.
Br Poult Sci ; 65(2): 179-190, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38372614

ABSTRACT

1. A study used gene synthesis to obtain the functional domains of chicken epidermal growth factor (cEGF) and examined their impact on broiler growth performance, small intestinal morphology, digestive enzyme activities in the intestinal contents and the structure of duodenal microflora.2. The pET-32a-cEGF recombinant expression vector was constructed. The specific band at 26 KDa was shown by SDS-PAGE analysis and WB results. The purified protein content was shown to be 1687 µg/ml by assay.3. A total of 180 healthy, one-day-old Arbor Acres male, white-feathered broilers were randomly divided into three dietary treatment groups (six replicate pens, 10 birds per replicate): A control diet (ND); cEGF diet (cEGF), control supplemented with 250 mg/kg cEGF and the control diet (CD) supplemented with 250 mg/kg chlortetracycline.4. The results showed that feeding the cEGF and CD diet reduced FCR of broilers aged 1-21 d, average daily feed intake (ADFI) at 22-42 d, and the FCR in the whole period (1-42 d; p < 0.05). Compared with the ND group, the cEGF diet increased duodenal α-amylase and alkaline phosphatase activities in the 1-21 d, duodenal lipase, alkaline phosphatase, and ileal alkaline phosphatase activities in the post-period and increased villus height in the duodenum and ileum (p < 0.05). In addition, the ACE and Chao1 index for the birds fed cEGF were higher than the ND group (p < 0.05). At the phyla level, Firmicutes and Proteobacteria were dominant in all groups. At the genus level, the dominant genus was Lactobacillus. The LEfSe analysis showed that the cEGF group was enriched by 11 species including Brevibacillus, Eisenbergiella, Cloacibacterium, Butyricoccus spp.5. The addition of 250 mg/kg cEGF to the diet can increase growth performance by improving intestinal development and digestive enzyme activity, which may be related to the duodenal intestinal microflora. Therefore, cEGF is an effective alternative to antibiotics in broiler farming.


Subject(s)
Chickens , Intestines , Animals , Male , Intestines/anatomy & histology , Chickens/physiology , Escherichia coli/genetics , Epidermal Growth Factor , Alkaline Phosphatase , Dietary Supplements/analysis , Diet/veterinary , Duodenum , Morphogenesis , Animal Feed/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...